Comprehensive Review of Early and Late Toxicities in CAR T-Cell Therapy and Bispecific Antibody Treatments for Hematologic Malignancies
Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Study Design
2.2. Data Sources
2.2.1. Inclusion and Exclusion Criteria
- Peer-reviewed articles discussing the clinical use of CAR-T and bispecific therapies;
- Studies reporting complications, including cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS);
- Articles focusing on diagnostic biomarkers, imaging techniques, and management protocols.
- Non-English language publications;
- Studies unrelated to hematologic malignancies or cellular therapies.
2.2.2. Data Extraction
2.2.3. Ethical Considerations
2.2.4. Analysis and Presentation
3. Indications for CAR-T and Bispecific Therapies in Hematologic Malignancies
3.1. B-Cell Acute Lymphoblastic Leukemia (B-ALL)
3.2. Multiple Myeloma (MM)
3.3. Chronic Lymphocytic Leukemia (CLL)
3.4. Mantle Cell Lymphoma (MCL)
3.5. Diffuse Large B-Cell Lymphoma (DLBCL)
3.6. Follicular Lymphoma (FL)
4. Early Complications of CAR-T Therapy: Diagnostic Workup and Management
4.1. Introduction to Early Complications
4.2. Cytokine Release Syndrome (CRS) Overview
4.3. Diagnostic Workup for CRS in CAR-T Therapy
4.4. Management of CRS Based on Diagnostic Findings
4.5. Immune Effector Cell-Associated Neurotoxicity Syndrome (ICANS) Overview
5. Late Complications of CAR-T Therapy: Diagnostic Workup and Management
5.1. Introduction to Late Complications in CART-Therapy
5.2. Prolonged Cytopenias in CART-Therapy
5.3. Infections and Opportunistic Pathogens in CART-Therapy
5.4. B-Cell Aplasia and Hypogammaglobulinemia in CART-Therapy
5.5. Secondary Malignancies in CART-Therapy
- Imaging: Imaging should be considered, such as CT or PET-CT scans, to monitor for solid tumors or hematologic malignancies based on patients’ complaints and on a case-to-case basis. MRI can be considered for patients requiring reduced radiation exposure;
- Hematologic Assessments: Routine complete blood counts (CBC) with differential and peripheral smear evaluations to identify early signs of hematologic malignancies. Molecular testing and bone marrow biopsy may be warranted for unexplained cytopenias or other abnormal findings;
- Monitoring for Clonal Hematopoiesis: Regular assessment for clonal hematopoiesis of indeterminate potential (CHIP) using next-generation sequencing (NGS), particularly in patients with significant genotoxic exposure history;
- Standard Cancer Screening: Adherence to age- and gender-appropriate cancer screening protocols, such as mammography, colonoscopy, or low-dose CT scans for lung cancer in high-risk individuals.
5.6. Graft-Versus-Host Disease (GVHD)
5.7. Neurological Complications
5.8. Management of Late Complications
6. Early Complications of Bispecific Antibodies: Diagnostic Workup and Management
6.1. Introduction to Bispecific Antibodies and Early Complications
6.2. Cytokine Release Syndrome (CRS) in BsAbs
6.3. Diagnostic Workup for CRS in BsAb Therapy
6.4. Management of CRS in BsAb Therapy
6.5. Neurotoxicity and ICANS in Bispecific Antibodies
6.6. Diagnostic Workup for Neurotoxicity
6.7. Management of Neurotoxicity in BsAb Therapy
6.8. Future Directions in the Management of Early Complications in BsAbs
7. Late Complications of Bispecific Antibody Therapy: Diagnostic Workup and Management
7.1. Introduction to Late Complications in BsAb Therapy
7.2. Prolonged Cytopenias in BsAb Therapy
7.3. Infections and Opportunistic Pathogens in BsAb Therapy
7.4. B-Cell Aplasia and Hypogammaglobulinemia in BsAb Therapy
7.5. Secondary Malignancies in BsAb Therapy
- Routine Imaging: Consider periodic CT or PET scans in patients with high-risk features or a history of prior malignancies;
- Hematologic Assessments: Regular complete blood counts (CBC) and peripheral blood smears to monitor for unexpected hematologic abnormalities;
- Biopsies: For cases of suspected transformation or unexplained lesions detected on imaging.
