T-Cell Engagers in Acute Myeloid Leukemia: Molecular Targets, Structure, and Therapeutic Challenges
Abstract
Simple Summary
Abstract
1. Introduction
2. Overview of TCE Therapeutic Protein Formats
3. Challenges of TCEs in AML: Lack of Optimal Target Antigens
3.1. CD33
3.2. CD123
3.3. FLT3
3.4. CLL-1/CLEC12A
3.5. CD38
4. Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wachter, F.; Pikman, Y. Pathophysiology of Acute Myeloid Leukemia. Acta Haematol. 2024, 147, 229–246. [Google Scholar] [CrossRef]
- Thol, F.; Ganser, A. Treatment of Relapsed Acute Myeloid Leukemia. Curr. Treat. Options Oncol. 2020, 21, 66. [Google Scholar] [CrossRef]
- Rathi, C.; Meibohm, B. Clinical pharmacology of bispecific antibody constructs. J. Clin. Pharmacol. 2015, 55 (Suppl. 3), S21–S28. [Google Scholar] [CrossRef]
- Roopenian, D.C.; Akilesh, S. FcRn: The neonatal Fc receptor comes of age. Nat. Rev. Immunol. 2007, 7, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Wu, B.; Brandl, C.; Johnson, J.; Wolf, A.; Chow, A.; Doshi, S. Blinatumomab, a Bispecific T-cell Engager (BiTE(®)) for CD-19 Targeted Cancer Immunotherapy: Clinical Pharmacology and Its Implications. Clin. Pharmacokinet. 2016, 55, 1271–1288. [Google Scholar] [CrossRef]
- Einsele, H.; Borghaei, H.; Orlowski, R.Z.; Subklewe, M.; Roboz, G.J.; Zugmaier, G.; Kufer, P.; Iskander, K.; Kantarjian, H.M. The BiTE (bispecific T-cell engager) platform: Development and future potential of a targeted immuno-oncology therapy across tumor types. Cancer 2020, 126, 3192–3201. [Google Scholar] [CrossRef]
- Lorenczewski, G.; Friedrich, M.; Kischel, R.; Dahlhoff, C.; Anlahr, J.; Balazs, M.; Rock, D.; Boyle, M.C.; Goldstein, R.; Coxon, A.; et al. Generation of a Half-Life Extended Anti-CD19 BiTE® Antibody Construct Compatible with Once-Weekly Dosing for Treatment of CD19-Positive Malignancies. Blood 2017, 130 (Suppl. 1), 2815. Available online: https://ashpublications.org/blood/article/130/Supplement%201/2815/80433/Generation-of-a-Half-Life-Extended-Anti-CD19-BiTER (accessed on 3 October 2025).
- Cech, P.; Skórka, K.; Dziki, L.; Giannopoulos, K. T-Cell Engagers-The Structure and Functional Principle and Application in Hematological Malignancies. Cancers 2024, 16, 1580. [Google Scholar] [CrossRef]
- Hale, G. Living in LALA land? Forty years of attenuating Fc effector functions. Immunol. Rev. 2024, 328, 422–437. [Google Scholar] [CrossRef]
- Reusch, U.; Harrington, K.H.; Gudgeon, C.J.; Fucek, I.; Ellwanger, K.; Weichel, M.; Knackmus, S.H.J.; Zhukovsky, E.; Fox, J.A.; Kunkel, L.A.; et al. Characterization of CD33/CD3 Tetravalent Bispecific Tandem Diabodies (TandAbs) for the Treatment of Acute Myeloid Leukemia. Clin. Cancer Res. 2016, 22, 5829–5838. [Google Scholar] [CrossRef]
- Gramer, M.J.; van den Bremer, E.T.; van Kampen, M.D.; Kundu, A.; Kopfmann, P.; Etter, E.; Stinehelfer, D.; Long, J.; Lannom, T.; Noordergraaf, E.H.; et al. Production of stable bispecific IgG1 by controlled Fab-arm exchange: Scalability from bench to large-scale manufacturing by application of standard approaches. MAbs. 2013, 5, 962–973. [Google Scholar] [CrossRef]
- Shilova, O.N.; Deyev, S.M. DARPins: Promising Scaffolds for Theranostics. Acta Naturae 2019, 11, 42–53. [Google Scholar] [CrossRef]
- Krupka, C.; Kufer, P.; Kischel, R.; Zugmaier, G.; Bogeholz, J.; Kohnke, T.; Lichtenegger, F.S.; Schneider, S.; Metzeler, K.H.; Fiegl, M.; et al. CD33 target validation and sustained depletion of AML blasts in long-term cultures by the bispecific T-cell-engaging antibody AMG 330. Blood 2014, 123, 356–365. [Google Scholar] [CrossRef]
