Therapeutic Alliances for Optimizing the Management of Patients with Prostate Cancer: SOGUG Multidisciplinary Expert Panel Recommendations
Simple Summary
Abstract
1. Introduction
2. Therapeutic Alliances for Optimizing Treatment of Localized Disease
2.1. Overview of the Current Situation
2.1.1. Low-Risk PCa
2.1.2. Favorable Intermediate-Risk PCa
2.1.3. Unfavorable Intermediate-Risk PCa
2.2. Challenges
- Standardize the definitions of very-low- and low-risk localized PCa groups.
- Standardize the strategy for the frequency of MRI and biopsy.
- Monitor the application of active surveillance protocols in real-world practice, ensuring patients’ adherence.
- Gather data from a watchful waiting approach in large series of elderly patients.
- Select the best candidates for focal therapy and the feasibility of radical surgery as rescue therapy for focal ablation.
2.3. Recommendations
- Implementation of strategic alliances with other institutions for improving adherence to active surveillance protocols in low-risk groups.
- International guidelines discourage active surveillance in patients with IDC and large cribriform growth patterns, reinforcing their role as exclusion criteria in conservative management strategies.
- Explore genetic testing for improving the selection of patients for focal therapy.
- In the unfavorable intermediate-risk category, it is important to define what is a “sufficient” lymph node dissection and to incorporate new imaging techniques for focal radiotherapy boost.
- Evaluation of the sum of ADT and radiotherapy in the real-world setting.
- Selection of candidates to ablation therapies should be based on findings of advanced imaging studies and genetic testing.
3. Therapeutic Alliances for Optimizing Treatment of Locally Advanced Disease
3.1. Overview of the Current Situation
3.2. Challenges
- Evaluation of the contribution of PSMA PET/CT in staging of locally advanced PCa, particularly in patients with M0 on conventional imaging studies and PSMA PET/CT-positive lesions.
- To assess the real risk of metastatic disease to prevent the risk of undertreatment or overtreatment.
- Adequate surgical planning is crucial to avoid residual disease in patients with locally advanced PCa.
- To define postsurgical criteria for the use of neoadjuvant radiotherapy vs. early rescue.
- To establish the best scheme of radiotherapy plus ADT in the individual patient and neoadjuvant strategies (ADT, second-generation antiandrogens).
- To assess the advantages of PSMA-guided surgery, robotic surgery, and preoperative and postoperative PSMA.
3.3. Recommendations
- External beam radiation therapy (EBRT) or EBRT plus brachytherapy boost and ADT for 2–3 years is the recommended radiotherapy scheme.
- PSMA PET/CT is recommended in high- and very-high-risk PCa and should not be used in the intermediate-risk group.
- In the presence of PSMA PET/CT-positive lesions in M0 staging on conventional imaging techniques, therapeutic decisions should be carefully evaluated due to insufficient evidence regarding the gold standard in this setting.
- Surgical treatment should be indicated in patients with >10 years of life expectancy and in the framework of multimodal therapy.
- Abiraterone–prednisone added to 2-year ADT improves outcomes in cN1 patients treated with radiotherapy as well as in cN0 patients with PSA > 40 ng/mL, Gleason score 8–10, and T3/4 (SAMPEDE trial criteria).
4. Therapeutic Alliances for Optimizing Treatment of Biochemical Recurrence
4.1. Overview of the Current Situation
4.2. Challenges
- Improvement of local control of the disease as much as possible to prevent local failure.
- Definition of clear criteria for defining BCR based on the PSA level combined with the ISUP grade and doubling time of the PSA level.
- Selection of an adequate initial treatment (local, systemic, or both).
- Implementation of PSMA-PET imaging in patients with BCR, especially at low PSA levels for detecting pelvic nodal and distant metastases.
- Application of genomic-based risk tools to identify patients at greatest risk of treatment failure who might benefit from earlier intervention.
4.3. Recommendations
- Importance of maximizing the chances of a cure by intensification of treatment before failure.
- Investigation of the effects of changes of treatment based on next-generation imaging findings.
- Genomic classifiers could make it easier to choose when and how treatment intensification is required.
- The implementation of a multidisciplinary team approach and treatment individualization in clinical practice is essential to improve oncological outcomes of men with BCR of PCa.
5. Therapeutic Alliances for Optimizing Treatment in the Sequence of Advanced Disease
5.1. Overview of the Current Situation
5.2. Challenges
- Assessment of BRCA somatic and germline mutations in patients with mCRPC to have available prognostic and predictive information as well as familial cancer risk.
- To determine the optimal agent combination or sequence in the individual patient based on a multidisciplinary team consensus.
- Definition of the most adequate strategy for non-HRR mCRPC patients in the first-line setting (ARSi monotherapy or combination).
- Integration of new-generation imaging techniques into clinical practice for diagnosis, patient selection, treatment, and disease monitoring.
5.3. Recommendations
- Patients with advanced PCa require an integral approach established by a multidisciplinary team from the beginning.
- It is essential to select the most effective first-line treatment because subsequent strategies depend on this choice.
- The continuous emergence of therapeutic advances that impact survival adds greater complexity to the design of an overall strategy for the care of PCa patients with advanced disease.
- Access to therapeutic innovation must be considered in all scenarios.
6. Inter-Center and/or Inter-Specialty Therapeutic Alliances for Optimizing Treatment in Localized and Disseminated Disease
6.1. Overview of the Current Situation
6.2. Challenges
- To understand and internalize the concept of a comprehensive multidisciplinary approach.
- To identify and solve the barriers to multidisciplinary work, such as the lack of physical infrastructure and administrative support, and the absence of consensus protocols to avoid repeated discussions about differences in therapeutic recommendations, and to find solutions for conflicts of competencies and duplications.
- To improve the collaboration of medical management and hospital administration to promote the creation of MDT infrastructures at various levels of care.