7.6. Chronic Inflammatory and Autoimmune Reactions
7.7. Neurotoxicity
7.8. Management and Future Directions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 2018, 378, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Munoz, J.; Goy, A.; Locke, F.L.; Jacobson, C.A.; Hill, B.T.; Timmerman, J.M.; Holmes, H.; Jaglowski, S.; Flinn, I.W.; et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med. 2020, 382, 1331–1342. [Google Scholar] [CrossRef] [PubMed]
- Goebeler, M.E.; Bargou, R.C. T cell-engaging therapies—BiTEs and beyond. Nat. Rev. Clin. Oncol. 2020, 17, 418–434. [Google Scholar] [CrossRef] [PubMed]
- Budde, L.E.; Sehn, L.H.; Matasar, M.; Schuster, S.J.; Assouline, S.; Giri, P.; Kuruvilla, J.; Canales, M.; Dietrich, S.; Fay, K.; et al. Safety and efficacy of mosunetuzumab, a bispecific antibody, in patients with relapsed or refractory follicular lymphoma: A single-arm, multicentre, phase 2 study. Lancet Oncol. 2022, 23, 1055–1065. [Google Scholar] [CrossRef]
- Lee, D.W.; Gardner, R.; Porter, D.L.; Louis, C.U.; Ahmed, N.; Jensen, M.; Grupp, S.A.; Mackall, C.L. Current concepts in the diagnosis and management of cytokine release syndrome. Blood J. Am. Soc. Hematol. 2014, 124, 188–195. [Google Scholar] [CrossRef]
- Yang, C.; Nguyen, J.; Yen, Y. Complete spectrum of adverse events associated with chimeric antigen receptor (CAR)-T cell therapies. J. Biomed. Sci. 2023, 30, 89. [Google Scholar] [CrossRef]
- Neelapu, S.S.; Tummala, S.; Kebriaei, P.; Wierda, W.; Gutierrez, C.; Locke, F.L.; Komanduri, K.V.; Lin, Y.; Jain, N.; Daver, N.; et al. Chimeric antigen receptor T-cell therapy—Assessment and management of toxicities. Nat. Rev. Clin. Oncol. 2018, 15, 47–62. [Google Scholar] [CrossRef]
- Major, A.; Kamdar, M. Selection of bispecific antibody therapies or CAR-T cell therapy in relapsed lymphomas. Hematology 2023, 2023, 370–381. [Google Scholar] [CrossRef]
- Zeiser, R.; Ringden, O.; Sadeghi, B.; Gonen-Yaacovi, G.; Segurado, O.G. Novel therapies for graft versus host disease with a focus on cell therapies. Front. Immunol. 2023, 14, 1241068. [Google Scholar] [CrossRef]
- Schroeder, T.; Martens, T.; Fransecky, L.; Valerius, T.; Schub, N.; Pott, C.; Baldus, C.; Stölzel, F. Management of chimeric antigen receptor T (CAR-T) cell-associated toxicities. Intensive Care Med. 2024, 50, 1459–1469. [Google Scholar] [CrossRef]
- Locke, F.L.; Ghobadi, A.; Jacobson, C.A.; Miklos, D.B.; Lekakis, L.J.; Oluwole, O.O.; Lin, Y.; Braunschweig, I.; Hill, B.T.; Timmerman, J.M.; et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): A single-arm, multicentre, phase 1–2 trial. Lancet Oncol. 2019, 20, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, M.; Basharat, A.; Irfan, S.; Sadiq, M.H.; Amin, M.K.; Jaglal, M.V. Future Landscapes of Bispecific Antibodies in Chronic Lymphocytic Leukemia (CLL). Systematic Review of Ongoing Trials. Blood 2024, 144, 6804. [Google Scholar] [CrossRef]
- Omer, M.H.; Shafqat, A.; Ahmad, O.; Alkattan, K.; Yaqinuddin, A.; Damlaj, M. Bispecific antibodies in hematological malignancies: A scoping review. Cancers 2023, 15, 4550. [Google Scholar] [CrossRef] [PubMed]
- Demichelis-Gómez, R.; Pérez-Sámano, D.; Bourlon, C. Bispecific antibodies in hematologic malignancies: When, to whom, and how should be best used? Curr. Oncol. Rep. 2019, 21, 17. [Google Scholar] [CrossRef]
- Shahid, Z.; Jain, T.; Dioverti, V.; Pennisi, M.; Mikkilineni, L.; Thiruvengadam, S.K.; Shah, N.N.; Dadwal, S.; Papanicolaou, G.; Hamadani, M.; et al. Best practice considerations by the American Society of Transplant and Cellular Therapy: Infection prevention and management after chimeric antigen receptor t cell therapy for hematological malignancies. Transplant. Cell. Ther. 2024, 30, 955–969. [Google Scholar] [CrossRef]
- Noori, M.; Yazdanpanah, N.; Rezaei, N. Safety and efficacy of T-cell-redirecting bispecific antibodies for patients with multiple myeloma: A systematic review and meta-analysis. Cancer Cell Int. 2023, 23, 193. [Google Scholar] [CrossRef]
- Locatelli, F.; Del Bufalo, F.; Quintarelli, C. Allogeneic chimeric antigen receptor T cells for children with relapsed/refractory B-cell precursor acute lymphoblastic leukemia. Haematologica 2024, 109, 1689. [Google Scholar] [CrossRef]
- Kantarjian, H.; Stein, A.; Gökbuget, N.; Fielding, A.K.; Schuh, A.C.; Ribera, J.M.; Wei, A.; Dombret, H.; Foà, R.; Bassan, R.; et al. Blinatumomab versus chemotherapy for advanced ALL. N. Engl. J. Med. 2017, 376, 836–847. [Google Scholar] [CrossRef]