- Subklewe, M.; Stein, A.; Walter, R.B.; Bhatia, R.; Wei, A.H.; Ritchie, D.; Buecklein, V.; Vachhani, P.; Dai, T.; Hindoyan, A.; et al. Updated Results from a Phase 1 First-in-Human Dose Escalation Study of AMG 673, a Novel Anti-CD33/CD3 BiTE® (Bispecific T-cell Engager) in Patients with Relapsed/Refractory Acute Myeloid Leukemia; European Hematology Association: The Hague, The Netherlands, 2020. [Google Scholar]
- Narayan, R.; Piérola, A.A.; Donnellan, W.B.; Yordi, A.M.; Abdul-Hay, M.; Platzbecker, U.; Subklewe, M.; Kadia, T.M.; Alonso-Dominguez, J.M.; McCloskey, J.; et al. First-in-human study of JNJ-67571244, a CD33 × CD3 bispecific antibody, in relapsed/refractory acute myeloid leukemia and myelodysplastic syndrome. Clin. Transl. Sci. 2024, 17, e13742. [Google Scholar] [CrossRef]
- Eissenberg, L.G.; Ritchey, J.K.; Rettig, M.P.; Patel, D.A.; Vij, K.; Gao, F.; Smith, V.; Han, T.H.; DiPersio, J.F. Control of acute myeloid leukemia and generation of immune memory in vivo using AMV564, a bivalent bispecific CD33 × CD3 T cell engager. PLoS ONE 2024, 19, e0300174. [Google Scholar] [CrossRef]
- Westervelt, P.; Cortes, J.E.; Altman, J.K.; Long, M.; Oehler, V.G.; Gojo, I.; Guenot, J.; Chun, P.; Roboz, G.J. Phase 1 First-in-Human Trial of AMV564, a Bivalent Bispecific (2:2) CD33/CD3 T-Cell Engager, in Patients with Relapsed/Refractory Acute Myeloid Leukemia (AML). Blood 2019, 134 (Suppl. 1), 834. [Google Scholar] [CrossRef]
- Bories, P.; Griškevičius, L.; Jongen-Lavrencic, M.; Pabst, T.; De Leeuw, D.; Huls, G.; Pigneux, A.; Boissel, N.; Boettcher, S.; Dymkowska, M.; et al. Updated Results from the Ongoing Phase 1/2a Study of MP0533, a Tetra-Specific Designed Ankyrin Repeat Protein (DARPin; CD33 x CD123 x CD70 x CD3), in Patients with Relapsed/Refractory AML or MDS/AML; EHA: The Hague, The Netherlands, 2025. [Google Scholar]
- Chichili, G.R.; Huang, L.; Li, H.; Burke, S.; He, L.; Tang, Q.; Jin, L.; Gorlatov, S.; Ciccarone, V.; Chen, F.; et al. A CD3xCD123 bispecific DART for redirecting host T cells to myelogenous leukemia: Preclinical activity and safety in nonhuman primates. Sci. Transl. Med. 2015, 7, 289ra82. [Google Scholar] [CrossRef] [PubMed]
- Alderson, R.; Huang, L.; Zhang, X.; Li, H.; Kaufman, T.; Diedrich, G.; Moore, P.; Bonvini, E. Combinatorial Anti-Tumor Activity in Animal Models of a Novel CD123 x CD3 Bispecific DART® Molecule (MGD024) with Cytarabine, Venetoclax or Azacitidine Supports Combination Therapy in Acute Myeloid Leukemia. Blood 2021, 138, 1165. [Google Scholar] [CrossRef]
- Moore, G.L.; Bernett, M.J.; Rashid, R.; Pong, E.W.; Nguyen, D.H.; Jacinto, J.; Eivazi, A.; Nisthal, A.; Diaz, J.E.; Chu, S.Y.; et al. A robust heterodimeric Fc platform engineered for efficient development of bispecific antibodies of multiple formats. Methods 2019, 154, 38–50. [Google Scholar] [CrossRef]
- Forslund, A.; Syed, K.; Axel, A.; McDaid, R.; Li, Y.; Ballesteros, J.; Gaudet, F.; Attar, R.M.; Salvati, M.; Huang, F.; et al. Ex Vivo Activity Profile of the CD123xCD3 Duobody® Antibody JNJ-63709178 Against Primary Acute Myeloid Leukemia Bone Marrow Samples. Blood 2016, 128, 2875. [Google Scholar] [CrossRef]
