Fusobacterium nucleatum and Its Impact on Colorectal Cancer Chemoresistance: A Meta-Analysis of In Vitro Co-Culture Infections
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Selection Criteria
2.3. Data Extraction and Synthesis
2.4. Data Synthesis and Analysis
2.5. Statistical Analysis
3. Results
3.1. F. nucleatum Infection Outcome Depends on Experimental Parameters
3.2. F. nucleatum Promotes Chemoresistance in Colorectal Cancer
3.2.1. F. nucleatum Induces Chronic Inflammation
3.2.2. F. nucleatum Encourages Immune Evasion
3.2.3. F. nucleatum Influences DNA Damage and Epigenetic Modification
3.2.4. F. nucleatum Drives Metastasis
3.3. New Discoveries
3.3.1. F. nucleatum Influences Chemoresistance Genes and Drug Responses
3.3.2. F. nucleatum Induces an Antiviral Response
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BER | Base Excision Repair |
CRC | Colorectal Cancer |
ECM | Extracellular Matrix |
EMT | Epithelial-to-Mesenchymal Transition |
GEO | Gene Expression Omnibus |
IPA | Ingenuity Pathway Analysis |
MDSCs | Myeloid-Derived Suppressor Cells |
MMPs | Matrix Metalloproteinases |
MOI | Multiplicity of Infection |
PAMPs | Pathogen-Associated Molecular Patterns |
PRRs | Pattern-Recognition Receptors |
TAMs | Tumor-Associated Macrophages |
Appendix A
Accession | Pub Date | Cancer | Cell Line | Fusobacterium Strain | Infection Time (hrs) | MOI | Paper Conclusions | Citation |
---|---|---|---|---|---|---|---|---|
GSE245617 | August, 2024 | CRC | HCT116 | F. nucleatum 223,726 | 3 | 100 | Adhesion RadD directly binds to CD147 and induces a PI3K–AKT–NF–κB–MMP9 cascade that heightens tumorigenesis | [77] |
GSE173549 | October, 2021 | CRC | LOVO | F. nucleatum 25,586 | 24 | 100 | F. nucleatum influences the miR-1322/CCL20 axis and M2 macrophage polarization to encourage metastasis and reprogram the tumor microenvironment | [78] |
GSE90944 | July, 2017 | CRC | HT29 | F. nucleatum 25,586 | 2–4 | 100 | F. nucleatum induces autophagy to encourage chemoresistance | [28] |
GSE175593 | October, 2021 | CRC | DLD-1 | F. nucleatum 25,586 | Overnight | 10 | F. nucleatum induces ANGPTL4 to increase glycolysis activity and thus initiate further F. nucleatum colonization | [79] |
References
- Colorectal Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/colorectal-cancer (accessed on 15 April 2025).
- Colon Cancer: Symptoms, Stages & Treatment. Available online: https://my.clevelandclinic.org/health/diseases/14501-colorectal-colon-cancer (accessed on 15 April 2025).
- Ashique, S.; Bhowmick, M.; Pal, R.; Khatoon, H.; Kumar, P.; Sharma, H.; Garg, A.; Kumar, S.; Das, U. Multi Drug Resistance in Colorectal Cancer- Approaches to Overcome, Advancements and Future Success. Adv. Cancer Biol. Metastasis 2024, 10, 100114. [Google Scholar] [CrossRef]
- Ding, G.; Yang, X.; Li, Y.; Wang, Y.; Du, Y.; Wang, M.; Ye, R.; Wang, J.; Zhang, Y.; Chen, Y.; et al. Gut Microbiota Regulates Gut Homeostasis, Mucosal Immunity and Influences Immune-Related Diseases. Mol. Cell Biochem. 2024, 480, 1969–1981. [Google Scholar] [CrossRef]