- Creation of supra-structures favoring inter-hospital collaborative networks, development and implementation of novel special techniques, and participation in multicenter clinical trials.
6.3. Recommendations
- Establishment of dynamics of respect and interdisciplinary recognition.
- Ensuring a multidisciplinary approach in proposals and discussions, and specialization in the execution of decisions.
- Development and implementation of clear norms regarding organization, hierarchies, and responsibilities.
- Protocols should be collaborative, and each decision should place greater value on the opinion of the specialist most knowledgeable in that specific aspect of the MDT. Periodic updating of protocols is indispensable.
- Expand the scope of supra-structures to include inter-center and cooperative groups.
7. Therapeutic Alliances for Optimizing Geriatric Assessment in Therapeutic Decision-Making
7.1. Overview of the Current Situation
7.2. Challenges
- Improvement of training in oncogeriatrics and inclusion of geriatricians in multidisciplinary teams.
- Increase representation of older populations in clinical trials.
- Change of healthcare systems focused on acute diseases and sometimes inadequate for the care of patients with chronic conditions.
- Adequate assessment of comorbidities that may interfere with the diagnostic and therapeutic approach of PCa.
- Proper evaluation of polypharmacy and risk of drug interactions.
- Consideration of social support and special needs of the oldest old.
7.3. Recommendations
- Implementation of geriatric assessment tools (e.g., G8 and 6-min walk test) to reduce the screening time.
- Implementation of functional multidisciplinary units to prevent duplicate diagnostic studies.
- Use information and communication technology (ICT) to facilitate the monitoring and management of older peoples’ disease.
- Move toward patient-centered care.
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bergengren, O.; Pekala, K.R.; Matsoukas, K.; Fainberg, J.; Mungovan, S.F.; Bratt, O.; Bray, F.; Brawley, O.; Luckenbaugh, A.N.; Mucci, L.; et al. 2022 Update on prostate cancer epidemiology and risk factors—A systematic review. Eur. Urol. 2023, 84, 191–206. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef]
- Van Poppel, H.; Hogenhout, R.; Albers, P.; van den Bergh, R.C.N.; Barentsz, J.O.; Roobol, M.J. Early detection of prostate cancer in 2020 and beyond: Facts and recommendations for the European Union and the European Commission. Eur. Urol. 2021, 79, 327–329. [Google Scholar] [CrossRef]
- Hamdy, F.C.; Donovan, J.L.; Lane, J.A.; Metcalfe, C.; Davis, M.; Turner, E.L.; Martin, R.M.; Young, G.J.; Walsh, E.I.; Bryant, R.J.; et al. Fifteen-year outcomes after monitoring, surgery, or radiotherapy for prostate cancer. N. Engl. J. Med. 2023, 388, 1547–1558. [Google Scholar] [CrossRef] [PubMed]
- Ziglioli, F.; Granelli, G.; Cavalieri, D.; Bocchialini, T.; Maestroni, U. What chance do we have to decrease prostate cancer overdiagnosis and overtreatment? A narrative review. Acta Biomed. 2019, 90, 423–426. [Google Scholar] [CrossRef]
- Cornford, P.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Brunckhorst, O.; Darraugh, J.; Eberli, D.; De Meerleer, G.; De Santis, M.; Farolfi, A.; et al. EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer-2024 Update. Part I: Screening, diagnosis, and local treatment with curative intent. Eur. Urol. 2024, 86, 148–163. [Google Scholar] [CrossRef]
- Fizazi, K.; Gillessen, S.; ESMO Guidelines Committee. Electronic address: clinicalguidelines@esmo.org. Updated treatment recommendations for prostate cancer from the ESMO Clinical Practice Guideline considering treatment intensification and use of novel systemic agents. Ann. Oncol. 2023, 34, 557–563. [Google Scholar] [CrossRef]
- Tilki, D.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Brunckhorst, O.; Darraugh, J.; Eberli, D.; De Meerleer, G.; De Santis, M.; Farolfi, A.; et al. EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer. Part II—2024 Update: Treatment of relapsing and metastatic prostate cancer. Eur. Urol. 2024, 86, 164–182. [Google Scholar] [CrossRef]
- Schaeffer, E.M.; Srinivas, S.; Adra, N.; Bitting, R.; Chapin, B.; Cheng, H.H.; D’Amico, A.V.; Desai, N.; Dorff, T.; Eastham, J.A.; et al. NCCN Guidelines® Insights. Prostate Cancer, Version 3.2024. JNCCN J. Natl. Compr. Cancer Netw. 2024, 22, 140–150. [Google Scholar] [CrossRef]
- Mesko, S.; Marks, L.; Ragab, O.; Patel, S.; Margolis, D.A.; Demanes, D.J.; Kamrava, M. Targeted prostate biopsy Gleason score heterogeneity and implications for risk stratification. Am. J. Clin. Oncol. 2018, 41, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Tosoian, J.J.; Antonarakis, E.S. Molecular heterogeneity of localized prostate cancer: More different than alike. Transl. Cancer Res. 2017, 6 (Suppl. S1), S47–S50. [Google Scholar] [CrossRef] [PubMed]
- Schiffmann, J.; Wenzel, P.; Salomon, G.; Budäus, L.; Schlomm, T.; Minner, S.; Wittmer, C.; Kraft, S.; Krech, T.; Steurer, S.; et al. Heterogeneity in D’Amico classification-based low-risk prostate cancer: Differences in upgrading and upstaging according to active surveillance eligibility. Urol. Oncol. 2015, 33, 329.e13–329.e19. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Ji, Z.; Yang, P.; Tian, Y. Old men with prostate cancer have higher risk of Gleason score upgrading and pathological upstaging after initial diagnosis: A systematic review and meta-analysis. World J. Surg. Oncol. 2021, 19, 18. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Ji, Z.; Yang, P.; Tian, Y. Men with high prostate specific antigen have higher risk of gleason upgrading after prostatectomy: A systematic review and meta-analysis. Urol. J. 2020, 18, 477–484. [Google Scholar] [CrossRef]