- Comeau, M.R.; Miller, R.; Bader, R.; Gottschalk, R.; Daugherty, M.; Sewell, T.; Misher, L.; Parr, L.; DeFrancesco, M.; Bienvenue, D.; et al. Abstract 1786: APVO436, a bispecific anti-CD123 x anti-CD3 ADAPTIR™ molecule for redirected T-cell cytotoxicity, induces potent T-cell activation, proliferation and cytotoxicity with limited cytokine release. Cancer Res. 2018, 78 (Suppl. 13), 1786. [Google Scholar] [CrossRef]
- Bonnevaux, H.; Guerif, S.; Albrecht, J.; Jouannot, E.; De Gallier, T.; Beil, C.; Lange, C.; Leuschner, W.D.; Schneider, M.; Lemoine, C.; et al. Pre-clinical development of a novel CD3-CD123 bispecific T-cell engager using cross-over dual-variable domain (CODV) format for acute myeloid leukemia (AML) treatment. Oncoimmunology 2021, 10, 1945803. [Google Scholar] [CrossRef] [PubMed]
- Van Loo, P.F.; Doornbos, R.; Dolstra, H.; Shamsili, S.; Bakker, L. Preclinical Evaluation of MCLA117, a CLEC12AxCD3 Bispecific Antibody Efficiently Targeting a Novel Leukemic Stem Cell Associated Antigen in AML. Blood 2015, 126, 325. [Google Scholar] [CrossRef]
- Brauchle, B.; Goldstein, R.L.; Karbowski, C.M.; Henn, A.; Li, C.M.; Bucklein, V.L.; Krupka, C.; Boyle, M.C.; Koppikar, P.; Haubner, S.; et al. Characterization of a Novel FLT3 BiTE Molecule for the Treatment of Acute Myeloid Leukemia. Mol. Cancer Ther. 2020, 19, 1875–1888. [Google Scholar] [CrossRef]
- Mehta, N.K.; Pfluegler, M.; Meetze, K.; Li, B.; Sindel, I.; Vogt, F.; Marklin, M.; Heitmann, J.S.; Kauer, J.; Osburg, L.; et al. A novel IgG-based FLT3xCD3 bispecific antibody for the treatment of AML and B-ALL. J. Immunother. Cancer. 2022, 10, e003882. [Google Scholar] [CrossRef]
- Guru Murthy, G.; Leonard, J.; Badar, T.; Arana Yi, C.Y.; Duvall, A.S.; Shah, B.D.; Baim, A.; Kearl, T.; Harrington, A.M.; Szabo, A.; et al. A Phase 1 Study of CD38-Bispecific Antibody (XmAb18968) for Patients with CD38 Expressing Relapsed/Refractory Acute Myeloid Leukemia. Blood 2023, 142 (Suppl. 1), 1541. [Google Scholar] [CrossRef]
- Dreyzin, A.; Holtzman, N.G.; Bonifant, C.L. CD123-targeting immunotherapeutic approaches in acute myeloid leukaemia. Br. J. Haematol. 2025, 1–14. [Google Scholar] [CrossRef]
- Reya, T.; Morrison, S.J.; Clarke, M.F.; Weissman, I.L. Stem cells, cancer, and cancer stem cells. Nature 2001, 414, 105–111. [Google Scholar] [CrossRef]
- Ehninger, A.; Kramer, M.; Röllig, C.; Thiede, C.; Bornhauser, M.; von Bonin, M.; Wermke, M.; Feldmann, A.; Bachmann, M.; Ehninger, G.; et al. Distribution and levels of cell surface expression of CD33 and CD123 in acute myeloid leukemia. Blood Cancer J. 2014, 4, e218. [Google Scholar] [CrossRef]
- El Achi, H.; Dupont, E.; Paul, S.; Khoury, J.D. CD123 as a Biomarker in Hematolymphoid Malignancies: Principles of Detection and Targeted Therapies. Cancers 2020, 12, 3087. [Google Scholar] [CrossRef]
- Daver, N.; Alotaibi, A.S.; Bücklein, V.; Subklewe, M. T-cell-based immunotherapy of acute myeloid leukemia: Current concepts and future developments. Leukemia 2021, 35, 1843–1863. [Google Scholar] [CrossRef]
- Guy, D.G.; Uy, G.L. Bispecific Antibodies for the Treatment of Acute Myeloid Leukemia. Curr. Hematol. Malig. Rep. 2018, 13, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Laszlo, G.S.; Estey, E.H.; Walter, R.B. The past and future of CD33 as therapeutic target in acute myeloid leukemia. Blood Rev. 2014, 28, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Laing, A.A.; Harrison, C.J.; Gibson, B.E.S.; Keeshan, K. Unlocking the potential of anti-CD33 therapy in adult and childhood acute myeloid leukemia. Exp. Hematol. 2017, 54, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Caselles, T.; Martínez-Esparza, M.; Pérez-Oliva, A.B.; Quintanilla-Cecconi, A.M.; Garcia-Alonso, A.; Alvarez-Lopez, D.M.R.; Garcia-Penarrubia, P. A study of CD33 (SIGLEC-3) antigen expression and function on activated human T and NK cells: Two isoforms of CD33 are generated by alternative splicing. J. Leukoc. Biol. 2006, 79, 46–58. [Google Scholar] [CrossRef]