- Topp, M.S.; Gökbuget, N.; Stein, A.S.; Zugmaier, G.; O’Brien, S.; Bargou, R.C.; Dombret, H.; Fielding, A.K.; Heffner, L.; Larson, R.A.; et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukemia: A multicenter, single-arm, phase 2 study. Lancet Oncol. 2015, 16, 57–66. [Google Scholar] [CrossRef]
- Xu, J.; Wang, B.Y.; Yu, S.H.; Chen, S.J.; Yang, S.S.; Liu, R.; Chen, L.J.; Hou, J.; Chen, Z.; Zhao, W.H.; et al. Long-term remission and survival in patients with relapsed or refractory multiple myeloma after treatment with LCAR-B38M CAR T cells: 5-year follow-up of the LEGEND-2 trial. J. Hematol. Oncol. 2024, 17, 23. [Google Scholar] [CrossRef]
- Devasia, A.J.; Chari, A.; Lancman, G. Bispecific antibodies in the treatment of multiple myeloma. Blood Cancer J. 2024, 14, 158. [Google Scholar] [CrossRef] [PubMed]
- Merz, M.; Dima, D.; Hashmi, H.; Ahmed, N.; Stölzel, F.; Holderried, T.A.; Fenk, R.; Müller, F.; Tovar, N.; Oliver-Cáldes, A.; et al. Bispecific antibodies targeting BCMA or GPRC5D are highly effective in relapsed myeloma after CAR T-cell therapy. Blood Cancer J. 2024, 14, 214. [Google Scholar] [CrossRef] [PubMed]
- Beyar-Katz, O.; Benjamini, O.; Delgado, J.; Ruella, M.; Ram, R.; Grisariu, S.; Visentin, A.; Vandenberghe, E.; Gentile, M.; Avigdor, A.; et al. CD19 CAR-T Cell Therapy Is Effective in Richter Transformation: A Multicenter Retrospective Analysis By the European Research Initiative on Chronic Lymphocytic Leukemia. Blood 2024, 144, 4504. [Google Scholar] [CrossRef]
- Kittai, A.; Bond, D.; Huang, Y.; Bhat, S.A.; Blyth, E.; Byrd, J.C.; Chavez, J.C.; Davids, M.S.; Dela Cruz, J.P.; Dowling, M.R.; et al. Anti-CD19 chimeric antigen receptor T-cell therapy for Richter’s transformation: An international multicenter retrospective study. J. Clin. Oncol. 2024, 42, 2071–2079. [Google Scholar] [CrossRef]
- Hutchings, M.; Morschhauser, F.; Iacoboni, G.; Carlo-Stella, C.; Offner, F.C.; Sureda, A.; Salles, G.; Martínez-Lopez, J.; Crump, M.; Thomas, D.N.; et al. Glofitamab, a novel, bivalent CD20-targeting T-cell–engaging bispecific antibody, induces durable complete remissions in relapsed or refractory B-cell lymphoma: A phase I trial. J. Clin. Oncol. 2021, 39, 1959–1970. [Google Scholar] [CrossRef]
- Neelapu, S.S.; Chavez, J.C.; Sehgal, A.R.; Epperla, N.; Ulrickson, M.; Bachy, E.; Munshi, P.N.; Casulo, C.; Maloney, D.G.; de Vos, S.; et al. Three-year follow-up analysis of axicabtagene ciloleucel in relapsed/refractory indolent non-Hodgkin lymphoma (ZUMA-5). Blood 2024, 143, 496–506. [Google Scholar] [CrossRef]
- Roche. A Study to Evaluate Glofitamab as a Single Agent vs. Investigator’s Choice in Participants with Relapsed/Refractory Mantle Cell Lymphoma (GO46084). ClinicalTrials.gov. Published September 2023. Available online: https://clinicaltrials.gov/ct2/show/NCT06084936 (accessed on 1 January 2025).
- Bento, L.; Glass, B.; Schmitz, N. Large B-Cell Lymphoma. In The EBMT Handbook: Hematopoietic Cell Transplantation and Cellular Therapies; Springer International Publishing: Cham, Switzerland, 2024; pp. 777–785. [Google Scholar] [CrossRef]
- Wu, X.; Sun, X.; Deng, W.; Xu, R.; Zhao, Q. Combination therapy of targeting CD20 antibody and immune checkpoint inhibitor may be a breakthrough in the treatment of B-cell lymphoma. Heliyon 2024, 10, e34068. [Google Scholar] [CrossRef]
- Elemian, S.; Habbas, A.; Jumean, S.; Al Omour, B.; Hamad, M.; Tan, J.Y.; Chan, K.H.; Guron, G.; Shaaban, H. Efficacy and Safety of Mosunetuzumab in Relapsed/Refractory Non-Hodgkin Lymphoma: A Systematic Review. Blood 2024, 144, 6512. [Google Scholar] [CrossRef]
- Oluwole, O.O.; Forcade, E.; Muñoz, J.; de Guibert, S.; Vose, J.M.; Bartlett, N.L.; Lin, Y.; Deol, A.; McSweeney, P.; Goy, A.H.; et al. Long-term outcomes of patients with large B-cell lymphoma treated with axicabtagene ciloleucel and prophylactic corticosteroids. Bone Marrow Transplant. 2024, 59, 366–372. [Google Scholar] [CrossRef]
- Teachey, D.T.; Lacey, S.F.; Shaw, P.A.; Melenhorst, J.J.; Maude, S.L.; Frey, N.; Pequignot, E.; Gonzalez, V.E.; Chen, F.; Finklestein, J.; et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov. 2016, 6, 664–679. [Google Scholar] [CrossRef]
- Hay, K.A.; Gauthier, J.; Hirayama, A.V.; Voutsinas, J.M.; Wu, Q.; Li, D.; Gooley, T.A.; Cherian, S.; Chen, X.; Pender, B.S.; et al. Factors associated with durable EFS in adult B-cell ALL patients achieving MRD-negative CR after CD19 CAR T-cell therapy. Blood J. Am. Soc. Hematol. 2019, 133, 1652–1663. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.J.; Tang, Y.M. Cytokine release syndrome in cancer immunotherapy with chimeric antigen receptor–engineered T cells. Cancer Lett. 2014, 343, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Gardner, R.A.; Ceppi, F.; Rivers, J.; Annesley, C.; Summers, C.; Taraseviciute, A.; Gust, J.; Leger, K.J.; Tarlock, K.; Cooper, T.M.; et al. Preemptive mitigation of CD19 CAR T-cell cytokine release syndrome without attenuation of antileukemic efficacy. Blood J. Am. Soc. Hematol. 2019, 134, 2149–2158. [Google Scholar] [CrossRef] [PubMed]