- Osiecki, R.; Kozikowski, M.; Sarecka-Hujar, B.; Pyzlak, M.; Dobruch, J. Prostate cancer morphologies: Cribriform pattern and intraductal carcinoma relations to adverse pathological and clinical outcomes-systematic review and meta-analysis. Cancers 2023, 15, 1372. [Google Scholar] [CrossRef]
- Montironi, R.; Zhou, M.; Magi-Galluzzi, C.; Epstein, J.I. Features and prognostic significance of intraductal carcinoma of the prostate. Eur. Urol. Oncol. 2018, 1, 21–28. [Google Scholar] [CrossRef]
- Trudel, D.; Downes, M.R.; Sykes, J.; Kron, K.J.; Trachtenberg, J.; van der Kwast, T.H. Prognostic impact of intraductal carcinoma and large cribriform carcinoma architecture after prostatectomy in a contemporary cohort. Eur. J. Cancer 2014, 50, 1610–1616. [Google Scholar] [CrossRef] [PubMed]
- Hollemans, E.; Verhoef, E.I.; Bangma, C.H.; Rietbergen, J.; Helleman, J.; Roobol, M.J.; van Leenders, G.J.L.H. Large cribriform growth pattern identifies ISUP grade 2 prostate cancer at high risk for recurrence and metastasis. Mod. Pathol. 2019, 32, 139–146. [Google Scholar] [CrossRef]
- Gaudreau, P.O.; Stagg, J.; Soulières, D.; Saad, F. The present and future of biomarkers in prostate cancer: Proteomics, genomics, and immunology advancements. Biomark. Cancer 2016, 8 (Suppl. S2), 15–33. [Google Scholar] [CrossRef] [PubMed]
- Alarcón-Zendejas, A.P.; Scavuzzo, A.; Jiménez-Ríos, M.A.; Álvarez-Gómez, R.M.; Montiel-Manríquez, R.; Castro-Hernández, C.; Jiménez-Dávila, M.A.; Pérez-Montiel, D.; González-Barrios, R.; Jiménez-Trejo, F.; et al. The promising role of new molecular biomarkers in prostate cancer: From coding and non-coding genes to artificial intelligence approaches. Prostate Cancer Prostatic Dis. 2022, 25, 431–443. [Google Scholar] [CrossRef]
- McGrowder, D.; Anderson-Jackson, L.; Dilworth, L.; Mohansingh, S.; Anderson Cross, S.; Bryan, S.; Miller, F.; Wilson-Clarke, C.; Nwokocha, C.; Alexander-Lindo, R.; et al. The clinical usefulness of prostate cancer biomarkers: Current and future directions. In Cancer Bioinformatics; Kais, G., Hamdi, Y., Eds.; Biomedical Engineering; InTechOpen Limited: London, UK, 2022. [Google Scholar] [CrossRef]
- Shah, R.B.; Paner, G.P.; Cheng, L.; De Marzo, A.M.; Magi-Galluzzi, C.; Varma, M.; Zhou, M.; Amin, A.; Amin, M.B.; Aron, M.; et al. Genitourinary Pathology Society and International Society of Urological Pathology white paper on defining indolent prostate cancer: Call for a multidisciplinary approach. Eur. Urol. 2025, 88, 8–10. [Google Scholar] [CrossRef]
- Kang, S.K.; Mali, R.D.; Prabhu, V.; Ferket, B.S.; Loeb, S. Active surveillance strategies for low-grade prostate cancer: Comparative benefits and cost-effectiveness. Radiology 2021, 300, 594–604. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.; Chen, K.; Grummet, J.; Yaxley, J.; Scheltema, M.J.; Stricker, P.; Tay, K.J.; Lawrentschuk, N. Guidelines of guidelines: Focal therapy for prostate cancer, is it time for consensus? BJU Int. 2023, 131, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Grammatikopoulou, M.G.; Gkiouras, K.; Papageorgiou, S.Τ.; Myrogiannis, I.; Mykoniatis, I.; Papamitsou, T.; Bogdanos, D.P.; Goulis, D.G. Dietary factors and supplements influencing prostate specific-antigen (PSA) concentrations in men with prostate cancer and increased cancer risk: An evidence analysis review based on randomized controlled trials. Nutrients 2020, 12, 2985. [Google Scholar] [CrossRef]
- Brassetti, A.; Cacciatore, L.; Bove, A.M.; Anceschi, U.; Proietti, F.; Misuraca, L.; Tuderti, G.; Flammia, R.S.; Mastroianni, R.; Ferriero, M.C.; et al. The impact of physical activity on the outcomes of active surveillance in prostate cancer patients: A scoping review. Cancers 2024, 16, 630. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Yang, Y.; Mortazavi, A.; Zhang, J. Emerging immunotherapy approaches for treating prostate cancer. Int. J. Mol. Sci. 2023, 24, 14347. [Google Scholar] [CrossRef]
- Greene, D.E.; Mayadev, J.S.; Valicenti, R.K. Radiation treatment for patients with intermediate-risk prostate cancer. Ther. Adv. Urol. 2012, 4, 113–124. [Google Scholar] [CrossRef]
- Deivasigamani, S.; Kotamarti, S.; Rastinehad, A.R.; Salas, R.S.; de la Rosette, J.J.M.C.H.; Lepor, H.; Pinto, P.; Ahmed, H.U.; Gill, I.; Klotz, L.; et al. Primary whole-gland ablation for the treatment of clinically localized prostate cancer: A Focal Therapy Society Best Practice Statement. Eur. Urol. 2023, 84, 547–560. [Google Scholar] [CrossRef]
- Serrano, N.A.; Anscher, M.S. Favorable vs unfavorable intermediate-risk prostate cancer: A review of the new classification system and its impact on treatment recommendations. Oncology (Williston Park) 2016, 30, 229–236. [Google Scholar]
- Willen, B.D.; Salari, K.; Zureick, A.H.; Lang, D.; Ye, H.; Marvin, K.; Nandalur, S.R.; Krauss, D.J. High-dose-rate brachytherapy as monotherapy versus as boost in unfavorable intermediate-risk localized prostate cancer: A matched-pair analysis. Brachytherapy 2023, 22, 571–579. [Google Scholar] [CrossRef]
- Pellegrino, A.; Cirulli, G.O.; Mazzone, E.; Barletta, F.; Scuderi, S.; de Angelis, M.; Rosiello, G.; Gandaglia, G.; Montorsi, F.; Briganti, A.; et al. Focal therapy for prostate cancer: What is really needed to move from investigational to valid therapeutic alternative?—A narrative review. Ann. Transl. Med. 2022, 10, 755. [Google Scholar] [CrossRef] [PubMed]
- EAU Guidelines Office. Arnhem: The Netherlands. Available online: http://uroweb.org/guidelines/compilations-of-all-guidelines/ (accessed on 11 July 2024).
