Effectiveness of Atezolizumab in Addition to Chemotherapy in ES-SCLC: A Retrospective Real-World Monocentric Study
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Source and Statical Analysis
3. Results
3.1. Patient Characteristics
3.2. Survival Outcomes
4. Discussion
5. Conclusions
6. Future Prospective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Q.; Gümüş, Z.H.; Colarossi, C.; Memeo, L.; Wang, X.; Kong, C.Y.; Boffetta, P. SCLC: Epidemiology, Risk Factors, Genetic Susceptibility, Molecular Pathology, Screening, and Early Detection. J. Thorac. Oncol. 2022, 18, 31–46. [Google Scholar] [CrossRef]
- George, J.; Lim, J.S.; Jang, S.J.; Cun, Y.; Ozretić, L.; Kong, G.; Leenders, F.; Lu, X.; Fernández-Cuesta, L.; Bosco, G.; et al. Comprehensive genomic profiles of small cell lung cancer. Nature 2015, 524, 47–53. [Google Scholar] [CrossRef]
- Rudin, C.M.; Brambilla, E.; Faivre-Finn, C.; Sage, J. Small-cell lung cancer. Nat. Rev. Dis. Prim. 2021, 7, 3. [Google Scholar] [CrossRef]
- Shalata, W.; Naamneh, R.; Najjar, W.; Asla, M.; Abu Gameh, A.; Abu Amna, M.; Saiegh, L.; Agbarya, A. Current and Emerging Therapeutic Strategies for Limited- and Extensive-Stage Small-Cell Lung Cancer. Med. Sci. 2025, 13, 142. [Google Scholar] [CrossRef]
- Wang, Y.; Zou, S.; Zhao, Z.; Liu, P.; Ke, C.; Xu, S. New insights into small-cell lung cancer development and therapy. Cell Biol. Int. 2020, 44, 1564–1567. [Google Scholar] [CrossRef]
- Megyesfalvi, Z.; Gay, C.M.; Popper, H.; Pirker, R.; Ostoros, G.; Heeke, S.; Lang, C.; Hoetzenecker, K.; Schwendenwein, A.; Boettiger, K.; et al. Clinical insights into small cell lung cancer: Tumor heterogeneity, diagnosis, therapy, and future directions. CA A Cancer J. Clin. 2023, 73, 620–652. [Google Scholar] [CrossRef] [PubMed]
- Mascaux, C.; Paesmans, M.; Berghmans, T.; Branle, F.; Lafitte, J.; Lemaître, F.; Meert, A.; Vermylen, P.; Sculier, J. A systematic review of the role of etoposide and cisplatin in the chemotherapy of small cell lung cancer with methodology assessment and meta-analysis. Lung Cancer 2000, 30, 23–36. [Google Scholar] [CrossRef]
- Campano, O.B.O.T.G.O.; Comella, P.; Frasci, G.; De Cataldis, G.; Panza, N.; Cioffi, R.; Curcio, C.; Belli, M.; Bianco, A.; Ianniello, G.; et al. Cisplatin/carboplatin + etoposide + vinorelbine in advanced non-small-cell lung cancer: A multicentre randomised trial. Br. J. Cancer 1996, 74, 1805–1811. [Google Scholar] [CrossRef]
- Girigoswami, A.; Girigoswami, K. Potential Applications of Nanoparticles in Improving the Outcome of Lung Cancer Treatment. Genes 2023, 14, 1370. [Google Scholar] [CrossRef]
- Bianco, A.; D’aGnano, V.; Matera, M.G.; Della Gravara, L.; Perrotta, F.; Rocco, D. Immune checkpoint inhibitors: A new landscape for extensive stage small cell lung cancer treatment. Expert Rev. Respir. Med. 2021, 15, 1415–1425. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Cheng, Y. Immunotherapy for extensive-stage small-cell lung cancer: Current landscape and future perspectives. Front. Oncol. 2023, 13. [Google Scholar] [CrossRef] [PubMed]