- Iida, N.; Dzutsev, A.; Stewart, C.A.; Smith, L.; Bouladoux, N.; Weingarten, R.A.; Molina, D.A.; Salcedo, R.; Back, T.; Cramer, S.; et al. Commensal Bacteria Control Cancer Response to Therapy by Modulating the Tumor Microenvironment. Science 2013, 342, 967–970. [Google Scholar] [CrossRef]
- Viaud, S.; Saccheri, F.; Mignot, G.; Yamazaki, T.; Daillère, R.; Hannani, D.; Enot, D.P.; Pfirschke, C.; Engblom, C.; Pittet, M.J.; et al. The Intestinal Microbiota Modulates the Anticancer Immune Effects of Cyclophosphamide. Science 2013, 342, 971. [Google Scholar] [CrossRef] [PubMed]
- Kostic, A.D.; Gevers, D.; Pedamallu, C.S.; Michaud, M.; Duke, F.; Earl, A.M.; Ojesina, A.I.; Jung, J.; Bass, A.J.; Tabernero, J.; et al. Genomic Analysis Identifies Association of Fusobacterium with Colorectal Carcinoma. Genome Res. 2012, 22, 292. [Google Scholar] [CrossRef] [PubMed]
- Kovács, T.; Mikó, E.; Ujlaki, G.; Sári, Z.; Bai, P. The Microbiome as a Component of the Tumor Microenvironment. Adv. Exp. Med. Biol. 2020, 1225, 137–153. [Google Scholar] [CrossRef]
- Signat, B.; Roques, C.; Poulet, P.; Duffaut, D. Role of Fusobacterium Nucleatum in Periodontal Health and Disease. Curr. Issues Mol. Biol. 2011, 13, 25–36. [Google Scholar] [CrossRef]
- Akbari, E.; Epstein, J.B.; Samim, F. Unveiling the Hidden Links: Periodontal Disease, Fusobacterium Nucleatum, and Cancers. Curr. Oncol. Rep. 2024, 26, 1388–1397. [Google Scholar] [CrossRef]
- Wang, N.; Fang, J.Y. Fusobacterium Nucleatum, a Key Pathogenic Factor and Microbial Biomarker for Colorectal Cancer. Trends Microbiol. 2023, 31, 159–172. [Google Scholar] [CrossRef]
- Galasso, L.; Termite, F.; Mignini, I.; Esposto, G.; Borriello, R.; Vitale, F.; Nicoletti, A.; Paratore, M.; Ainora, M.E.; Gasbarrini, A.; et al. Unraveling the Role of Fusobacterium Nucleatum in Colorectal Cancer: Molecular Mechanisms and Pathogenic Insights. Cancers 2025, 17, 368. [Google Scholar] [CrossRef]
- Dadgar-Zankbar, L.; Elahi, Z.; Shariati, A.; Khaledi, A.; Razavi, S.; Khoshbayan, A. Exploring the Role of Fusobacterium Nucleatum in Colorectal Cancer: Implications for Tumor Proliferation and Chemoresistance. Cell Commun. Signal. 2024, 22, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Ma, Q.; Guo, Y.; You, F. The Role of Fusobacterium Nucleatum in Colorectal Cancer Cell Proliferation and Migration. Cancers 2022, 14, 5350. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Liu, Y.; Kong, X.; Wu, R.; Peng, Q.; Zhang, Y.; Zhou, L.; Duan, L. Fusobacterium Nucleatum Facilitates M2 Macrophage Polarization and Colorectal Carcinoma Progression by Activating TLR4/NF-ΚB/S100A9 Cascade. Front. Immunol. 2021, 12, 658681. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Redline, R.W.; Han, Y.W. Fusobacterium Nucleatum Induces Fetal Death in Mice via Stimulation of TLR4-Mediated Placental Inflammatory Response. J. Immunol. 2007, 179, 2501–2508. [Google Scholar] [CrossRef]
- Jia, Y.P.; Wang, K.; Zhang, Z.J.; Tong, Y.N.; Han, D.; Hu, C.Y.; Li, Q.; Xiang, Y.; Mao, X.H.; Tang, B. TLR2/TLR4 Activation Induces Tregs and Suppresses Intestinal Inflammation Caused by Fusobacterium Nucleatum in Vivo. PLoS ONE 2017, 12, e0186179. [Google Scholar] [CrossRef]