- Radtke, K.K.; Bender, B.C.; Li, Z.; Turner, D.C.; Roy, S.; Belousov, A.; Li, C.-C. Clinical Pharmacology of Cytokine Release Syndrome with T-Cell–Engaging Bispecific Antibodies: Current Insights and Drug Development Strategies. Clin. Cancer Res. 2024, OF1–OF13. [Google Scholar] [CrossRef]
- Davila, M.L.; Riviere, I.; Wang, X.; Bartido, S.; Park, J.; Curran, K.; Chung, S.S.; Stefanski, J.; Borquez-Ojeda, O.; Olszewska, M.; et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 2014, 6, 224ra25. [Google Scholar] [CrossRef]
- Velasco, R.; Mussetti, A.; Villagrán-García, M.; Sureda, A. CAR T-cell-associated neurotoxicity in central nervous system hematologic disease: Is it still a concern? Front. Neurol. 2023, 14, 1144414. [Google Scholar] [CrossRef]
- Santomasso, B.; Bachier, C.; Westin, J.; Rezvani, K.; Shpall, E.J. The Other Side of CAR T-Cell Therapy: Cytokine Release Syndrome, Neurologic Toxicity, and Financial Burden. Am. Soc. Clin. Oncol. Educ. Book Am. Soc. Clin. Oncol. Annu. Meet. 2019, 39, 433–444. [Google Scholar] [CrossRef]
- Santomasso, B.D.; Park, J.H.; Salloum, D.; Riviere, I.; Flynn, J.; Mead, E.; Halton, E.; Wang, X.; Senechal, B.; Purdon, T.; et al. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia. Cancer Discov. 2018, 8, 958–971. [Google Scholar] [CrossRef]
- Locke, F.L.; Rossi, J.M.; Neelapu, S.S.; Jacobson, C.A.; Miklos, D.B.; Ghobadi, A.; Oluwole, O.O.; Reagan, P.M.; Lekakis, L.J.; Lin, Y.; et al. Tumor burden, inflammation, and product attributes determine outcomes of axicabtagene ciloleucel in large B-cell lymphoma. Blood Adv. 2020, 4, 4898–4911. [Google Scholar] [CrossRef]
- Hill, J.A.; Li, D.; Hay, K.A.; Green, M.L.; Cherian, S.; Chen, X.; Riddell, S.R.; Maloney, D.G.; Boeckh, M.; Turtle, C.J. Infectious complications of CD19-targeted chimeric antigen receptor-modified T-cell immunotherapy. Blood J. Am. Soc. Hematol. 2018, 131, 121–130. [Google Scholar] [CrossRef]
- Lemoine, J.; Bachy, E.; Cartron, G.; Beauvais, D.; Gastinne, T.; Di Blasi, R.; Rubio, M.-T.; Guidez, S.; Mohty, M.; Casasnovas, R.-O.; et al. Nonrelapse mortality after CAR T-cell therapy for large B-cell lymphoma: A LYSA study from the DESCAR-T registry. Blood Adv. 2023, 7, 6589–6598. [Google Scholar] [CrossRef] [PubMed]
- Bindal, P.; Trottier, C.A.; Elavalakanar, P.; Dodge, L.E.; Kim, S.; Logan, E.; Ma, S.; Liegel, J.; Arnason, J.; Alonso, C.D. Early versus late infectious complications following chimeric antigen receptor-modified T-cell therapy. Leuk. Lymphoma 2024, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Jain, T.; Olson, T.S.; Locke, F.L. How I treat cytopenias after CAR T-cell therapy. Blood J. Am. Soc. Hematol. 2023, 141, 2460–2469. [Google Scholar] [CrossRef] [PubMed]
- Penack, O.; Peczynski, C.; Koenecke, C.; Polge, E.; Kuhnl, A.; Fegueux, N.; Daskalakis, M.; Kröger, N.; Dreger, P.; Besley, C.; et al. Severe cytopenia after CD19 CAR T-cell therapy: A retrospective study from the EBMT Transplant Complications Working Party. J. Immunother. Cancer 2023, 11, e006406. [Google Scholar] [CrossRef] [PubMed]
- Depil, S.; Duchateau, P.; Grupp, S.A.; Mufti, G.; Poirot, L. ‘Off-the-shelf’allogeneic CAR T cells: Development and challenges. Nat. Rev. Drug Discov. 2020, 19, 185–199. [Google Scholar] [CrossRef]
- Hill, J.A.; Seo, S.K. How I prevent infections in patients receiving CD19-targeted chimeric antigen receptor T cells for B-cell malignancies. Blood J. Am. Soc. Hematol. 2020, 136, 925–935. [Google Scholar] [CrossRef]
- Banegas, M.; Bindal, P.; Woodbine, M.J.; Aggarwal, P.; Paredes, R.; Arnason, J.; Alonso, C.D. 2694. Infectious Complications in CAR-T Cell Therapy Recipients: A Systematic Review and Meta-Analysis. In Open Forum Infectious Diseases; Oxford University Press: Oxford, UK, 2023; Volume 10, p. ofad500.2305. [Google Scholar] [CrossRef]
- Fried, S.; Avigdor, A.; Bielorai, B.; Meir, A.; Besser, M.J.; Schachter, J.; Shimoni, A.; Nagler, A.; Toren, A.; Jacoby, E. Early and late hematologic toxicity following CD19 CAR-T cells. Bone Marrow Transplant. 2019, 54, 1643–1650. [Google Scholar] [CrossRef]