- Valle, L.F.; Jiang, T.; Weiner, A.B.; Reiter, R.E.; Rettig, M.B.; Shen, J.; Chang, A.J.; Nickols, N.G.; Steinberg, M.L.; Kishan, A.U. Multimodality therapies for localized prostate cancer. Curr. Oncol. Rep. 2023, 25, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Aparicio, M.A.; López-Campos, F.; Lozano, A.J.; Maldonado, X.; Caballero, B.; Zafra, J.; Suarez, V.; Moreno, E.; Arcangeli, S.; Scorsetti, M.; et al. Novel approaches in the systemic management of high-risk prostate cancer. Clin. Genitourin. Cancer 2023, 21, e485–e494. [Google Scholar] [CrossRef]
- Ma, T.M.; Sun, Y.; Malone, S.; Roach, M., III; Dearnaley, D.; Pisansky, T.M.; Feng, F.Y.; Sandler, H.M.; Efstathiou, J.A.; Syndikus, I.; et al. Sequencing of androgen-deprivation therapy of short duration with radiotherapy for nonmetastatic prostate cancer (SANDSTORM): A pooled analysis of 12 randomized trials. J. Clin. Oncol. 2023, 41, 881–892. [Google Scholar] [CrossRef]
- Attard, G.; Murphy, L.; Clarke, N.W.; Cross, W.; Jones, R.J.; Parker, C.C.; Gillessen, S.; Cook, A.; Brawley, C.; Amos, C.L.; et al. Abiraterone acetate and prednisolone with or without enzalutamide for high-risk non-metastatic prostate cancer: A meta-analysis of primary results from two randomised controlled phase 3 trials of the STAMPEDE platform protocol. Lancet 2022, 399, 447–460. [Google Scholar] [CrossRef]
- Nguyen, D.P.; Huber, P.M.; Metzger, T.A.; Genitsch, V.; Schudel, H.H.; Thalmann, G.N. A specific mapping study using fluorescence sentinel lymph node detection in patients with intermediate- and high-risk prostate cancer undergoing extended pelvic lymph node dissection. Eur. Urol. 2016, 70, 734–737. [Google Scholar] [CrossRef] [PubMed]
- Jeet, V.; Parkinson, B.; Song, R.; Sharma, R.; Hoyle, M. Histopathologically validated diagnostic accuracy of PSMA-PET/CT in the primary and secondary staging of prostate cancer and the impact of PSMA-PET/CT on clinical management: A systematic review and meta-analysis. Semin. Nucl. Med. 2023, 53, 706–718. [Google Scholar] [CrossRef]
- Xie, W.; Regan, M.M.; Buyse, M.; Halabi, S.; Kantoff, P.W.; Sartor, O.; Soule, H.; Clarke, N.W.; Collette, L.; Dignam, J.J.; et al. Metastasis-free survival is a strong surrogate of overall survival in localized prostate cancer. J. Clin. Oncol. 2017, 35, 3097–3104. [Google Scholar] [CrossRef]
- Ma, T.M.; Chu, F.I.; Sandler, H.; Feng, F.Y.; Efstathiou, J.A.; Jones, C.U.; Roach, M., 3rd; Rosenthal, S.A.; Pisansky, T.; Michalski, J.M.; et al. Local failure events in prostate cancer treated with radiotherapy: A pooled analysis of 18 randomized trials from the Meta-analysis of Randomized Trials in Cancer of the Prostate Consortium (LEVIATHAN). Eur. Urol. 2022, 82, 487–498. [Google Scholar] [CrossRef]
- Van den Broeck, T.; van den Bergh, R.C.N.; Arfi, N.; Gross, T.; Moris, L.; Briers, E.; Cumberbatch, M.; De Santis, M.; Tilki, D.; Fanti, S.; et al. Prognostic value of biochemical recurrence following treatment with curative intent for prostate cancer: A systematic review. Eur. Urol. 2019, 75, 967–987. [Google Scholar] [CrossRef]
- Tilki, D.; Preisser, F.; Graefen, M.; Huland, H.; Pompe, R.S. External validation of the European Association of Urology biochemical recurrence risk groups to predict metastasis and mortality after radical prostatectomy in a European Cohort. Eur. Urol. 2019, 75, 896–900. [Google Scholar] [CrossRef]
- Burdett, S.; Fisher, D.; Parker, C.C.; Sydes, M.R.; Pommier, P.; Sargos, P.; Spratt, D.E.; Kishan, A.U.; Brihoum, M.; Catton, C.; et al. LBA64-Duration of androgen suppression with post-operative radiotherapy (DADSPORT): A collaborative meta-analysis of aggregate data. Ann. Oncol. 2022, 33 (Suppl. S7), S1428–S1429. [Google Scholar] [CrossRef]
- Boreta, L.; Gadzinski, A.J.; Wu, S.Y.; Xu, M.; Greene, K.; Quanstrom, K.; Nguyen, H.G.; Carroll, P.R.; Hope, T.A.; Feng, F.Y. Location of recurrence by gallium-68 PSMA-11 PET scan in prostate cancer patients eligible for salvage radiotherapy. Urology 2019, 129, 165–171. [Google Scholar] [CrossRef]
- Hofman, M.S.; Lawrentschuk, N.; Francis, R.J.; Tang, C.; Vela, I.; Thomas, P.; Rutherford, N.; Martin, J.M.; Frydenberg, M.; Shakher, R.; et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): A prospective, randomised, multicentre study. Lancet 2020, 395, 1208–1216. [Google Scholar] [CrossRef] [PubMed]