- Rubinstein, M.R.; Baik, J.E.; Lagana, S.M.; Han, R.P.; Raab, W.J.; Sahoo, D.; Dalerba, P.; Wang, T.C.; Han, Y.W. Fusobacterium Nucleatum Promotes Colorectal Cancer by Inducing Wnt/Β-catenin Modulator Annexin A1. EMBO Rep. 2019, 20, e47638. [Google Scholar] [CrossRef]
- Rubinstein, M.R.; Wang, X.; Liu, W.; Hao, Y.; Cai, G.; Han, Y.W. Fusobacterium Nucleatum Promotes Colorectal Carcinogenesis by Modulating E-Cadherin/β-Catenin Signaling via Its FadA Adhesin. Cell Host Microbe 2013, 14, 195–206. [Google Scholar] [CrossRef]
- Fruman, D.A.; Rommel, C. PI3K and Cancer: Lessons, Challenges and Opportunities. Nat. Rev. Drug Discov. 2014, 13, 140–156. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, Y.; Sun, H.; Bao, S.; Ge, S.; Quan, C.; Jantsch, J.; Schröder, A.; Weber, M. The Role of Fusobacterium Nucleatum in Macrophage M2 Polarization and NF-ΚB Pathway Activation in Colorectal Cancer. Front. Immunol. 2025, 16, 1549564. [Google Scholar] [CrossRef]
- Harrandah, A.M.; Chukkapalli, S.S.; Bhattacharyya, I.; Progulske-Fox, A.; Chan, E.K.L. Fusobacteria Modulate Oral Carcinogenesis and Promote Cancer Progression. J. Oral. Microbiol. 2021, 13, 1849493. [Google Scholar] [CrossRef]
- Guo, P.; Tian, Z.; Kong, X.; Yang, L.; Shan, X.; Dong, B.; Ding, X.; Jing, X.; Jiang, C.; Jiang, N.; et al. FadA Promotes DNA Damage and Progression of Fusobacterium Nucleatum-Induced Colorectal Cancer through up-Regulation of Chk2. J. Exp. Clin. Cancer Res. 2020, 39, 202. [Google Scholar] [CrossRef]
- Fardini, Y.; Wang, X.; Témoin, S.; Nithianantham, S.; Lee, D.; Shoham, M.; Han, Y.W. Fusobacterium Nucleatum Adhesin FadA Binds Vascular Endothelial Cadherin and Alters Endothelial Integrity. Mol. Microbiol. 2011, 82, 1468–1480. [Google Scholar] [CrossRef] [PubMed]
- Gur, C.; Ibrahim, Y.; Isaacson, B.; Yamin, R.; Abed, J.; Gamliel, M.; Enk, J.; Bar-On, Y.; Stanietsky-Kaynan, N.; Coppenhagen-Glazer, S.; et al. Binding of the Fap2 Protein of Fusobacterium Nucleatum to Human Inhibitory Receptor TIGIT Protects Tumors from Immune Cell Attack. Immunity 2015, 42, 344–355. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, Y.; Mima, K.; Ishimoto, T.; Ogata, Y.; Imai, K.; Miyamoto, Y.; Akiyama, T.; Daitoku, N.; Hiyoshi, Y.; Iwatsuki, M.; et al. Relationship between Fusobacterium Nucleatum and Antitumor Immunity in Colorectal Cancer Liver Metastasis. Cancer Sci. 2021, 112, 4470–4477. [Google Scholar] [CrossRef] [PubMed]
- Mima, K.; Nishihara, R.; Qian, Z.R.; Cao, Y.; Sukawa, Y.; Nowak, J.A.; Yang, J.; Dou, R.; Masugi, Y.; Song, M.; et al. Fusobacterium Nucleatum in Colorectal Carcinoma Tissue and Patient Prognosis. Gut 2016, 65, 1973–1980. [Google Scholar] [CrossRef]
- Yu, T.C.; Guo, F.; Yu, Y.; Sun, T.; Ma, D.; Han, J.; Qian, Y.; Kryczek, I.; Sun, D.; Nagarsheth, N.; et al. Fusobacterium Nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy. Cell 2017, 170, 548. [Google Scholar] [CrossRef]
- Wang, M.; Rousseau, B.; Qiu, K.; Huang, G.; Zhang, Y.; Su, H.; Le Bihan-Benjamin, C.; Khati, I.; Artz, O.; Foote, M.B.; et al. Killing Tumor-Associated Bacteria with a Liposomal Antibiotic Generates Neoantigens That Induce Anti-Tumor Immune Responses. Nat. Biotechnol. 2024, 42, 1263–1274. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, Y.; Weng, W.; Guo, B.; Cai, G.; Ma, Y.; Cai, S. Fusobacterium Nucleatum Promotes Chemoresistance to 5-Fluorouracil by Upregulation of BIRC3 Expression in Colorectal Caner. J. Exp. Clin. Cancer Res. 2019, 38, 14. [Google Scholar] [CrossRef]