- Bianco, A.; Perrotta, F.; Barra, G.; Malapelle, U.; Rocco, D.; De Palma, R. Prognostic Factors and Biomarkers of Responses to Immune Checkpoint Inhibitors in Lung Cancer. Int. J. Mol. Sci. 2019, 20, 4931. [Google Scholar] [CrossRef] [PubMed]
- El Sayed, R.; Blais, N. Immunotherapy in Extensive-Stage Small Cell Lung Cancer. Curr. Oncol. 2021, 28, 4093–4108. [Google Scholar] [CrossRef]
- Dingemans, A.-M.; Früh, M.; Ardizzoni, A.; Besse, B.; Faivre-Finn, C.; Hendriks, L.; Lantuejoul, S.; Peters, S.; Reguart, N.; Rudin, C.; et al. Small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up☆. Ann. Oncol. 2021, 32, 839–853. [Google Scholar] [CrossRef]
- Frampton, J.E. Atezolizumab: A Review in Extensive-Stage SCLC. Drugs 2020, 80, 1587–1594. [Google Scholar] [CrossRef]
- Knetki-Wróblewska, M.; Kowalski, D.M.; Krzakowski, M. Immune checkpoint inhibitors in the first-line treatment of metastatic small-cell lung cancer. Oncol. Clin. Pr. 2022, 18, 104–114. [Google Scholar] [CrossRef]
- Horn, L.; Mansfield, A.S.; Szczęsna, A.; Havel, L.; Krzakowski, M.; Hochmair, M.J.; Huemer, F.; Losonczy, G.; Johnson, M.L.; Nishio, M.; et al. First-Line Atezolizumab plus Chemotherapy in Extensive-Stage Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2220–2229. [Google Scholar] [CrossRef]
- Reck, M.; Dziadziuszko, R.; Sugawara, S.; Kao, S.; Hochmair, M.; Huemer, F.; de Castro, G.; Havel, L.; Caro, R.B.; Losonczy, G.; et al. Five-year survival in patients with extensive-stage small cell lung cancer treated with atezolizumab in the Phase III IMpower133 study and the Phase III IMbrella A extension study. Lung Cancer 2024, 196, 107924. [Google Scholar] [CrossRef]
- Reck, M.; Mok, T.S.; Mansfield, A.; De Boer, R.; Losonczy, G.; Sugawara, S.; Dziadziuszko, R.; Krzakowski, M.; Smolin, A.; Hochmair, M.; et al. Brief Report: Exploratory Analysis of Maintenance Therapy in Patients With Extensive-Stage SCLC Treated First Line With Atezolizumab Plus Carboplatin and Etoposide. J. Thorac. Oncol. 2022, 17, 1122–1129. [Google Scholar] [CrossRef]
- Bria, E.; Morgillo, F.; Garassino, M.C.; Ciardiello, F.; Ardizzoni, A.; Stefani, A.; Verderame, F.; Morabito, A.; Chella, A.; Tonini, G.; et al. Atezolizumab Plus Carboplatin and Etoposide in Patients with Untreated Extensive-Stage Small-Cell Lung Cancer: Interim Results of the MAURIS Phase IIIb Trial. Oncologist 2024, 29, e690–e698. [Google Scholar] [CrossRef] [PubMed]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Morgado, M.; Plácido, A.; Morgado, S.; Roque, F. Management of the Adverse Effects of Immune Checkpoint Inhibitors. Vaccines 2020, 8, 575. [Google Scholar] [CrossRef]
- You, M.; Liu, J.; Teng, F.; Wu, L.; Qin, H.; Zhang, Y.; Zhang, C.; Liu, Z.; Ma, K.; Gabazza, E.C.; et al. Effect of the number of induction chemotherapy cycles on the efficacy of first-line atezolizumab combined with chemotherapy in extensive-stage small cell lung cancer. Transl. Lung Cancer Res. 2025, 14, 1408–1417. [Google Scholar] [CrossRef]