- Emmett, L.; Tang, R.; Nandurkar, R.; Hruby, G.; Roach, P.; Watts, J.A.; Cusick, T.; Kneebone, A.; Ho, B.; Chan, L.; et al. 3-Year freedom from progression after 68ga-psma pet/ct-triaged management in men with biochemical recurrence after radical prostatectomy: Results of a prospective multicenter trial. J. Nucl. Med. 2020, 61, 866–872. [Google Scholar] [CrossRef] [PubMed]
- Shore, N.D.; de Almeida Luz, M.; De Giorgi, U.; Gleave, M.; Gotto, G.; Haas, G.P.; Ramirez-Backhaus, M.; Rannikko, A.; Tarazi, J.; Sridharan, S.; et al. LAB02-09 EMBARK: A Phase 3 randomized study of enzalutamide or placebo plus leuprolide acetate and enzalutamide monotherapy in high-risk biochemically recurrent prostate cancer. J. Urol. 2023, 209 (Suppl. S4), e1190. [Google Scholar] [CrossRef]
- AUA 2023: EMBARK: A Phase 3 Randomized Study of Enzalutamide or Placebo Plus Leuprolide Acetate and Enzalutamide Monotherapy in High-Risk Biochemically Recurrent Prostate Cancer. Available online: https://www.urotoday.com/conference-highlights/aua-2023/aua-2023-prostate-cancer/144012-aua-2023-embark-a-phase-3-randomized-study-of-enzalutamide-or-placebo-plus-leuprolide-acetate-and-enzalutamide-monotherapy-in-high-risk-biochemically-recurrent-prostate-cancer.html (accessed on 12 July 2024).
- Dalela, D.; Löppenberg, B.; Sood, A.; Sammon, J.; Abdollah, F. Contemporary role of the Decipher® test in prostate cancer management: Current practice and future perspectives. Rev. Urol. 2016, 18, 1–9. [Google Scholar] [PubMed]
- Feng, F.Y.; Huang, H.C.; Spratt, D.E.; Zhao, S.G.; Sandler, H.M.; Simko, J.P.; Davicioni, E.; Nguyen, P.L.; Pollack, A.; Efstathiou, J.A.; et al. Validation of a 22-gene genomic classifier in patients with recurrent prostate cancer: An ancillary study of the NRG/RTOG 9601 randomized clinical trial. JAMA Oncol. 2021, 7, 544–552. [Google Scholar] [CrossRef]
- Swanson, G.P.; Lenz, L.; Stone, S.; Cohen, T. Cell-cycle risk score more accurately determines the risk for metastases and death in prostatectomy patients compared with clinical features alone. Prostate 2021, 81, 261–267. [Google Scholar] [CrossRef]
- American Urological Association (AUA). Avanced Prostate Cancer: AUA/SUO Guideline. Available online: https://www.auanet.org/guidelines-and-quality/guidelines/advanced-prostate-cancer (accessed on 12 July 2024).
- Tannock, I.F.; de Wit, R.; Berry, W.R.; Horti, J.; Pluzanska, A.; Chi, K.N.; Oudard, S.; Théodore, C.; James, N.D.; Turesson, I.; et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med. 2004, 351, 1502–1512. [Google Scholar] [CrossRef]
- Ryan, C.J.; Smith, M.R.; de Bono, J.S.; Molina, A.; Logothetis, C.J.; de Souza, P.; Fizazi, K.; Mainwaring, P.; Piulats, J.M.; Ng, S.; et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N. Engl. J. Med. 2013, 368, 138–148. [Google Scholar] [CrossRef]
- Beer, T.M.; Armstrong, A.J.; Rathkopf, D.E.; Loriot, Y.; Sternberg, C.N.; Higano, C.S.; Iversen, P.; Bhattacharya, S.; Carles, J.; Chowdhury, S.; et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N. Engl. J. Med. 2014, 371, 424–433. [Google Scholar] [CrossRef] [PubMed]
- de Bono, J.S.; Oudard, S.; Ozguroglu, M.; Hansen, S.; Machiels, J.P.; Kocak, I.; Gravis, G.; Bodrogi, I.; Mackenzie, M.J.; Shen, L.; et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: A randomised open-label trial. Lancet 2010, 376, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- de Bono, J.S.; Logothetis, C.J.; Molina, A.; Fizazi, K.; North, S.; Chu, L.; Chi, K.N.; Jones, R.J.; Goodman, O.B., Jr.; Saad, F.; et al. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 2011, 364, 1995–2005. [Google Scholar] [CrossRef]
- Scher, H.I.; Fizazi, K.; Saad, F.; Taplin, M.E.; Sternberg, C.N.; Miller, K.; de Wit, R.; Mulders, P.; Chi, K.N.; Shore, N.D.; et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 2012, 367, 1187–1197. [Google Scholar] [CrossRef] [PubMed]
- Parker, C.; Nilsson, S.; Heinrich, D.; Helle, S.I.; O’Sullivan, J.M.; Fosså, S.D.; Chodacki, A.; Wiechno, P.; Logue, J.; Seke, M.; et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N. Engl. J. Med. 2013, 369, 213–223. [Google Scholar] [CrossRef]
- Attard, G.; Borre, M.; Gurney, H.; Loriot, Y.; Andresen-Daniil, C.; Kalleda, R.; Pham, T.; Taplin, M.E. Abiraterone alone or in combination with enzalutamide in metastatic castration-resistant prostate cancer with rising prostate-specific antigen during enzalutamide treatment. J. Clin. Oncol. 2018, 36, 2639–2646. [Google Scholar] [CrossRef]