- Khodarev, N.N.; Roizman, B.; Weichselbaum, R.R. Molecular Pathways: Interferon/Stat1 Pathway: Role in the Tumor Resistance to Genotoxic Stress and Aggressive Growth. Clin. Cancer Res. 2012, 18, 3015–3021. [Google Scholar] [CrossRef]
- Lee, P.; Tan, K.S. Fusobacterium Nucleatum Activates the Immune Response through Retinoic Acid-Inducible Gene i. J. Dent. Res. 2014, 93, 162–168. [Google Scholar] [CrossRef]
- González, O.A.; Li, M.; Ebersole, J.L.; Huang, C.B. HIV-1 Reactivation Induced by the Periodontal Pathogens Fusobacterium Nucleatum and Porphyromonas Gingivalis Involves Toll-like Receptor 4 and 9 Activation in Monocytes/Macrophages. Clin. Vaccine Immunol. 2010, 17, 1417–1427. [Google Scholar] [CrossRef]
- Randall, R.E.; Goodbourn, S. Interferons and Viruses: An Interplay between Induction, Signalling, Antiviral Responses and Virus Countermeasures. J. General. Virol. 2008, 89, 1–47. [Google Scholar] [CrossRef]
- Qiao, Y.; Zhu, S.; Deng, S.; Zou, S.S.; Gao, B.; Zang, G.; Wu, J.; Jiang, Y.; Liu, Y.J.; Chen, J. Human Cancer Cells Sense Cytosolic Nucleic Acids Through the RIG-I–MAVS Pathway and CGAS–STING Pathway. Front. Cell Dev. Biol. 2021, 8, 606001. [Google Scholar] [CrossRef]
- Musella, M.; Galassi, C.; Manduca, N.; Sistigu, A. The Yin and Yang of Type I IFNs in Cancer Promotion and Immune Activation. Biology 2021, 10, 856. [Google Scholar] [CrossRef]
- Kopitar-Jerala, N. The Role of Interferons in Inflammation and Inflammasome Activation. Front. Immunol. 2017, 8, 263291. [Google Scholar] [CrossRef]
- Minn, A.J. Interferons and the Immunogenic Effects of Cancer Therapy. Trends Immunol. 2015, 36, 725. [Google Scholar] [CrossRef]
- Padariya, M.; Sznarkowska, A.; Kote, S.; Gómez-Herranz, M.; Mikac, S.; Pilch, M.; Alfaro, J.; Fahraeus, R.; Hupp, T.; Kalathiya, U. Functional Interfaces, Biological Pathways, and Regulations of Interferon-Related DNA Damage Resistance Signature (IRDS) Genes. Biomolecules 2021, 11, 622. [Google Scholar] [CrossRef] [PubMed]
- Boukhaled, G.M.; Harding, S.; Brooks, D.G. Opposing Roles of Type I Interferons in Cancer Immunity. Annu. Rev. Pathol. 2020, 16, 167. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, A.P.; Redinbo, M.R.; Bultman, S.J. The Role of the Microbiome in Cancer Development and Therapy. CA Cancer J. Clin. 2017, 67, 326–344. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.; Domrachev, M.; Lash, A.E. Gene Expression Omnibus: NCBI Gene Expression and Hybridization Array Data Repository. Nucleic Acids Res. 2002, 30, 207–210. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Queen, J.; Domingue, J.C.; White, J.R.; Stevens, C.; Udayasuryan, B.; Nguyen, T.T.D.; Wu, S.; Ding, H.; Fan, H.; McMann, M.; et al. Comparative Analysis of Colon Cancer-Derived Fusobacterium Nucleatum Subspecies: Inflammation and Colon Tumorigenesis in Murine Models. mBio 2022, 13, e02991-21. [Google Scholar] [CrossRef]