- Liu, S.V.; Reck, M.; Mansfield, A.S.; Mok, T.; Scherpereel, A.; Reinmuth, N.; Garassino, M.C.; De Castro Carpeno, J.; Califano, R.; Nishio, M.; et al. Updated Overall Survival and PD-L1 Subgroup Analysis of Patients With Extensive-Stage Small-Cell Lung Cancer Treated With Atezolizumab, Carboplatin, and Etoposide (IMpower133). J. Clin. Oncol. 2021, 39, 619–630. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.V.; Mok, T.S.; Nabet, B.Y.; Mansfield, A.S.; De Boer, R.; Losonczy, G.; Sugawara, S.; Dziadziuszko, R.; Krzakowski, M.; Smolin, A.; et al. Clinical and molecular characterization of long-term survivors with extensive-stage small cell lung cancer treated with first-line atezolizumab plus carboplatin and etoposide. Lung Cancer 2023, 186, 107418. [Google Scholar] [CrossRef] [PubMed]
- Durán-Pacheco, G.; Chandler, G.S.; Maiya, V.; A Socinski, M.; Sonpavde, G.; Puente, J.; Essioux, L.; Carter, C.; Cardona, J.V.; Mohindra, R.; et al. Correlation of safety and efficacy of atezolizumab therapy across indications. J. Immunother. Cancer 2024, 12, e010158. [Google Scholar] [CrossRef]
- Quach, H.T.; Dewan, A.K.; Davis, E.J.; Ancell, K.K.; Fan, R.; Ye, F.; Johnson, D.B. Association of Anti–Programmed Cell Death 1 Cutaneous Toxic Effects With Outcomes in Patients With Advanced Melanoma. JAMA Oncol. 2019, 5, 906–908. [Google Scholar] [CrossRef] [PubMed]
- Passat, T.; Touchefeu, Y.; Gervois, N.; Jarry, A.; Bossard, C.; Bennouna, J. Mécanismes physiopathologiques des effets secondaires des immunothérapies par anticorps anti-CTLA-4, anti-PD-1 et anti-PD-L1 dans le traitement du cancer. Physiopathological mechanisms of immune-related adverse events induced by anti-CTLA-4, anti-PD-1 and anti-PD-L1 antibodies in cancer treatment. Bull. Du Cancer 2018, 105, 1033–1041. [Google Scholar] [CrossRef]
- Das, S.; Johnson, D.B. Immune-related adverse events and anti-tumor efficacy of immune checkpoint inhibitors. J. Immunother. Cancer 2019, 7, 306. [Google Scholar] [CrossRef]
- Deepak, J.A.; Ng, X.; Feliciano, J.; Mao, L.; Davidoff, A.J. Pulmonologist Involvement, Stage-Specific Treatment, and Survival in Adults with Non–Small Cell Lung Cancer and Chronic Obstructive Pulmonary Disease. Ann. Am. Thorac. Soc. 2015, 12, 742–751. [Google Scholar] [CrossRef]
- Pemberton, L.; Owadally, W.; Ayre, G.; Brooks, H.; Comins, C.; Dangoor, A.; Closier, P. 224 Real-world Evaluation of Atezolizumab alongside Chemotherapy in Extensive Stage Small Cell Lung Cancer (ES-SCLC): A Retrospective Review from the University Hospitals Bristol and Weston (UHBW) NHS Foundation Trust. Lung Cancer 2025, 200, 108333. [Google Scholar] [CrossRef]
- Vince, M.; Naqvi, S.M.H.; Pellini, B.; Verbosky, M.; Melzer, D. Real-world comparison of the efficacy and safety of atezolizumab versus durvalumab in extensive-stage small cell lung cancer. Lung Cancer 2024, 198, 107999. [Google Scholar] [CrossRef]
- Okada, M.; Ohgino, K.; Horiuchi, K.; Sayama, K.; Arai, D.; Watase, M.; Kobayashi, K.; Terashima, T.; Ishioka, K.; Miyawaki, M.; et al. Real-World Efficacy and Safety of Atezolizumab for Advanced Non-Small Cell Lung Cancer in Japan: A Retrospective Multicenter Analysis. J. Clin. Med. 2024, 13, 7815. [Google Scholar] [CrossRef]