- de Wit, R.; de Bono, J.; Sternberg, C.N.; Fizazi, K.; Tombal, B.; Wülfing, C.; Kramer, G.; Eymard, J.C.; Bamias, A.; Carles, J.; et al. Cabazitaxel versus abiraterone or enzalutamide in metastatic prostate cancer. N. Engl. J. Med. 2019, 381, 2506–2518. [Google Scholar] [CrossRef]
- Hussain, M.; Mateo, J.; Fizazi, K.; Saad, F.; Shore, N.; Sandhu, S.; Chi, K.N.; Sartor, O.; Agarwal, N.; Olmos, D.; et al. Survival with olaparib in metastatic castration-resistant prostate cancer. N. Engl. J. Med. 2020, 383, 2345–2357. [Google Scholar] [CrossRef]
- Fizazi, K.; Piulats, J.M.; Reaume, M.N.; Ostler, P.; McDermott, R.; Gingerich, J.R.; Pintus, E.; Sridhar, S.S.; Bambury, R.M.; Emmenegger, U.; et al. Rucaparib or physician’s choice in metastatic prostate cancer. N. Engl. J. Med. 2023, 388, 719–732. [Google Scholar] [CrossRef]
- Sartor, O.; de Bono, J.; Chi, K.N.; Fizazi, K.; Herrmann, K.; Rahbar, K.; Tagawa, S.T.; Nordquist, L.T.; Vaishampayan, N.; El-Haddad, G.; et al. Lutetium-177-PSMA-617 for metastatic castration-resistant prostate cancer. N. Engl. J. Med. 2021, 385, 1091–1103. [Google Scholar] [CrossRef]
- Hofman, M.S.; Emmett, L.; Sandhu, S.; Iravani, A.; Joshua, A.M.; Goh, J.C.; Pattison, D.A.; Tan, T.H.; Kirkwood, I.D.; Ng, S.; et al. [177Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): A randomised, open-label, phase 2 trial. Lancet 2021, 397, 797–804. [Google Scholar] [CrossRef]
- Smith, M.; Parker, C.; Saad, F.; Miller, K.; Tombal, B.; Ng, Q.S.; Boegemann, M.; Matveev, V.; Piulats, J.M.; Zucca, L.E.; et al. Addition of radium-223 to abiraterone acetate and prednisone or prednisolone in patients with castration-resistant prostate cancer and bone metastases (ERA 223): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019, 20, 408–419. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency (EMA). EMA Restricts Use of Prostate Cancer Medicine Xofigo. Available online: https://www.ema.europa.eu/en/medicines/human/referrals/xofigo (accessed on 12 July 2024).
- Giesen, A.; Baekelandt, L.; Devlies, W.; Devos, G.; Dumez, H.; Everaerts, W.; Claessens, F.; Joniau, S. Double trouble for prostate cancer: Synergistic action of AR blockade and PARPi in non-HRR mutated patients. Front. Oncol. 2023, 13, 1265812. [Google Scholar] [CrossRef]
- Gui, B.; Gui, F.; Takai, T.; Feng, C.; Bai, X.; Fazli, L.; Dong, X.; Liu, S.; Zhang, X.; Zhang, W.; et al. Selective targeting of PARP-2 inhibits androgen receptor signaling and prostate cancer growth through disruption of FOXA1 function. Proc. Natl. Acad. Sci. USA 2019, 116, 14573–14582. [Google Scholar] [CrossRef] [PubMed]
- Saad, F.; Clarke, N.W.; Oya, M.; Shore, N.; Procopio, G.; Guedes, J.D.; Arslan, C.; Mehra, N.; Parnis, F.; Brown, E.; et al. Olaparib plus abiraterone versus placebo plus abiraterone in metastatic castration-resistant prostate cancer (PROpel): Final prespecified overall survival results of a randomised, double-blind, phase 3 trial. Lancet Oncol. 2023, 24, 1094–1108. [Google Scholar] [CrossRef]
- Agarwal, N.; Azad, A.A.; Carles, J.; Fay, A.P.; Matsubara, N.; Heinrich, D.; Szczylik, C.; De Giorgi, U.; Young Joung, J.; Fong, P.C.C.; et al. Talazoparib plus enzalutamide in men with first-line metastatic castration-resistant prostate cancer (TALAPRO-2): A randomised, placebo-controlled, phase 3 trial. Lancet 2023, 402, 291–303. [Google Scholar] [CrossRef]
- Chi, K.N.; Rathkopf, D.; Smith, M.R.; Efstathiou, E.; Attard, G.; Olmos, D.; Lee, J.Y.; Small, E.J.; Pereira de Santana Gomes, A.J.; Roubaud, G.; et al. Niraparib and abiraterone acetate for metastatic castration-resistant prostate cancer. J. Clin. Oncol. 2023, 41, 3339–3351. [Google Scholar] [CrossRef] [PubMed]
- Fizazi, K.; Shore, N.; Tammela, T.L.; Ulys, A.; Vjaters, E.; Polyakov, S.; Jievaltas, M.; Luz, M.; Alekseev, B.; Kuss, I.; et al. Nonmetastatic, castration-resistant prostate cancer and survival with darolutamide. N. Engl. J. Med. 2020, 383, 1040–1049. [Google Scholar] [CrossRef]
- Carles, J.; Medina-Lopez, R.A.; Puente, J.; Gómez-Ferrer, Á.; Nebra, J.C.; Sáez Medina, M.I.; Ribal, M.J.; Antolín, A.R.; Álvarez-Ossorio, J.L.; Suárez Novo, J.F.; et al. Darolutamide in Spanish patients with nonmetastatic castration-resistant prostate cancer: ARAMIS subgroup analysis. Future Oncol. 2023, 19, 819–828. [Google Scholar] [CrossRef]