- Kang, W.; Jia, Z.; Tang, D.; Zhang, Z.; Gao, H.; He, K.; Feng, Q. Fusobacterium Nucleatum Facilitates Apoptosis, ROS Generation, and Inflammatory Cytokine Production by Activating AKT/MAPK and NF-ΚB Signaling Pathways in Human Gingival Fibroblasts. Oxid. Med. Cell Longev. 2019, 2019, 1681972. [Google Scholar] [CrossRef]
- Park, S.R.; Kim, D.J.; Han, S.H.; Kang, M.J.; Lee, J.Y.; Jeong, Y.J.; Lee, S.J.; Kim, T.H.; Ahn, S.G.; Yoon, J.H.; et al. Diverse Toll-like Receptors Mediate Cytokine Production by Fusobacterium Nucleatum and Aggregatibacter Actinomycetemcomitans in Macrophages. Infect. Immun. 2014, 82, 1914–1920. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Mears, J.R.; Shakib, L.; Beynor, J.I.; Shanaj, S.; Korsunsky, I.; Nathan, A.; Donlin, L.T.; Raychaudhuri, S. IFN-γ and TNF-α Drive a CXCL10+ CCL2+ Macrophage Phenotype Expanded in Severe COVID-19 Lungs and Inflammatory Diseases with Tissue Inflammation. Genome Med. 2021, 13, 64. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.Q.; Yuan, G.Q.; Zhang, G.G.; Chen, Y.T.; Nie, Q.Q.; Wang, Z. Identification of CCL20 as a Key Biomarker of Inflammatory Responses in the Pathogenesis of Intracerebral Hemorrhage. Inflammation 2023, 46, 1290–1304. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Zhang, Y.; Xu, M.; Zheng, X.; Lin, M.; Pan, J.; Ye, C.; Deng, Y.; Jiang, C.; Lin, Y.; et al. Demethylation and Overexpression of CSF2 Are Involved in Immune Response, Chemotherapy Resistance, and Poor Prognosis in Colorectal Cancer. OncoTargets Ther. 2019, 12, 11255–11269. [Google Scholar] [CrossRef]
- Chen, Y.C.; Zheng, W.Z.; Liu, C.P.; Zhao, Y.Q.; Li, J.W.; Du, Z.S.; Zhai, T.T.; Lin, H.Y.; Shi, W.Q.; Cai, S.Q.; et al. Pan-Cancer Analysis Reveals CCL5/CSF2 as Potential Predictive Biomarkers for Immune Checkpoint Inhibitors. Cancer Cell Int. 2024, 24, 311. [Google Scholar] [CrossRef]
- Stanilov, N.; Miteva, L.; Deliysky, T.; Jovchev, J.; Stanilova, S. Advanced Colorectal Cancer Is Associated With Enhanced IL-23 and IL-10 Serum Levels. Lab. Med. 2010, 41, 159–163. [Google Scholar] [CrossRef]
- Yang, C.; He, L.; He, P.; Liu, Y.; Wang, W.; He, Y.; Du, Y.; Gao, F. Increased Drug Resistance in Breast Cancer by Tumor-Associated Macrophages through IL-10/STAT3/Bcl-2 Signaling Pathway. Med. Oncol. 2015, 32, 14. [Google Scholar] [CrossRef]
- Wu, D.; Wang, Z. Gastric Cancer Cell-Derived Kynurenines Hyperactive Regulatory T Cells to Promote Chemoresistance via the IL-10/STAT3/BCL2 Signaling Pathway. DNA Cell Biol. 2022, 41, 447–455. [Google Scholar] [CrossRef]
- Lu, J.; Luo, Y.; Rao, D.; Wang, T.; Lei, Z.; Chen, X.; Zhang, B.; Li, Y.; Liu, B.; Xia, L.; et al. Myeloid-Derived Suppressor Cells in Cancer: Therapeutic Targets to Overcome Tumor Immune Evasion. Exp. Hematol. Oncol. 2024, 13, 39. [Google Scholar] [CrossRef]
- Li, X.; Wang, J.; Wu, W.; Gao, H.; Liu, N.; Zhan, G.; Li, L.; Han, L.; Guo, X. Myeloid-Derived Suppressor Cells Promote Epithelial Ovarian Cancer Cell Stemness by Inducing the CSF2/p-STAT3 Signalling Pathway. FEBS J. 2020, 287, 5218–5235. [Google Scholar] [CrossRef]
- Huang, R.; Kang, T.; Chen, S. The Role of Tumor-Associated Macrophages in Tumor Immune Evasion. J. Cancer Res. Clin. Oncol. 2024, 150, 238. [Google Scholar] [CrossRef] [PubMed]