- Mansfield, A.; Każarnowicz, A.; Karaseva, N.; Sánchez, A.; De Boer, R.; Andric, Z.; Reck, M.; Atagi, S.; Lee, J.-S.; Garassino, M.; et al. Safety and patient-reported outcomes of atezolizumab, carboplatin, and etoposide in extensive-stage small-cell lung cancer (IMpower133): A randomized phase I/III trial. Ann. Oncol. 2020, 31, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Qin, J. Predictive biomarkers for immunotherapy response in extensive-stage SCLC. J. Cancer Res. Clin. Oncol. 2024, 150, 22. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Guo, N.; Zhou, Y.; Chen, J.; Wei, Q.; Han, M. The role of tumor-associated macrophages (TAMs) in tumor progression and relevant advance in targeted therapy. Acta Pharm. Sin. B 2020, 10, 2156–2170. [Google Scholar] [CrossRef]
- Yue, Z.-Q.; Liu, Y.-P.; Ruan, J.-S.; Zhou, L.; Lu, Y. Tumor-associated macrophages: A novel potential target for cancer treatment. Chin. Med. J. 2012, 125, 3305–3311. [Google Scholar] [CrossRef] [PubMed]
- Nabet, B.Y.; Hamidi, H.; Lee, M.C.; Banchereau, R.; Morris, S.; Adler, L.; Gayevskiy, V.; Elhossiny, A.M.; Srivastava, M.K.; Patil, N.S.; et al. Immune heterogeneity in small-cell lung cancer and vulnerability to immune checkpoint blockade. Cancer Cell 2024, 42, 429–443.e4. [Google Scholar] [CrossRef]
- Lin, X.; Kang, K.; Chen, P.; Zeng, Z.; Li, G.; Xiong, W.; Yi, M.; Xiang, B. Regulatory mechanisms of PD-1/PD-L1 in cancers. Mol. Cancer 2024, 23, 108. [Google Scholar] [CrossRef]
- Cooper, M.R.; Alrajhi, A.M.; Durand, C.R. Role of Immune Checkpoint Inhibitors in Small Cell Lung Cancer. Am. J. Ther. 2017, 25, e349–e356. [Google Scholar] [CrossRef]
- Tsiouprou, I.; Zaharias, A.; Spyratos, D. The Role of Immunotherapy in Extensive Stage Small-Cell Lung Cancer: A Review of the Literature. Can. Respir. J. 2019, 2019, 6860432. [Google Scholar] [CrossRef]
- Glatzer, M.; Schmid, S.; Radovic, M.; Früh, M.; Putora, P.M. The role of radiation therapy in the management of small cell lung cancer. Breathe 2017, 13, e87–e94. [Google Scholar] [CrossRef]
- Hoffmann, E.; De-Colle, C.; Potkrajcic, V.; Baumann, D.; Spengler, W.; Gani, C.; Utz, D. Is consolidative thoracic radiotherapy of extensive-stage small cell lung cancer still beneficial in the era of immunotherapy? A retrospective analysis. Strahlenther. Onkol. 2023, 199, 668–675. [Google Scholar] [CrossRef]
- Sun, A.; Abdulkarim, B.; Blais, N.; Greenland, J.; Louie, A.V.; Melosky, B.; Schellenberg, D.; Snow, S.; Liu, G. Use of radiation therapy among patients with Extensive-stage Small-cell lung cancer receiving Immunotherapy: Canadian consensus recommendations. Lung Cancer 2023, 179, 107166. [Google Scholar] [CrossRef]
- Slotman, B.J.; van Tinteren, H.; O Praag, J.; Knegjens, J.L.; El Sharouni, S.Y.; Hatton, M.; Keijser, A.; Faivre-Finn, C.; Senan, S. Use of thoracic radiotherapy for extensive stage small-cell lung cancer: A phase 3 randomised controlled trial. Lancet 2015, 385, 36–42. [Google Scholar] [CrossRef]
- Palma, D.A.; Warner, A.; Louie, A.V.; Senan, S.; Slotman, B.; Rodrigues, G.B. Thoracic Radiotherapy for Extensive Stage Small-Cell Lung Cancer: A Meta-Analysis. Clin. Lung Cancer 2016, 17, 239–244. [Google Scholar] [CrossRef]
- Longo, V.; Della Corte, C.M.; Russo, A.; Spinnato, F.; Ambrosio, F.; Ronga, R.; Marchese, A.; Del Giudice, T.; Sergi, C.; Casaluce, F.; et al. Consolidative thoracic radiation therapy for extensive-stage small cell lung cancer in the era of first-line chemoimmunotherapy: Preclinical data and a retrospective study in Southern Italy. Front. Immunol. 2023, 14, 1289434. [Google Scholar] [CrossRef]