- Laszlo, G.S.; Gudgeon, C.J.; Harrington, K.H.; Dell’Aringa, J.; Newhall, K.J.; Means, G.D.; Sinclair, A.M.; Kischel, R.; Frankel, S.R.; Walter, R.B. Cellular determinants for preclinical activity of a novel CD33/CD3 bispecific T-cell engager (BiTE) antibody, AMG 330, against human AML. Blood 2014, 123, 554–561. [Google Scholar] [CrossRef]
- Ravandi, F.; Subklewe, M.; Walter, R.B.; Vachhani, P.; Ossenkoppele, G.; Buecklein, V.; Dohner, H.; Jogen-Lavrencic, M.; Baldus, C.D.; Fransecky, L.; et al. Safety and tolerability of AMG 330 in adults with relapsed/refractory AML: A phase 1a dose-escalation study. Leuk. Lymphoma. 2024, 65, 1281–1291. [Google Scholar] [CrossRef]
- Subklewe, M.; Stein, A.; Walter, R.B.; Bhatia, R.; Wei, A.H.; Ritchie, D.; Bucklein, V.; Vachhani, P.; Dai, T.; Hindoyan, A.; et al. Preliminary Results from a Phase 1 First-in-Human Study of AMG 673, a Novel Half-Life Extended (HLE) Anti-CD33/CD3 BiTE® (Bispecific T-Cell Engager) in Patients with Relapsed/Refractory (R/R) Acute Myeloid Leukemia (AML). Blood 2019, 134 (Suppl. 1), 833. [Google Scholar] [CrossRef]
- Nair-Gupta, P.; Diem, M.; Reeves, D.; Wang, W.; Schulingkamp, R.; Sproesser, K.; Mattson, B.; Heidrich, B.; Mendonca, M.; Joseph, J.; et al. A novel C2 domain binding CD33xCD3 bispecific antibody with potent T-cell redirection activity against acute myeloid leukemia. Blood Adv. 2020, 4, 906–919. [Google Scholar] [CrossRef]
- Mettu, N.B.; Starodub, A.; Piha-Paul, S.A.; Abdul-Karim, R.M.; Tinoco, G.; Shafique, M.R.; Smith, V.; Baccei, C.; Chun, P.Y. Results of a phase 1 dose-escalation study of AMV564, a novel T-cell engager, alone and in combination with pembrolizumab in patients with relapsed/refractory solid tumors. J. Clin. Oncol. 2021, 39, 2555. [Google Scholar] [CrossRef]
- Jongen-Lavrencic, M.; Pabst, T.; Bories, P.; Griskevicius, L.; Huls, G.; de Leeuw, D.C.; Boettcher, S.; Pigneux, A.; Boissel, N.; Dymkowska, M.; et al. MP0533 (CD33 x CD123 x CD70 x CD3), a Tetra-Specific CD3-Engaging Darpin for the Treatment of Patients with Relapsed/Refractory AML or MDS/AML: Results of an Ongoing Phase 1/2a Study. Blood 2024, 144 (Suppl. 1), 2881. [Google Scholar] [CrossRef]
- Muñoz, L.; Nomdedéu, J.F.; López, O.; Carnicer, M.J.; Bellido, M.; Aventin, A.; Brunet, S.; Sierra, J. Interleukin-3 receptor alpha chain (CD123) is widely expressed in hematologic malignancies. Haematologica 2001, 86, 1261–1269. [Google Scholar]
- Pébusque, M.J.; Faÿ, C.; Lafage, M.; Sempere, C.; Saeland, S.; Caux, C.; Mannoni, P. Recombinant human IL-3 and G-CSF act synergistically in stimulating the growth of acute myeloid leukemia cells. Leukemia 1989, 3, 200–205. [Google Scholar] [PubMed]
- Das, N.; Gupta, R.; Gupta, S.K.; Bakhshi, S.; Malhotra, A.; Rai, S.; Singh, S.; Prajapati, V.K.; Sahoo, R.K.; Gogia, A.; et al. A Real-world Perspective of CD123 Expression in Acute Leukemia as Promising Biomarker to Predict Treatment Outcome in B-ALL and AML. Clin. Lymphoma Myeloma Leuk. 2020, 20, e673–e684. [Google Scholar] [CrossRef] [PubMed]