- Gulkis, M.; Martinez, E.; Almohdar, D.; Çaglayan, M. Unfilled Gaps by Polβ Lead to Aberrant Ligation by LIG1 at the Downstream Steps of Base Excision Repair Pathway. Nucleic Acids Res. 2024, 52, 3810–3822. [Google Scholar] [CrossRef] [PubMed]
- Gan, L.; Yang, Y.; Li, Q.; Feng, Y.; Liu, T.; Guo, W. Epigenetic Regulation of Cancer Progression by EZH2: From Biological Insights to Therapeutic Potential. Biomark. Res. 2018, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Duan, R.; Du, W.; Guo, W. EZH2: A Novel Target for Cancer Treatment. J. Hematol. Oncol. 2020, 13, 104. [Google Scholar] [CrossRef]
- Goleij, P.; Heidari, M.M.; Tabari, M.A.K.; Hadipour, M.; Rezaee, A.; Javan, A.; Sanaye, P.M.; Larsen, D.S.; Daglia, M.; Khan, H. Polycomb Repressive Complex 2 (PRC2) Pathway’s Role in Cancer Cell Plasticity and Drug Resistance. Funct. Integr. Genom. 2025, 25, 1–26. [Google Scholar] [CrossRef]
- Marin, J.J.G.; Sanchez De Medina, F.; Castão, B.; Bujanda, L.; Romero, M.R.; Martinez-Augustin, O.; Del Moral-Avila, R.; Briz, O. Chemoprevention, Chemotherapy, and Chemoresistance in Colorectal Cancer. Drug Metab. Rev. 2012, 44, 148–172. [Google Scholar] [CrossRef]
- Parri, M.; Chiarugi, P. Rac and Rho GTPases in Cancer Cell Motility Control. Cell Commun. Signal. 2010, 8, 23. [Google Scholar] [CrossRef]
- Xin, B.; Tune, J.; Sim, M.S.; Poh, C.L.; Guad, R.M.; Woon, C.K.; Hazarika, I.; Das, A.; Gopinath, S.C.B.; Rajan, M.; et al. Review Article Matrix Metalloproteinases in Chemoresistance: Regulatory Roles, Molecular Interactions, and Potential Inhibitors. J. Oncol. 2022, 2022, 3249766. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Lian, X.; Zhang, C.; Feng, J.; Tao, H.; Wang, Z. Potential Target within the Tumor Microenvironment—MT1-MMP. Front. Immunol. 2025, 16, 1517519. [Google Scholar] [CrossRef] [PubMed]
- Ou, S.; Chen, H.; Wang, H.; Ye, J.; Liu, H.; Tao, Y.; Ran, S.; Mu, X.; Liu, F.; Zhu, S.; et al. Fusobacterium Nucleatum Upregulates MMP7 to Promote Metastasis-Related Characteristics of Colorectal Cancer Cell via Activating MAPK(JNK)-AP1 Axis. J. Transl. Med. 2023, 21, 704. [Google Scholar] [CrossRef]
- Uitto, V.J.; Baillie, D.; Wu, Q.; Gendron, R.; Grenier, D.; Putnins, E.E.; Kanervo, A.; Firth, J.D. Fusobacterium Nucleatum Increases Collagenase 3 Production and Migration of Epithelial Cells. Infect. Immun. 2005, 73, 1171. [Google Scholar] [CrossRef]
- Ababneh, O.; Nishizaki, D.; Kato, S.; Kurzrock, R. Tumor Necrosis Factor Superfamily Signaling: Life and Death in Cancer. Cancer Metastasis Rev. 2024, 43, 1137–1163. [Google Scholar] [CrossRef]
- Friedl, J.; Puhlmann, M.; Bartlett, D.L.; Libutti, S.K.; Turner, E.N.; Gnant, M.F.X.; Richard Alexander, H. Induction of Permeability across Endothelial Cell Monolayers by Tumor Necrosis Factor (TNF) Occurs via a Tissue Factor–Dependent Mechanism: Relationship between the Procoagulant and Permeability Effects of TNF. Blood 2002, 100, 1334–1339. [Google Scholar] [CrossRef]
- Zhang, Z.; Lin, G.; Yan, Y.; Li, X.; Hu, Y.; Wang, J.; Yin, B.; Wu, Y.; Li, Z.; Yang, X.P. Transmembrane TNF-Alpha Promotes Chemoresistance in Breast Cancer Cells. Oncogene 2018, 37, 3456–3470. [Google Scholar] [CrossRef]