- Lim, J.U.; Ryu, W.K.; Park, N.; Choi, J.; Lee, E.; Lee, S.-Y.; Lim, J.H. Current and future perspectives in extensive-stage small-cell lung cancer. Ther. Adv. Med. Oncol. 2025, 17, 17588359251326705. [Google Scholar] [CrossRef]
- Manzo, A.; Sforza, V.; Carillio, G.; Palumbo, G.; Montanino, A.; Sandomenico, C.; Costanzo, R.; Esposito, G.; Laudato, F.; Mercadante, E.; et al. Lurbinectedin in small cell lung cancer. Front. Oncol. 2022, 12, 932105. [Google Scholar] [CrossRef]
- Sen, T.; Takahashi, N.; Chakraborty, S.; Takebe, N.; Nassar, A.H.; Karim, N.A.; Puri, S.; Naqash, A.R. Emerging advances in defining the molecular and therapeutic landscape of small-cell lung cancer. Nat. Rev. Clin. Oncol. 2024, 21, 610–627. [Google Scholar] [CrossRef]
- Ahn, M.-J.; Cho, B.C.; Felip, E.; Korantzis, I.; Ohashi, K.; Majem, M.; Juan-Vidal, O.; Handzhiev, S.; Izumi, H.; Lee, J.-S.; et al. Tarlatamab for Patients with Previously Treated Small-Cell Lung Cancer. N. Engl. J. Med. 2023, 389, 2063–2075. [Google Scholar] [CrossRef]
- de Bono, J.; Ramanathan, R.K.; Mina, L.; Chugh, R.; Glaspy, J.; Rafii, S.; Kaye, S.; Sachdev, J.; Heymach, J.; Smith, D.C.; et al. Phase I, Dose-Escalation, Two-Part Trial of the PARP Inhibitor Talazoparib in Patients with Advanced Germline BRCA1/2 Mutations and Selected Sporadic Cancers. Cancer Discov. 2017, 7, 620–629. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zeng, X.; Li, D.; Zhu, C.; Guo, X.; Feng, L.; Yu, Z. PARP inhibitors in small cell lung cancer: The underlying mechanisms and clinical implications. Biomed. Pharmacother. 2022, 153, 113458. [Google Scholar] [CrossRef] [PubMed]
- Byers, L.A.; Navarro, A.; Schaefer, E.; Johnson, M.; Özgüroğlu, M.; Han, J.-Y.; Bondarenko, I.; Cicin, I.; Dragnev, K.H.; Abel, A.; et al. A Phase II Trial of Prexasertib (LY2606368) in Patients With Extensive-Stage Small-Cell Lung Cancer. Clin. Lung Cancer 2021, 22, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.-H.; Zhao, X.; Zhu, J.; Kim, I.-K.; Rao, G.; McCutcheon, J.; Hsu, S.-T.; Teicher, B.; Kallakury, B.; Dowlati, A.; et al. Checkpoint Kinase 1 Inhibition Enhances Cisplatin Cytotoxicity and Overcomes Cisplatin Resistance in SCLC by Promoting Mitotic Cell Death. J. Thorac. Oncol. 2019, 14, 1032–1045. [Google Scholar] [CrossRef]






| Characteristic | Tot. Patient |
|---|---|
| Patients, n. | 134 |
| Age, yr, median (range) | 65 (52–86) |
| Male | 86 (64.2%) |
| Female | 48 (35.8%) |
| ECOG-PS | |
| 0 | 37 (27.6%) |
| 1 | 83 (61.9%) |
| 2 | 14 (10.4%) |
| Smoking status | |
| Yes | 134 (100%) |
| Ex | 65 (48.5%) |
| Brain metastasis at diagnosis | 18 (13.5%) |
| Mediastinal metastasis at diagnosis | 89 (66.4%) |
| Liver metastasis at diagnosis | 37 (27.6%) |
| Bones metastasis at diagnosis | 39 (29.1%) |
| N. cycles of CEA | |
| 1 | 8 (6%) |
| 2 | 6 (4.5%) |
| 3 | 12 (9%) |
| 4 | 103 (76.9%) |
| 5 | 3 (2.2%) |
| 6 | 2 (1.5%) |
| <10 Cycles | p-Value | 10–20 Cycles | p-Value | 21–30 Cycles | p-Value | >31 Cycles | p-Value | |