- Corona, M.; Shouval, R.; Alarcón, A.; Flynn, J.; Devlin, S.; Batlevi, C.; Mantha, S.; Palomba, M.L.; Scordo, M.; Shah, G.; et al. Management of prolonged cytopenia following CAR T-cell therapy. Bone Marrow Transplant. 2022, 57, 1839–1841. [Google Scholar] [CrossRef]
- Yang, Y.; Peng, H.; Wang, J.; Li, F. New insights into CAR T-cell hematological toxicities: Manifestations, mechanisms, and effective management strategies. Exp. Hematol. Oncol. 2024, 13, 110. [Google Scholar] [CrossRef]
- Bouziana, S.; Bouzianas, D. The Current Landscape of Secondary Malignancies after CAR T-Cell Therapies: How Could Malignancies Be Prevented? Int. J. Mol. Sci. 2024, 25, 9518. [Google Scholar] [CrossRef]
- Levine, B.L.; Pasquini, M.C.; Connolly, J.E.; Porter, D.L.; Gustafson, M.P.; Boelens, J.J.; Horwitz, E.M.; Grupp, S.A.; Maus, M.V.; Locke, F.L.; et al. Unanswered questions following reports of secondary malignancies after CAR-T cell therapy. Nat. Med. 2024, 30, 338–341. [Google Scholar] [CrossRef] [PubMed]
- Tix, T.; Alhomoud, M.; Shouval, R.; Cliff, E.R.; Perales, M.A.; Cordas dos Santos, D.M.; Rejeski, K. Second primary malignancies after CAR T-cell therapy: A systematic review and meta-analysis of 5517 lymphoma and myeloma patients. Clin. Cancer Res. 2024, 30, 4690–4700. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Liu, M.; Lyu, C.; Lu, W.; Cui, R.; Wang, J.; Li, Q.; Mou, N.; Deng, Q.; Yang, D. Acute graft-versus-host disease after humanized anti-CD19-CAR T therapy in relapsed B-ALL patients after allogeneic hematopoietic stem cell transplant. Front. Oncol. 2020, 10, 573822. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, B.K. Current approaches to prevent and treat GVHD after allogeneic stem cell transplantation. Hematol. Am. Soc. Hematol. Educ. Program 2018, 2018, 228–235. [Google Scholar] [CrossRef]
- Olivieri, A.; Mancini, G. Current approaches for the prevention and treatment of acute and chronic GVHD. Cells 2024, 13, 1524. [Google Scholar] [CrossRef]
- Hayden, P.J.; Roddie, C.; Bader, P.; Basak, G.W.; Bonig, H.; Bonini, C.; Chabannon, C.; Ciceri, F.; Corbacioglu, S.; Ellard, R.; et al. Management of adults and children receiving CAR T-cell therapy: 2021 best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE) and the European Haematology Association (EHA). Ann. Oncol. 2022, 33, 259–275. [Google Scholar] [CrossRef]
- Kumar, A.D.; Atallah-Yunes, S.A.; Rajeeve, S.; Abdelhak, A.; Hashmi, H.; Corraes, A.; Htut, M.; Rodriguez-Otero, P.; Parrondo, R.D.; Chhabra, S.; et al. Delayed Neurotoxicity after CAR-T in Multiple Myeloma: Results from a Global IMWG Registry. Blood 2024, 144, 4758. [Google Scholar] [CrossRef]
- Mauget, M.; Lemercier, S.; Quelven, Q.; Maamar, A.; Lhomme, F.; De Guibert, S.; Houot, R.; Manson, G. Impact of diagnostic investigations in the management of CAR T-cell–associated neurotoxicity. Blood Adv. 2024, 8, 2491–2498. [Google Scholar] [CrossRef]
- Landry, K.; Thomas, A.A. Neurological complications of CAR T cell therapy. Curr. Oncol. Rep. 2020, 22, 83. [Google Scholar] [CrossRef]
- Bishop, M.R. Late complications and long-term care of adult CAR T-cell patients. Hematology 2024, 2024, 109–115. [Google Scholar] [CrossRef]
- Oluwole, O.O.; Sengsayadeth, S. Navigating the Challenges: Effective Management of Toxicities in CAR T-Cell Therapies. J. Natl. Compr. Cancer Netw. 2023, 21, 6–8. [Google Scholar] [CrossRef]
- Wudhikarn, K.; Soh, S.Y.; Huang, H.; Perales, M.A. Toxicity of Chimeric Antigen Receptor T Cells and its Management. Blood Cell Therapy 2021, 4, S1. [Google Scholar] [CrossRef] [PubMed]
- Halford, Z.; Coalter, C.; Gresham, V.; Brown, T. A systematic review of blinatumomab in the treatment of acute lymphoblastic leukemia: Engaging an old problem with new solutions. Ann. Pharmacother. 2021, 55, 1236–1253. [Google Scholar] [CrossRef] [PubMed]
- Moreau, P.; Garfall, A.L.; van de Donk, N.W.; Nahi, H.; San-Miguel, J.F.; Oriol, A.; Nooka, A.K.; Martin, T.; Rosinol, L.; Chari, A.; et al. Teclistamab in relapsed or refractory multiple myeloma. N. Engl. J. Med. 2022, 387, 495–505. [Google Scholar] [CrossRef] [PubMed]
- van de Donk, N.W.; Moreau, P.; Garfall, A.L.; Bhutani, M.; Oriol, A.; Nooka, A.K.; Martin, T.G.; Rosiñol, L.; Mateos, M.V.; Bahlis, N.J.; et al. Long-term follow-up fromMajesTEC-1 of teclistamab, a B-cell maturation antigen (BCMA) x CD3 bispecific antibody, in patients with relapsed/refractory multiple myeloma (RRMM). J. Clin. Oncol. 2023, 7, e62475d0. [Google Scholar] [CrossRef]