- Olszewski, U.; Liedauer, R.; Ausch, C.; Thalhammer, T.; Hamilton, G. Overexpression of CYP3A4 in a COLO 205 Colon Cancer Stem Cell Model in Vitro. Cancers 2011, 3, 1467–1479. [Google Scholar] [CrossRef]
- Taya, M.; Merenbakh-Lamin, K.; Zubkov, A.; Honig, Z.; Kurolap, A.; Mayer, O.; Shomron, N.; Wolf, I.; Rubinek, T. Beyond Endocrine Resistance: Estrogen Receptor (ESR1) Activating Mutations Mediate Chemotherapy Resistance through the JNK/c-Jun MDR1 Pathway in Breast Cancer. Breast Cancer Res. Treat. 2024, 209, 431–449. [Google Scholar] [CrossRef]
- Topi, G.; Satapathy, S.R.; Ghatak, S.; Hellman, K.; Ek, F.; Olsson, R.; Ehrnström, R.; Lydrup, M.L.; Sjölander, A. High Oestrogen Receptor Alpha Expression Correlates with Adverse Prognosis and Promotes Metastasis in Colorectal Cancer. Cell Commun. Signal. 2024, 22, 198. [Google Scholar] [CrossRef] [PubMed]
- Scheinfeld, N. A Comprehensive Review and Evaluation of the Side Effects of the Tumor Necrosis Factor Alpha Blockers Etanercept, Infliximab and Adalimumab. J. Dermatol. Treat. 2004, 15, 280–294. [Google Scholar] [CrossRef]
- Yap, T.A.; Winter, J.N.; Giulino-Roth, L.; Longley, J.; Lopez, J.; Michot, J.M.; Leonard, J.P.; Ribrag, V.; McCabe, M.T.; Creasy, C.L.; et al. Phase I Study of the Novel Enhancer of Zeste Homolog 2 (EZH2) Inhibitor GSK2816126 in Patients with Advanced Hematologic and Solid Tumors. Clin. Cancer Res. 2019, 25, 7331–7339. [Google Scholar] [CrossRef]
- Alexopoulou, L.; Holt, A.C.; Medzhitov, R.; Flavell, R.A. Recognition of Double-Stranded RNA and Activation of NF-ΚB by Toll-like Receptor 3. Nature 2001, 413, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Castro, F.; Cardoso, A.P.; Gonçalves, R.M.; Serre, K.; Oliveira, M.J. Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion. Front. Immunol. 2018, 9, 337231. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Leng, X.X.; Qi, J.; Wang, N.; Han, J.X.; Tao, Z.H.; Zhuang, Z.Y.; Ren, Y.; Xie, Y.L.; Jiang, S.S.; et al. The Adhesin RadD Enhances Fusobacterium Nucleatum Tumour Colonization and Colorectal Carcinogenesis. Nat. Microbiol. 2024, 9, 2292–2307. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Fan, L.; Lin, Y.; Shen, W.; Qi, Y.; Zhang, Y.; Chen, Z.; Wang, L.; Long, Y.; Hou, T.; et al. Fusobacterium Nucleatum Promotes Colorectal Cancer Metastasis through MiR-1322/CCL20 Axis and M2 Polarization. Gut Microbes 2021, 13, 1980347. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, R.; Zhou, C.; Yu, H.; Luo, W.; Zhu, J.; Liu, J.; Zhang, Z.; Xie, N.; Peng, X.; et al. ANGPTL4-Mediated Promotion of Glycolysis Facilitates the Colonization of Fusobacterium Nucleatum in Colorectal Cancer. Cancer Res. 2021, 81, 6157. [Google Scholar] [CrossRef]
Gene | log2FC | Expr p-Value | Location | Family |
---|---|---|---|---|
BIRC3 | 2.846 | 6.92 × 10−5 | Cytoplasm | enzyme |
CEBPB | 0.690 | 0.0309 | Nucleus | transcription regulator |
CERS4 | −3.002 | 0.0117 | Cytoplasm | transcription regulator |
CSAG2 | −4.665 | 0.00310 | Other | other |
CYP3A4 | 1.536 | 0.0143 | Cytoplasm | enzyme |
ESR1 | 1.805 | 0.0398 | Nucleus | ligand-dependent nuclear receptor |
IL7 | 1.399 | 0.00405 | Extracellular Space | cytokine |
KISS1 | 0.602 | 0.0667 | Cytoplasm | other |