- Smith, M.R.; Saad, F.; Chowdhury, S.; Oudard, S.; Hadaschik, B.A.; Graff, J.N.; Olmos, D.; Mainwaring, P.N.; Lee, J.Y.; Uemura, H.; et al. Apalutamide and overall survival in prostate cancer. Eur. Urol. 2021, 79, 150–158. [Google Scholar] [CrossRef]
- Sternberg, C.N.; Fizazi, K.; Saad, F.; Shore, N.D.; De Giorgi, U.; Penson, D.F.; Ferreira, U.; Efstathiou, E.; Madziarska, K.; Kolinsky, M.P.; et al. Enzalutamide and survival in nonmetastatic, castration-resistant prostate cancer. N. Engl. J. Med. 2020, 382, 2197–2206. [Google Scholar] [CrossRef]
- Chen, M.Y.; Woodruff, M.A.; Dasgupta, P.; Rukin, N.J. Variability in accuracy of prostate cancer segmentation among radiologists, urologists, and scientists. Cancer Med. 2020, 9, 7172–7182. [Google Scholar] [CrossRef]
- Smith, M.R.; Hussain, M.; Saad, F.; Fizazi, K.; Sternberg, C.N.; Crawford, E.D.; Kopyltsov, E.; Park, C.H.; Alekseev, B.; Montesa-Pino, Á.; et al. Darolutamide and survival in metastatic, hormone-sensitive prostate cancer. N. Engl. J. Med. 2022, 386, 1132–1142. [Google Scholar] [CrossRef] [PubMed]
- Bossi, A.; Foulon, S.; Maldonado, X.; Sargos, P.; McDermott, R.S.; Flechon, A.; Tombal, B.F.; Supiot, S.; Berthold, D.R.; Rochin, P.; et al. Prostate irradiation in men with de novo, low-volume, metastatic, castration-sensitive prostate cancer (mCSPC): Results of PEACE-1, a phase 3 randomized trial with a 2x2 design. Abstract LBA5000. J. Clin. Oncol. 2023, 41, 17. [Google Scholar] [CrossRef]
- Flach, R.N.; Willemse, P.M.; Suelmann, B.B.M.; Deckers, I.A.G.; Jonges, T.N.; van Dooijeweert, C.; van Diest, P.J.; Meijer, R.P. Significant inter- and intralaboratory variation in gleason grading of prostate cancer: A nationwide study of 35,258 patients in The Netherlands. Cancers 2021, 13, 5378. [Google Scholar] [CrossRef] [PubMed]
- Westphalen, A.C.; McCulloch, C.E.; Anaokar, J.M.; Arora, S.; Barashi, N.S.; Barentsz, J.O.; Bathala, T.K.; Bittencourt, L.K.; Booker, M.T.; Braxton, V.G.; et al. Variability of the positive predictive value of PI-RADS for prostate MRI across 26 centers: Experience of the Society of Abdominal Radiology Prostate Cancer Disease-focused Panel. Radiology 2020, 296, 76–84. [Google Scholar] [CrossRef]
- Bhattacharya, I.; Khandwala, Y.S.; Vesal, S.; Shao, W.; Yang, Q.; Soerensen, S.J.C.; Fan, R.E.; Ghanouni, P.; Kunder, C.A.; Brooks, J.D.; et al. A review of artificial intelligence in prostate cancer detection on imaging. Ther. Adv. Urol. 2022, 14, 17562872221128791. [Google Scholar] [CrossRef]
- Herrel, L.A.; Kaufman, S.R.; Yan, P.; Miller, D.C.; Schroeck, F.R.; Skolarus, T.A.; Shahinian, V.B.; Hollenbeck, B.K. Health care integration and quality among men with prostate cancer. J. Urol. 2017, 197, 55–60. [Google Scholar] [CrossRef]
- Bekelman, J.E.; Suneja, G.; Guzzo, T.; Pollack, C.E.; Armstrong, K.; Epstein, A.J. Effect of practice integration between urologists and radiation oncologists on prostate cancer treatment patterns. J. Urol. 2013, 190, 97–101. [Google Scholar] [CrossRef]
- Kowalski, C.; Ferencz, J.; Albers, P.; Fichtner, J.; Wiegel, T.; Feick, G.; Wesselmann, S. Quality assessment in prostate cancer centers certified by the German Cancer Society. World J. Urol. 2016, 34, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Wirth, M.; Fossati, N.; Albers, P.; Bangma, C.; Brausi, M.; Comperat, E.; Faithfull, S.; Gillessen, S.; Jereczek-Fossa, B.A.; Mastris, K.; et al. The European Prostate Cancer Centres of Excellence: A novel proposal from the European Association of Urology Prostate Cancer Centre Consensus Meeting. Eur. Urol. 2019, 76, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Brausi, M.; Hoskin, P.; Andritsch, E.; Banks, I.; Beishon, M.; Boyle, H.; Colecchia, M.; Delgado-Bolton, R.; Höckel, M.; Leonard, K.; et al. ECCO essential requirements for quality cancer care: Prostate cancer. Crit. Rev. Oncol. Hematol. 2020, 148, 102861. [Google Scholar] [CrossRef] [PubMed]
- United Nations Department of Economic Social Affairs Population Division. World Population Prospects 2024: Summary of Results, (UN DESA/POP/2024/TR/NO. 9). 2024. Available online: https://desapublications.un.org/publications/world-population-prospects-2024-summary-results (accessed on 14 July 2024).