- Al-Hussaini, M.; Rettig, M.P.; Ritchey, J.K.; Karpova, D.; Uy, G.L.; Eissenberg, L.G.; Gao, F.; Eades, W.C.; Bonvini, E.; Chichili, G.R.; et al. Targeting CD123 in acute myeloid leukemia using a T-cell-directed dual-affinity retargeting platform. Blood 2016, 127, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Uy, G.L.; Aldoss, I.; Foster, M.C.; Sayre, P.H.; Wieduwilt, M.J.; Advani, A.S.; Godwin, J.E.; Arellano, M.L.; Sweet, K.L.; Emadi, A.; et al. Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia. Blood 2021, 137, 751–762. [Google Scholar] [CrossRef]
- Winer, E.; Maris, M.; Sharma, M.; Kaminker, P.; Zhao, E.; Ward, A.; Sochacki, A.L. A Phase 1, First-in-Human, Dose-Escalation Study of MGD024, a CD123 x CD3 Bispecific Dart® Molecule, in Patients with Relapsed or Refractory CD123-Positive (+) Hematologic Malignancies. Blood 2022, 140 (Suppl. 1), 11753–11754. [Google Scholar] [CrossRef]
- Chu, S.; Pong, E.; Chen, H.; Phung, S.; Chan, E.W.; Endo, N.A.; Rashid, R.; Bonzon, C.; Leung, I.; Muchhal, U.S.; et al. Immunotherapy with Long-Lived Anti-CD123 × Anti-CD3 Bispecific Antibodies Stimulates Potent T Cell-Mediated Killing of Human AML Cell Lines and of CD123+ Cells in Monkeys: A Potential Therapy for Acute Myelogenous Leukemia. Blood 2014, 124, 2316. [Google Scholar] [CrossRef]
- Ravandi, F.; Bashey, A.; Foran, J.; Stock, W.; Mawad, R.; Short, N.; Yilmaz, M.; Kantarjian, H.; Odenike, O.; Patel, A.; et al. Phase 1 study of vibecotamab identifies an optimized dose for treatment of relapsed/refractory acute myeloid leukemia. Blood Adv. 2023, 7, 6492–6505. [Google Scholar] [CrossRef]
- Boyiadzis, M.; Desai, P.; Daskalakis, N.; Donnellan, W.; Ferrante, L.; Goldberg, J.D.; Grunwald, M.R.; Guttke, C.; Li, X.; Perez-Simon, J.A.; et al. First-in-human study of JNJ-63709178, a CD123/CD3 targeting antibody, in relapsed/refractory acute myeloid leukemia. Clin. Transl. Sci. 2023, 16, 429–435. [Google Scholar] [CrossRef]
- Uckun, F.M.; Lin, T.L.; Mims, A.S.; Patel, P.; Lee, C.; Shahidzadeh, A.; Shami, P.J.; Cull, E.; Cogle, C.R.; Watts, J. A Clinical Phase 1B Study of the CD3xCD123 Bispecific Antibody APVO436 in Patients with Relapsed/Refractory Acute Myeloid Leukemia or Myelodysplastic Syndrome. Cancers 2021, 13, 4113. [Google Scholar] [CrossRef]
- Bonnevaux, H.; Courta, J.; Passe-Coutrin, W.; Bauchet, A.L.; Roobrouck, A.; Amara, C.; Beys, E.; Balzano, M.; Moulard, M.; Meloni, M.; et al. CD123-CODV-TCE bispecific T-cell engager for acute myeloid leukemia (AML): Activity on primary AML and safety in non-human primates. Cancer Res. 2022, 82, 2909. [Google Scholar] [CrossRef]
- Rosnet, O.; Bühring, H.J.; Marchetto, S.; Rappold, I.; Lavagna, C.; Sainty, D.; Arnoulet, C.; Chabannon, C.; Kanz, L.; Hannum, C.; et al. Human FLT3/FLK2 receptor tyrosine kinase is expressed at the surface of normal and malignant hematopoietic cells. Leukemia 1996, 10, 238–248. [Google Scholar] [PubMed]
- Carow, C.E.; Levenstein, M.; Kaufmann, S.H.; Chen, J.; Amin, S.; Rockwell, P.; Witte, L.; Borowitz, M.J.; Civin, C.I.; Small, D. Expression of the hematopoietic growth factor receptor FLT3 (STK-1/Flk2) in human leukemias. Blood 1996, 87, 1089–1096. [Google Scholar] [CrossRef] [PubMed]
- Tsapogas, P.; Mooney, C.; Brown, G.; Rolink, A. The cytokine Flt3-ligand in normal and malignant hematopoiesis. Int. J. Mol. Sci. 2017, 18, 1115. [Google Scholar] [CrossRef]