- Martin, T.G.; Mateos, M.V.; Nooka, A.; Banerjee, A.; Kobos, R.; Pei, L.; Qi, M.; Verona, R.; Doyle, M.; Smit, J.; et al. Detailed overview of incidence and management of cytokine release syndrome observed with teclistamab in the MajesTEC-1 study of patients with relapsed/refractory multiple myeloma. Cancer 2023, 129, 2035–2046. [Google Scholar] [CrossRef]
- Yang, X.I.; Ahmed, I.; Nachar, V.; Carty, S.A.; Wilcox, R.A.; Weiss, J.; Sano, D.; Phillips, T.J.; Karimi, Y.H. Risk Factors for Cytokine Release Syndrome in Patients Receiving Bispecific Antibodies for B-Cell Lymphoma: A Single-Center, Retrospective Cohort Study. Blood 2024, 144, 4477. [Google Scholar] [CrossRef]
- Gritti, G.; Belousov, A.; Relf, J.; Dixon, M.; Tandon, M.; Komanduri, K. Predictive model for the risk of cytokine release syndrome with glofitamab treatment for diffuse large B-cell lymphoma (118/120 characters). Blood Adv. 2024, 8, 3615–3618. [Google Scholar] [CrossRef]
- Shah, D.; Soper, B.; Shopland, L. Cytokine release syndrome and cancer immunotherapies–historical challenges and promising futures. Front. Immunol. 2023, 14, 1190379. [Google Scholar] [CrossRef]
- Lee, D.W.; Santomasso, B.D.; Locke, F.L.; Ghobadi, A.; Turtle, C.J.; Brudno, J.N.; Maus, M.V.; Park, J.H.; Mead, E.; Pavletic, S.; et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol. Blood Marrow Transplant. 2019, 25, 625–638. [Google Scholar] [CrossRef]
- Shimabukuro-Vornhagen, A.; Gödel, P.; Subklewe, M.; Stemmler, H.J.; Schlößer, H.A.; Schlaak, M.; Kochanek, M.; Böll, B.; von Bergwelt-Baildon, M.S. Cytokine release syndrome. J. Immunother. Cancer 2018, 6, 56. [Google Scholar] [CrossRef] [PubMed]
- Crombie, J.L.; Graff, T.; Falchi, L.; Karimi, Y.H.; Bannerji, R.; Nastoupil, L.; Thieblemont, C.; Ursu, R.; Bartlett, N.; Nachar, V.; et al. Consensus recommendations on the management of toxicity associated with CD3× CD20 bispecific antibody therapy. Blood 2024, 143, 1565–1575. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, H.; Terpos, E.; van de Donk, N.; Mateos, M.V.; Moreau, P.; Dimopoulos, M.A.; Delforge, M.; Rodriguez-Otero, P.; San-Miguel, J.; Yong, K.; et al. Prevention and management of adverse events during treatment with bispecific antibodies and CAR T cells in multiple myeloma: A consensus report of the European Myeloma Network. Lancet Oncol. 2023, 24, e255–e269. [Google Scholar] [CrossRef]
- Tacchetti, P.; Barbato, S.; Mancuso, K.; Zamagni, E.; Cavo, M. Bispecific antibodies for the management of relapsed/refractory multiple myeloma. Cancers 2024, 16, 2337. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Otero, P.; Usmani, S.; Cohen, A.D.; van de Donk, N.W.; Leleu, X.; Pérez-Larraya, J.G.; Manier, S.; Nooka, A.K.; Mateos, M.V.; Einsele, H.; et al. International Myeloma Working Group immunotherapy committee consensus guidelines and recommendations for optimal use of T-cell-engaging bispecific antibodies in multiple myeloma. Lancet Oncol. 2024, 25, e205–e216. [Google Scholar] [CrossRef]
- Lancman, G.; Song, K.; White, D.; Crosbie, T.; Sharif, I.; Emond, M.; Raza, M.S.; Elias, M.; Kaedbey, R.; Chu, M.P. Recommendations for the effective use of T-cell–redirecting therapies: A Canadian consensus statement. Front. Oncol. 2024, 14, 1446995. [Google Scholar] [CrossRef]
- Verma, V.; Sharma, G. Bispecific antibodies in clinical practice: Understanding recent advances and current place in cancer treatment landscape. Clin. Exp. Med. 2024, 25, 11. [Google Scholar] [CrossRef]
- de Assis, L.H.; Fassi, D.E.; Hutchings, M. Bispecific antibody therapies. Hematology 2023, 2023, 216–222. [Google Scholar] [CrossRef]
- Klein, C.; Brinkmann, U.; Reichert, J.M.; Kontermann, R.E. The present and future of bispecific antibodies for cancer therapy. Nat. Rev. Drug Discov. 2024, 23, 301–319. [Google Scholar] [CrossRef]
- Bayly-McCredie, E.; Treisman, M.; Fiorenza, S. Safety and Efficacy of Bispecific Antibodies in Adults with Large B-Cell Lymphomas: A Systematic Review of Clinical Trial Data. Int. J. Mol. Sci. 2024, 25, 9736. [Google Scholar] [CrossRef]
- Faiz, Z.; Atallah, R.; Khalid, A.; Ahmed, N.; Davis, J.; Anwer, F.; Abdallah, A.O.; Hashmi, H. Incidence, Characteristics, and Management of Adverse Events with Bispecific T Cell Engagers for Relapsed or Refractory Multiple Myeloma: A Systematic Review. Transplant. Cell. Ther. Off. Publ. Am. Soc. Transplant. Cell. Ther. 2024, 30, S209–S210. [Google Scholar] [CrossRef]
- Reynolds, G.; Cliff, E.R.; Mohyuddin, G.R.; Popat, R.; Midha, S.; Liet Hing, M.N.; Harrison, S.J.; Kesselheim, A.S.; Teh, B.W. Infections following bispecific antibodies in myeloma: A systematic review and meta-analysis. Blood Adv. 2023, 7, 5898–5903. [Google Scholar] [CrossRef] [PubMed]