|---|---|---|---|---|---|---|---|---|
| Age | 65.2 ± 7.4 | 0.225 | 67.2 ± 11 | 0.357 | 61 ± 6 | 0.753 | 67.8 ± 5.7 | 0.741 |
| ECOG-PS | <0.001 | <0.001 | 0.741 | 0.056 | ||||
| 0 | 24 | 8 | 2 | 3 | ||||
| 1 | 64 | 10 | 5 | 4 | ||||
| 2 | 12 | 1 | 0 | 1 | ||||
| OS | 10.7 ± 8.8 | <0.001 | 20.7 ± 9.2 | 0.001 | 28.7 ±2.55 | 0.116 | 41.8 ± 2.1 | 0.016 |
| PFS | 6.9 ± 6.6 | <0.001 | 15.8 ± 6.7 | 0.004 | 20.2 ± 2.23 | 0.089 | 39.2 ± 1.6 | 0.038 |
| Number of CEA | 3.6 ± 0.9 | <0.001 | 3.9 ± 0.8 | <0.001 | 4.2 ± 0.9 | <0.001 | 4.4 ± 0.9 | <0.001 |
| Any Grade | Grade 5 | Grade 3 or 4 | Grade 2 | Grade 1 | |
|---|---|---|---|---|---|
| Any event | 33 | 0 | 4 | 26 | 3 |
| Pneumonia | 5 | 0 | 1 | 4 | 0 |
| Dysthyroidism | 8 | 0 | 0 | 7 | 1 |
| Skin disorders | 6 | 0 | 0 | 6 | 0 |
| Colitis | 4 | 0 | 2 | 2 | 0 |
| AST and ALT increased | 6 | 0 | 0 | 4 | 2 |
| Edema legs | 2 | 0 | 0 | 2 | 0 |
| Bloods and lymphatic disorders | 2 | 0 | 1 | 1 | 0 |
| Number of Cycles of Atezolizumab as Maintenance | Number of Patients |
|---|---|
| <10 cycles | 108 |
| 11–20 cycles | 11 |
| 21–30 cycles | 7 |
| 31–40 cycles | 3 |
| >41 cycles | 5 |
| <10 Cycles | 10–20 Cycles | 21–30 Cycles | >31 Cycles | Tot. | |
|---|---|---|---|---|---|
| Comorbidities at baseline | 72 (53.8%) | 4 (3.0%) | 3 (2.3%) | 8 (6.0%) | 87 (65.1%) |
| Respiratory failure at baseline | 16 (11.9%) | 0 (0%) | 3 (2.2%) | 3 (2.2%) | 22 (16.3%) |
| Metastasis at baseline: | |||||
| Mediastinal | 84 (62.8) | 16 (12%) | 6 (4.5%) | 8 (6.0%) | 114 (85.3%) |
| Cranial | 9 (6.7%) | 1 (0.8%) | 4 (3.0%) | 2 (1.5%) | 16 (12.0%) |
| Liver | 22 (16.4%) | 7 (5.2%) | 1 (0.8%) | 0 | 30 (22.4%) |
| Bone | 27 (20.2%) | 7 (5.2%) | 3 (2.5%) | 4 (3.0%) | 41 (30.9%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pagliaro, R.; Vitiello, F.; Gilli, M.; d’Orologio, A.; Borgese, L.; Campbell, S.F.; Medusa, P.M.; Signoriello, G.; Perrotta, F.; Rocco, D.; et al. Effectiveness of Atezolizumab in Addition to Chemotherapy in ES-SCLC: A Retrospective Real-World Monocentric Study. Cancers 2025, 17, 3298. https://doi.org/10.3390/cancers17203298
Pagliaro R, Vitiello F, Gilli M, d’Orologio A, Borgese L, Campbell SF, Medusa PM, Signoriello G, Perrotta F, Rocco D, et al. Effectiveness of Atezolizumab in Addition to Chemotherapy in ES-SCLC: A Retrospective Real-World Monocentric Study. Cancers. 2025; 17(20):3298. https://doi.org/10.3390/cancers17203298
Chicago/Turabian StylePagliaro, Raffaella, Fabiana Vitiello, Marina Gilli, Antonio d’Orologio, Luca Borgese, Susan F. Campbell, Paola Maria Medusa, Giuseppe Signoriello, Fabio Perrotta, Danilo Rocco, and et al. 2025. "Effectiveness of Atezolizumab in Addition to Chemotherapy in ES-SCLC: A Retrospective Real-World Monocentric Study" Cancers 17, no. 20: 3298. https://doi.org/10.3390/cancers17203298
APA StylePagliaro, R., Vitiello, F., Gilli, M., d’Orologio, A., Borgese, L., Campbell, S. F., Medusa, P. M., Signoriello, G., Perrotta, F., Rocco, D., & Bianco, A. (2025). Effectiveness of Atezolizumab in Addition to Chemotherapy in ES-SCLC: A Retrospective Real-World Monocentric Study. Cancers, 17(20), 3298. https://doi.org/10.3390/cancers17203298