- Morsink, L.M.; Walter, R.B.; Ossenkoppele, G.J. Prognostic and therapeutic role of CLEC12A in acute myeloid leukemia. Blood Rev. 2019, 34, 26–33. [Google Scholar] [CrossRef]
- Van Rhenen, A.; van Dongen, G.A.; Kelder, A.; Rombouts, E.J.; Feller, N.; Moshaver, B.; Stigter-van Walsum, M.; Zweegman, S.; Ossenkoppele, G.J.; Jan Schuurhuis, G.J. The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells. Blood 2007, 110, 2659–2666. [Google Scholar] [CrossRef]
- Zheng, B.; Yu, S.F.; Del Rosario, G.; Leong, S.R.; Lee, G.Y.; Vij, R.; Chiu, C.; Liang, W.C.; Wu, Y.; Chalouni, C.; et al. An Anti-CLL-1 Antibody-Drug Conjugate for the Treatment of Acute Myeloid Leukemia. Clin. Cancer Res. 2019, 25, 1358–1368. [Google Scholar] [CrossRef]
- Jiang, Y.P.; Liu, B.Y.; Zheng, Q.; Panuganti, S.; Chen, R.; Zhu, J.; Mishra, M.; Huang, J.; Dao-Pick, T.; Roy, S.; et al. CLT030, a leukemic stem cell-targeting CLL1 antibody-drug conjugate for treatment of acute myeloid leukemia. Blood Adv. 2018, 2, 1738–1749. [Google Scholar] [CrossRef]
- Van Loo, P.F.; Hangalapura, B.N.; Thordardottir, S.; Gibbins, J.D.; Veninga, H.; Hendriks, L.J.A.; Kramer, A.; Roovers, R.C.; Leenders, M.; de Kruif, J.; et al. MCLA-117, a CLEC12AxCD3 bispecific antibody targeting a leukaemic stem cell antigen, induces T cell-mediated AML blast lysis. Expert Opin. Biol. Ther. 2019, 19, 721–733. [Google Scholar] [CrossRef]
- Mascarenhas, J.; Cortes, J.; Huls, G.; Venditti, A.; Breems, D.; De Botton, S.; DeAngelo, D.J.; van de Loosdrecht, A.; Jongen-Lavrencic, M.; Borthakur, G.; et al. Update from the Ongoing Phase 1 Multinational Study of MCLA-117, a Bispecific CLEC12A X CD3 T-Cell Engager, in Patients with Acute Myelogenous Leukemia; European Hematology Association: The Hague, The Netherlands, 2020. [Google Scholar]
- Zhong, X.; Ma, H. Targeting CD38 for acute leukemia. Front Oncol. 2022, 12, 1007783. [Google Scholar] [CrossRef]
- Keyhani, A.; Huh, Y.O.; Jendiroba, D.; Pagliaro, L.; Cortez, J.; Pierce, S.; Pearlman, M.; Estey, E.; Kantarjian, H.; Freireich, E.J. Increased CD38 expression is associated with favorable prognosis in adult acute leukemia. Leuk. Res. 2000, 24, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xu, Y. Analysis of immunophenotypes and expressions of non-myeloid antigens in acute myeloid leukemia. Nan Fang Yi Ke Da Xue Xue Bao 2020, 40, 1639–1644. [Google Scholar] [CrossRef] [PubMed]
- Murtadha, M.; Park, M.; Zhu, Y.; Caserta, E.; Napolitano, O.; Tandoh, T.; Moloudizargari, M.; Pozhitkov, A.; Singer, M.; Dona, A.A.; et al. A CD38-directed, single-chain T-cell engager targets leukemia stem cells through IFN-γ-induced CD38 expression. Blood 2024, 143, 1599–1615. [Google Scholar] [CrossRef] [PubMed]
- Hua, G.; Carlson, D.; Starr, J.R. Tebentafusp-tebn: A Novel Bispecific T-Cell Engager for Metastatic Uveal Melanoma. J. Adv. Pract. Oncol. 2022, 13, 717–723. [Google Scholar] [CrossRef]
- Zhang, Y.; Park, M.; Ghoda, L.Y.; Zhao, D.; Valerio, M.; Nafie, E.; Gonzalez, A.; Ly, K.; Parcutela, B.; Choi, H.; et al. IL1RAP-specific T cell engager depletes acute myeloid leukemia stem cells. J. Hematol. Oncol. 2024, 17, 67. [Google Scholar] [CrossRef]
- Askmyr, M.; Ågerstam, H.; Hansen, N.; Gordon, S.; Arvanitakis, A.; Rissler, M.; Juliusson, G.; Richter, J.; Jaras, M.; Fioretos, T. Selective killing of candidate AML stem cells by antibody targeting of IL1RAP. Blood 2013, 121, 3709–3713. [Google Scholar] [CrossRef]