- Topp, M.; Feuchtinger, T. Management of hypogammaglobulinaemia and B-cell aplasia. In The EBMT/EHA CAR-T Cell Handbook; Springer: Cham, Switzerland, 2022; pp. 147–149. [Google Scholar]
- Lancman, G.; Parsa, K.; Kotlarz, K.; Avery, L.; Lurie, A.; Lieberman-Cribbin, A.; Cho, H.J.; Parekh, S.S.; Richard, S.; Richter, J.; et al. IVIg use associated with ten-fold reduction of serious infections in multiple myeloma patients treated with anti-BCMA bispecific antibodies. Blood Cancer Discov. 2023, 4, 440–451. [Google Scholar] [CrossRef]
- Zhao, Q. Bispecific antibodies for autoimmune and inflammatory diseases: Clinical progress to date. BioDrugs 2020, 34, 111–119. [Google Scholar] [CrossRef]
- Ma, J.; Mo, Y.; Tang, M.; Shen, J.; Qi, Y.; Zhao, W.; Huang, Y.; Xu, Y.; Qian, C. Bispecific antibodies: From research to clinical application. Front. Immunol. 2021, 12, 626616. [Google Scholar] [CrossRef]
- Piron, B.; Bastien, M.; Antier, C.; Dalla-Torre, R.; Jamet, B.; Gastinne, T.; Dubruille, V.; Moreau, P.; Martin, J.; Bénichou, A.; et al. Immune-related adverse events with bispecific T-cell engager therapy targeting B-cell maturation antigen. Haematologica 2023, 109, 357. [Google Scholar] [CrossRef]
- Dietrich, J.; Frigault, M.J. Immune Effector Cell-Associated Neurotoxicity Syndrome (ICANS); UpToDate: Waltham, MA, USA, 2021. [Google Scholar]
- Moreau, P.; Touzeau, C. T-cell–redirecting bispecific antibodies in multiple myeloma: A revolution? Blood J. Am. Soc. Hematol. 2022, 139, 3681–3687. [Google Scholar] [CrossRef]
- Roth, P.; Winklhofer, S.; Müller, A.M.; Dummer, R.; Mair, M.J.; Gramatzki, D.; Le Rhun, E.; Manz, M.G.; Weller, M.; Preusser, M. Neurological complications of cancer immunotherapy. Cancer Treat. Rev. 2021, 97, 102189. [Google Scholar] [CrossRef]
- Cordas Dos Santos, D.M.; Tix, T.; Shouval, R.; Gafter-Gvili, A.; Alberge, J.B.; Cliff, E.R.S.; Theurich, S.; von Bergwelt-Baildon, M.; Ghobrial, I.M.; Subklewe, M.; et al. A systematic review and meta-analysis of nonrelapse mortality after CAR T cell therapy. Nat. Med. 2024, 30, 2667–2678. [Google Scholar] [CrossRef]
- Brudno, J.N.; Kochenderfer, J.N. Toxicities of chimeric antigen receptor T cells: Recognition and management. Blood 2016, 127, 3321–3330. [Google Scholar] [CrossRef]
- Goebeler, M.E.; Stuhler, G.; Bargou, R. Bispecific and multispecific antibodies in oncology: Opportunities and challenges. Nat. Rev. Clin. Oncol. 2024, 21, 539–560. [Google Scholar] [CrossRef] [PubMed]
- Herrera, M.; Pretelli, G.; Desai, J.; Garralda, E.; Siu, L.L.; Steiner, T.M.; Au, L. Bispecific antibodies: Advancing precision oncology. Trends Cancer 2024, 10, 893–919. [Google Scholar] [CrossRef] [PubMed]
- Ellerman, D.A. The Evolving Applications of Bispecific Antibodies: Reaping the Harvest of Early Sowing and Planting New Seeds. BioDrugs 2024, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Li, C.L.; Ma, X.Y.; Yi, P. Bispecific Antibodies, Immune Checkpoint Inhibitors, and Antibody− Drug Conjugates Directing Antitumor Immune Responses: Challenges and Prospects. Cell Biochem. Funct. 2024, 42, e70011. [Google Scholar] [CrossRef]
Complication | Type | Diagnosis | Therapy Type | Affected System | Hematologic Malignancy | Management | Specific Agents | Indications | FDA Approval Status | Timing | Incidence | Severity |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cytokine Release Syndrome (CRS) | Early | Vital signs, CRP, ferritin, IL-6 monitoring, imaging for severe cases | CAR-T, Bispecific Antibodies | Immune | ALL, DLBCL, MCL, MM | Supportive care for mild cases; tocilizumab and corticosteroids for severe cases | Tocilizumab, corticosteroids | CD19-directed CAR-T therapies, BsAbs | Approved for CAR-T therapies | Within days post-infusion | Common (70–90%) | Can be severe (Grades 1–4) |
ICANS | Early | ICE score, neurological exams, EEG, MRI | CAR-T | Neurological | ALL, DLBCL, MCL | Corticosteroids, anti-epileptics, supportive neuropsychiatric care | Dexamethasone | CD19-directed CAR-T therapies | Approved for CAR-T therapies | Days post-CRS | Common (30–50%) | Can be severe (Grades 1–4) |
Neurotoxicity | Early | ICE score, EEG, MRI | Bispecific Antibodies | Neurological | DLBCL, MM | Corticosteroids, anti-epileptic drugs, supportive care | Dexamethasone | CD20- and BCMA-directed BsAbs | Investigational | Days post-infusion | Common (20–40%) | Can be severe (Grades 1–4) |