- Romero-Ortuño, R.; Martínez-Velilla, N.; Sutton, R.; Ungar, A.; Fedorowski, A.; Galvin, R.; Theou, O.; Davies, A.; Reilly, R.B.; Claassen, J.; et al. Network physiology in aging and frailty: The grand challenge of physiological reserve in older adults. Front. Netw. Physiol. 2021, 1, 712430. [Google Scholar] [CrossRef]
- Droz, J.P.; Albrand, G.; Gillessen, S.; Hughes, S.; Mottet, N.; Oudard, S.; Payne, H.; Puts, M.; Zulian, G.; Balducci, L.; et al. Management of prostate cancer in elderly patients: Recommendations of a Task Force of the International Society of Geriatric Oncology. Eur. Urol. 2017, 72, 521–531. [Google Scholar] [CrossRef]
- van Walree, I.C.; Scheepers, E.; van Huis-Tanja, L.; Emmelot-Vonk, M.H.; Bellera, C.; Soubeyran, P.; Hamaker, M.E. A systematic review on the association of the G8 with geriatric assessment, prognosis and course of treatment in older patients with cancer. J. Geriatr. Oncol. 2019, 10, 847–858. [Google Scholar] [CrossRef]
- Graham, L.S.; Lin, J.K.; Lage, D.E.; Kessler, E.R.; Parikh, R.B.; Morgans, A.K. Management of prostate cancer in older adults. Am. Soc. Clin. Oncol. Educ. Book 2023, 43, e390396. [Google Scholar] [CrossRef]
Recommendations | Strength Rating |
---|---|
Radical prostatectomy | |
| Weak |
Extended pelvic lymph node dissection (ePLND) | |
| Strong |
Radiotherapy | |
| Strong |
| Weak |
| Strong |
| Strong |
| Strong |
Therapeutic options outside surgery or radiotherapy
| Strong |
Treatment [Reference] | Patients | Overall Survival, Months | |||
---|---|---|---|---|---|
Experimental Arm | Control Arm | Hazard Ratio (95% CI) | p-Value | ||
First line | |||||
Docetaxel vs. mitoxantrone [54] | 1006 | 19.2 | 13.6 | 0.79 (0.67–0.93) | 0.004 |
Abiraterone vs. placebo [55] | 1088 | 34.7 | 30.3 | 0.81 (0.70–0.93) | 0.003 |
Enzalutamide vs. placebo [56] | 1717 | 35.3 | 31.3 | 0.77 (0.67–0.88) | <0.001 |
Second line and successive | |||||
Cabazitaxel vs. mitoxantrone [57] | 755 | 15.1 | 12.7 | 0.70 (0.59–0.83) | <0.001 |
Abiraterone vs. placebo [58] | 1195 | 15.8 | 11.2 | 0.74 (0.64–0.86) | <0.001 |
Enzalutamide vs. placebo [59] | 1199 | 18.4 | 13.6 | 0.63 (0.53–0.75) | <0.001 |
Radium-223 vs. placebo [60] | 921 | 14.9 | 11.3 | 0.70 (0.58–0.83) | <0.001 |
Fields | Characteristics/Requirements |
---|---|
1. Clinical step |
|
| |
| |
| |
| |
2. Research step |
|
| |
| |
| |
3. Educational step |
|
4. Quality assurance |
|
|
|
|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-del-Alba, A.; Martínez Ballesteros, C.; Arranz, J.Á.; Gallardo, E.; Gironés Sarrió, R.; López Campos, F.; Muñoz-Rodríguez, J.; Méndez-Vidal, M.J.; Gómez de Iturriaga, A. Therapeutic Alliances for Optimizing the Management of Patients with Prostate Cancer: SOGUG Multidisciplinary Expert Panel Recommendations. Cancers 2025, 17, 3208. https://doi.org/10.3390/cancers17193208
González-del-Alba A, Martínez Ballesteros C, Arranz JÁ, Gallardo E, Gironés Sarrió R, López Campos F, Muñoz-Rodríguez J, Méndez-Vidal MJ, Gómez de Iturriaga A. Therapeutic Alliances for Optimizing the Management of Patients with Prostate Cancer: SOGUG Multidisciplinary Expert Panel Recommendations. Cancers. 2025; 17(19):3208. https://doi.org/10.3390/cancers17193208
Chicago/Turabian StyleGonzález-del-Alba, Aránzazu, Claudio Martínez Ballesteros, José Ángel Arranz, Enrique Gallardo, Regina Gironés Sarrió, Fernando López Campos, Jesús Muñoz-Rodríguez, María José Méndez-Vidal, and Alfonso Gómez de Iturriaga. 2025. "Therapeutic Alliances for Optimizing the Management of Patients with Prostate Cancer: SOGUG Multidisciplinary Expert Panel Recommendations" Cancers 17, no. 19: 3208. https://doi.org/10.3390/cancers17193208
APA StyleGonzález-del-Alba, A., Martínez Ballesteros, C., Arranz, J. Á., Gallardo, E., Gironés Sarrió, R., López Campos, F., Muñoz-Rodríguez, J., Méndez-Vidal, M. J., & Gómez de Iturriaga, A. (2025). Therapeutic Alliances for Optimizing the Management of Patients with Prostate Cancer: SOGUG Multidisciplinary Expert Panel Recommendations. Cancers, 17(19), 3208. https://doi.org/10.3390/cancers17193208