- Zarezadeh Mehrabadi, A.; Shahba, F.; Khorramdelazad, H.; Aghamohammadi, N.; Karimi, M.; Bagherzadeh, K.; Khoshmirsafa, M.; Massoumi, R.; Falak, R. Interleukin-1 receptor accessory protein (IL-1RAP): A magic bullet candidate for immunotherapy of human malignancies. Crit. Rev. Oncol. Hematol. 2024, 193, 104200. [Google Scholar] [CrossRef]
- Zhang, Y.; Park, M.; Zhang, B.; Ghoda, L.Y.; Zhao, D.; Valerio, M.; Nafie, E.; Gong, X.; Chen, F.; Xu, Y.; et al. IL1RAP-Specific T Cell Engager (TCE) Antibody Efficiently Depletes Acute Myeloid Leukemia (AML) Leukemic Stem Cells (LSCs). Blood 2023, 142 (Suppl. 1), 586. [Google Scholar] [CrossRef]
- Chervin, A.S.; Stone, J.D.; Konieczna, I.; Calabrese, K.M.; Wang, N.; Haribhai, D.; Dong, F.; White, M.K.; Rodriguez, L.E.; Bukofzer, G.T.; et al. ABBV-184: A Novel Survivin-specific TCR/CD3 Bispecific T-cell Engager is Active against Both Solid Tumor and Hematologic Malignancies. Mol. Cancer Ther. 2023, 22, 903–912. [Google Scholar] [CrossRef]
- Carter, B.Z.; Qiu, Y.; Huang, X.; Diao, L.; Zhang, N.; Coombes, K.R.; Mak, D.H.; Konopleva, M.; Cortes, J.; Kantarjian, H.M.; et al. Survivin is highly expressed in CD34(+)38(-) leukemic stem/progenitor cells and predicts poor clinical outcomes in AML. Blood 2012, 120, 173–180. [Google Scholar] [CrossRef]
- Peterlin, P.; Saada-Bouzid, E.; Moskovitz, M.; Pigneux, A.; Yuda, J.; Sinnollareddy, M.; Henner, W.R.; Chen, D.; Freise, K.J.; Leibman, R.S.; et al. First-in-human clinical trial results with ABBV-184, a first-in-class T-cell receptor/anti-CD3 bispecific protein, in adults with previously treated AML or NSCLC. Expert Rev. Anticancer Ther. 2024, 24, 893–904. [Google Scholar] [CrossRef]
- Lee, B.H.; Paulus, G.; Helble, J.; Sankaran, P.; Rahman, T.; O’Connor, D.; Bikowitz, M.; Jaffe, S.; Kulesha, A.; Ban, B.; et al. CBX250 Is a Novel Cathepsin G Peptide-HLA-Targeting T Cell Engager That Exhibits High Tumor Antigen Selectivity and Potent Antileukemic Activity In Vivo. Blood 2024, 144 (Suppl. 1), 208. [Google Scholar] [CrossRef]
- Zhang, M.; Sukhumalchandra, P.; Enyenihi, A.A.; St John, L.S.; Hunsucker, S.A.; Mittendorf, E.A.; Sergeeva, A.; Ruisaard, K.; Al-Atrache, Z.; Ropp, P.A.; et al. A novel HLA-A*0201 restricted peptide derived from cathepsin G is an effective immunotherapeutic target in acute myeloid leukemia. Clin. Cancer Res. 2013, 19, 247–257. [Google Scholar] [CrossRef]
- Albayrak, G.; Wan, P.K.; Fisher, K.; Seymour, L.W. T cell engagers: Expanding horizons in oncology and beyond. Br. J. Cancer. 2025, 1–9. [Google Scholar] [CrossRef]
Target | Molecule | Format | Intact Fc Region | Fc Mutations | References |
---|---|---|---|---|---|
CD33 | AMG330 | BiTE | No | N/A | [13] |
AMG673 | HLE BiTE | Yes | Not disclosed | [14,15] | |
JNJ-67571244 | DuoBody | Yes | FcγR silenced | [16] | |
AMV564 | TandAb | No | N/A | [17] | |
MP0533 | DARPin | No | N/A | [18] | |
CD123 | MGD006 | DART | No | N/A | [19] |
MGD024 | Second generation DART | Yes | FcγR silenced | [20] | |
XmAb14045 | XmAb | Yes | FcγR silenced | [21] | |
JNJ-63709178 | DuoBody | Yes | FcγR silenced | [22] | |
APVO436 | ADAPTIR | Yes | FcγR silenced | [23] | |
SAR440234 | CODV | Yes | FcγR silenced | [24] | |
CLEC12A | MCLA-117 | Full length IgG1 | Yes | FcγR silenced | [25] |
FLT3 | AMG427 | HLE BiTE | Yes | FcγR silenced | [26] |
CLN-049 | IgG/scFv fusion | Yes | FcγR silenced | [27] | |