LGALS1 | −1.491 | 0.0502 | Extracellular Space | other |
MAST1 | −1.810 | 0.0125 | Cytoplasm | kinase |
MDK | −1.896 | 0.00187 | Extracellular Space | growth factor |
MIR100HG | −2.300 | 0.0631 | Other | other |
NFKBIA | 1.309 | 0.0211 | Cytoplasm | transcription regulator |
PHGDH | 0.417 | 0.0427 | Cytoplasm | enzyme |
SOD2 | 0.733 | 0.0881 | Cytoplasm | enzyme |
TMEM40 | −2.015 | 0.0452 | Other | other |
TNF | 3.758 | 0.00365 | Extracellular Space | cytokine |
TRIB3 | 0.602 | 0.0824 | Nucleus | kinase |
TRIM9 | −2.473 | 0.0154 | Cytoplasm | enzyme |
VEGFA | 0.691 | 0.0951 | Extracellular Space | growth factor |
Compound or Drug | Molecule Type | Predicted Activation | Activation z-Score | p-Value |
---|---|---|---|---|
etanercept | biologic drug | Inhibited | −5.422 | 1.18 × 10−31 |
adalimumab | biologic drug | Inhibited | −6.075 | 4.12 × 10−31 |
infliximab | biologic drug | Inhibited | −6.139 | 5.08 × 10−31 |
tetrandrine | chemical drug | Inhibited | −6.022 | 7.91 × 10−31 |
poly rI:rC-RNA | biologic drug | Activated | 6.401 | 4.1 × 10−25 |
GSK583 | chemical drug | Inhibited | −4.737 | 2.88 × 10−22 |
ferric hexacyanoferrate(II) | chemical drug | Inhibited | −4.589 | 3.66 × 10−22 |
SKLB023 | chemical reagent | Inhibited | −4.851 | 7.64 × 10−22 |
dexamethasone | chemical drug | Inhibited | −3.402 | 4.1 × 10−21 |
GSK2816126 | chemical drug | Inhibited | −3.213 | 1.7 × 10−20 |
ML385 | chemical reagent | Activated | 3.523 | 1.75 × 10−20 |
L 655238 | chemical reagent | Inhibited | −4.5 | 1.9 × 10−20 |
MDK4882 | chemical reagent | Inhibited | −4.481 | 2.23 × 10−20 |
poly dA-dT | chemical reagent | Activated | 4.781 | 7.24 × 10−20 |
2-(4-acetoxyphenyl)-2-chloro-N-methylethylamine | chemical reagent | Inhibited | −5.657 | 7.96 × 10−20 |
manumycin A | chemical reagent | Inhibited | −2.83 | 9.08 × 10−20 |
epicatechin | chemical drug | Inhibited | −5.584 | 9.19 × 10−20 |
imipramine blue | chemical drug | Inhibited | −4.737 | 9.54 × 10−20 |
indoxam | chemical reagent | Inhibited | −4.993 | 1.16 × 10−19 |
1-docosapentaenoylglycerol | chemical reagent | Inhibited | −4.258 | 1.21 × 10−19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Risoen, K.R.; Shaw, C.A.; Chien, J.; Weimer, B.C. Fusobacterium nucleatum and Its Impact on Colorectal Cancer Chemoresistance: A Meta-Analysis of In Vitro Co-Culture Infections. Cancers 2025, 17, 3247. https://doi.org/10.3390/cancers17193247
Risoen KR, Shaw CA, Chien J, Weimer BC. Fusobacterium nucleatum and Its Impact on Colorectal Cancer Chemoresistance: A Meta-Analysis of In Vitro Co-Culture Infections. Cancers. 2025; 17(19):3247. https://doi.org/10.3390/cancers17193247
Chicago/Turabian StyleRisoen, Katie R., Claire A. Shaw, Jeremy Chien, and Bart C. Weimer. 2025. "Fusobacterium nucleatum and Its Impact on Colorectal Cancer Chemoresistance: A Meta-Analysis of In Vitro Co-Culture Infections" Cancers 17, no. 19: 3247. https://doi.org/10.3390/cancers17193247
APA StyleRisoen, K. R., Shaw, C. A., Chien, J., & Weimer, B. C. (2025). Fusobacterium nucleatum and Its Impact on Colorectal Cancer Chemoresistance: A Meta-Analysis of In Vitro Co-Culture Infections. Cancers, 17(19), 3247. https://doi.org/10.3390/cancers17193247