Prolonged Cytopenias | Late | CBC, bone marrow biopsy for cases > 3 months | CAR-T, Bispecific Antibodies | Hematologic | ALL, DLBCL, MM | Growth factors (e.g., G-CSF), transfusions, immunosuppressives if autoimmune | G-CSF, transfusions | CD19-directed CAR-T, BCMA-directed | Approved for CAR-T therapies | Weeks to months post-infusion | Common (20–40%) | Variable |
Infections | Late | Blood cultures, viral PCR, imaging | CAR-T, Bispecific Antibodies | Immune, Respiratory | ALL, DLBCL, MCL, CLL, MM | Antimicrobial prophylaxis, immunoglobulin replacement | IVIG, antimicrobials | CD19- and BCMA-directed CAR-T, BsAbs | Approved for CAR-T therapies | Weeks to months post-infusion | Common | Variable |
B-cell Aplasia and Hypogammaglobulinemia | Late | B-cell counts, serum immunoglobulin levels | CAR-T, Bispecific Antibodies | Immune | ALL, DLBCL, FL | Immunoglobulin replacement therapy | IVIG | CD19-directed CAR-T therapies | Approved for CAR-T therapies | Months post-infusion | Common | Mild to moderate |
Secondary Malignancies | Late | Routine imaging, hematologic assessments | CAR-T | Systemic | ALL, DLBCL, MM | Dependent on type; chemotherapy, radiation | Depends on malignancy | Post-CAR-T therapy complications | Investigational | Months to years post-infusion | Rare | Can be severe |
Graft-versus-Host Disease (GVHD) | Delayed | Biopsy, liver function tests, endoscopy | CAR-T (Allogeneic) | Multi-organ | ALL, DLBCL | Corticosteroids, immunosuppressants, ruxolitinib | Ruxolitinib, corticosteroids | Post-allogeneic CAR-T therapy | Approved for steroid-refractory GVHD | Weeks to months post-infusion | Variable | Can be severe |
Chronic Neurotoxicity | Late | Neurological exams, MRI, EEG | CAR-T, Bispecific Antibodies | Neurological | ALL, DLBCL, MM | Symptomatic management, anti-epileptics, neuropsychiatric support | Anti-epileptics, neuropsychiatric care | CD19- and BCMA-directed therapies | Investigational | Months post-infusion | Variable | Variable |
Chronic Inflammatory and Autoimmune Reactions | Late | Antibody testing, direct antiglobulin tests, autoimmune markers | Bispecific Antibodies | Multi-organ | DLBCL, CLL | Corticosteroids, additional immunomodulatory agents | Corticosteroids, immunomodulators | Post-BsAb therapy | Investigational | Weeks to months post-infusion | Variable | Mild to moderate |
Abbreviation | Full Term |
---|---|
B-ALL | B-Cell Acute Lymphoblastic Leukemia |
BCMA | B-Cell Maturation Antigen |
BiTE | Bispecific T-Cell Engager |
BsAb | Bispecific Antibody |
CAR-T | Chimeric Antigen Receptor T-Cell |
CLL | Chronic Lymphocytic Leukemia |
CR | Complete Remission |
CRP | C-Reactive Protein |
CRS | Cytokine Release Syndrome |
CT | Computed Tomography |
DLBCL | Diffuse Large B-Cell Lymphoma |
EEG | Electroencephalogram |
FL | Follicular Lymphoma |
FDA | Food and Drug Administration |
GVHD | Graft-versus-Host Disease |
G-CSF | Granulocyte Colony-Stimulating Factor |
HSCT | Hematopoietic Stem Cell Transplantation |
ICANS | Immune Effector Cell-Associated Neurotoxicity Syndrome |
ICE Score | Immune Effector Cell-Associated Encephalopathy Score |
IgG | Immunoglobulin G |
IL-6 | Interleukin-6 |
IVIG | Intravenous Immunoglobulin |
MCL | Mantle Cell Lymphoma |
MM | Multiple Myeloma |
MRI | Magnetic Resonance Imaging |
ORR | Overall Response Rate |
OS | Overall Survival |
PCR | Polymerase Chain Reaction |
PFS | Progression-Free Survival |
TME | Tumor Microenvironment |
TKI | Tyrosine Kinase Inhibitor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bangolo, A.; Amoozgar, B.; Mansour, C.; Zhang, L.; Gill, S.; Ip, A.; Cho, C. Comprehensive Review of Early and Late Toxicities in CAR T-Cell Therapy and Bispecific Antibody Treatments for Hematologic Malignancies. Cancers 2025, 17, 282. https://doi.org/10.3390/cancers17020282
Bangolo A, Amoozgar B, Mansour C, Zhang L, Gill S, Ip A, Cho C. Comprehensive Review of Early and Late Toxicities in CAR T-Cell Therapy and Bispecific Antibody Treatments for Hematologic Malignancies. Cancers. 2025; 17(2):282. https://doi.org/10.3390/cancers17020282
Chicago/Turabian StyleBangolo, Ayrton, Behzad Amoozgar, Charlene Mansour, Lili Zhang, Sarvarinder Gill, Andrew Ip, and Christina Cho. 2025. "Comprehensive Review of Early and Late Toxicities in CAR T-Cell Therapy and Bispecific Antibody Treatments for Hematologic Malignancies" Cancers 17, no. 2: 282. https://doi.org/10.3390/cancers17020282
APA StyleBangolo, A., Amoozgar, B., Mansour, C., Zhang, L., Gill, S., Ip, A., & Cho, C. (2025). Comprehensive Review of Early and Late Toxicities in CAR T-Cell Therapy and Bispecific Antibody Treatments for Hematologic Malignancies. Cancers, 17(2), 282. https://doi.org/10.3390/cancers17020282