CD38 | XmAb18968 | XmAb | Yes | FcγR silenced | [28] |
Molecule (Target) | Development Phase | Dose Escalation and Route | CRS | Efficacy | Reference |
---|---|---|---|---|---|
AMG330 (CD33) | Phase I—Terminated (NCT02520427) | cIV; Dose range of 0.5–1600 µg/day | 78% of patients had any grade CRS | 8/60 patients had CR, CRi, or MLFS | [40] |
AMG673 (CD33) | Phase I—Terminated (NCT03224819) | IV; Dose range of 0.05–110 µg | 63% of patients had any grade CRS | 1 patient achieved CRi | [14,15] |
JNJ-67571244 (CD33) | Phase I—Completed (NCT03915379) | IV: Dose range of 0.2–37.5 µg/kg SC: Dose range of 0.63–6.3 µg/kg | 42.6% of patients had any grade CRS | No patient had a response better than stable disease | [41] |
AMV564 (CD33) | Phase I—Completed (NCT04128423) | cIV; Dose range of 0.5–300 µg/day | No incidence of grade 3 or higher CRS | 3/36 patients had either a CR, CRi, or PR | [43] |
MP0533 (CD33) | Phase 1—Ongoing (NCT05673057) | N/A | 66% of patients had any grade CRS; 3 cases of grade 3 | 7/41 achieved clinical response: 3 MLFS, 2 CRh, 1 CR 13/38 patients achieved a blast reduction of ≥50% in bone marrow | [44] |
MGD006 (CD123) | Phase I—Terminated (NCT02152956) | cIV: Dose range of 3–700 ng/kg/day | N/A | N/A | [48] |
MGD024 (CD123) | Phase I—Ongoing (NCT05362773) | N/A | N/A | N/A | |
XmAb14045 (CD123) | Phase 1—Complete (NCT02730312) Phase 2—Active, not recruiting (NCT05285813) | IV: Dose range of 0.003 to 12 µg/kg | 102/120 patients had any grade CRS; 32 being grade 3 or higher | 10/120 clinical responses: 3 CR, 3 CRi, 3 MLFS, 1 PR | [51] |
JNJ-63709178 (CD123) | Phase 1—Complete, no active trials (NCT02715011) | IV: Dose range of 0.15–6 µg/kg SC: Dose range of 0.3–4.8 µg/kg | 43.5% had any grade CRS | One patient achieved SD | [52] |
APVO436 (CD123) | Phase 1b/2—Active (NCT06634394) | IV: Dose range of 0.3–60 µg | 21.7% had any grade CRS | At RP2D, two patients had CR, two had PD, and the rest had SD | [53] |
SAR440234 (CD123) | Phase 1—Terminated (NCT03594955) | N/A | N/A | N/A | |
MCLA-117 (CLEC12A/CLL-1) | Phase 1—Terminated (NCT03038230) | IV: Dose range of 0.025–240 mg | 36.2% had any grade CRS | 1 patient achieved MLFS | [63] |
AMG427 (FLT3) | Phase 1—Terminated (NCT0354136) | N/A | N/A | N/A | |
CLN-049 | Phase 1—Ongoing (NCT05143996) | N/A | N/A | N/A | |
XmAb18968 (CD38) | Phase 1—Terminated (NCT05038644) | IV: Dose range of 0.8–1.5 mg | 62% had any grade CRS | 2/13 achieved MRD negative CR and proceeded to allogeneic HCT | [28] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daws, H.; Gallinero, K.; Singh, A.; Bilic, S. T-Cell Engagers in Acute Myeloid Leukemia: Molecular Targets, Structure, and Therapeutic Challenges. Cancers 2025, 17, 3246. https://doi.org/10.3390/cancers17193246
Daws H, Gallinero K, Singh A, Bilic S. T-Cell Engagers in Acute Myeloid Leukemia: Molecular Targets, Structure, and Therapeutic Challenges. Cancers. 2025; 17(19):3246. https://doi.org/10.3390/cancers17193246
Chicago/Turabian StyleDaws, Hunter, Kate Gallinero, Amanda Singh, and Sanela Bilic. 2025. "T-Cell Engagers in Acute Myeloid Leukemia: Molecular Targets, Structure, and Therapeutic Challenges" Cancers 17, no. 19: 3246. https://doi.org/10.3390/cancers17193246
APA StyleDaws, H., Gallinero, K., Singh, A., & Bilic, S. (2025). T-Cell Engagers in Acute Myeloid Leukemia: Molecular Targets, Structure, and Therapeutic Challenges. Cancers, 17(19), 3246. https://doi.org/10.3390/cancers17193246