Perioperative Treatments in Pleural Mesothelioma: State of the Art and Future Directions
Simple Summary
Abstract
1. Introduction
2. Search Strategy
3. The Role of Radiotherapy
| Study Reference | Design | Radiation Dose | Intervention | Patients N° | Primary Endpoint | Secondary Endpoint |
|---|---|---|---|---|---|---|
| Neoadjuvant | ||||||
| SMART trial (2021) [32] | Single center, single arm phase II | 25 Gy/5 Fr + 5 Gy boost to high risk areas | Neoadjuvant ipsilateral hemithorax RT followed by EPP in resectable PM | 96 | 30-day G3-4 complication rate (presp. < 35%)—49% | 5-year local recurrence 20.1% [11.4–28.8]; 5-year distant recurrence 63.3% [52.3–74.4]; mOS 24.4 mo [18.5–31.1 mo]; mDFS 18.0 mo [12.6–21.7 mo] |
| Adjuvant | ||||||
| Trovo M. et al. (2021) [21] | Single center, randomized phase III | RHR Arm (50 Gy/25 Fr, GTV boost to 60 Gy); PR Arm (21 Gy/3 Fr. Or 20–30 Gy/5–10 Fr) | Radical hemithoracic RT vs. Palliative RT in non-metastatic PM treated with non-radical lung-sparing surgery and CT | 108 | mOS: 25.6 mo vs. 12.4 mo (HR 0.54, 0.31–0.95; p = 0.031) | mPFS: 9.8 mo vs. 5.4 mo [HR0.15; 0.09–0.27; p < 0.001]; median locoregional RFS: 10.1 mo vs. 5.6 mo [HR 0.14; 0.08–0.25, p < 0.001]; median distant RFS 12.8 mo vs. 5.5 mo [HR 0.99; 0.54–1.80, p = 0.969] |
| SAKK 17/04 (2015) [30] | Multicenter, randomized, phase II | Part 2–3 schedules: 45 Gy/25 Fr (boost 57.6 Gy); 46 Gy/23 Fr (boost 56 Gy); 45.5 Gy/26 Fr (boost 55.9 Gy) | Adjuvant high-dose RT vs. observation in patients who achieved macroscopic surgical resection after neoadjuvant CT. | Part 2–54 | Part 2—Locoregional RFS—9.4 mo [6.5–11.9] vs. 7.6 mo [4.5–10.7] | mRFS—7.6 mo [5.2–10.6] vs. 5.7 mo [3.5–8.8]; mOS—19.3 mo [11.5–21.8] vs. 20.8 mo [14.4–27.8]; feasibility: 83%; QoL (no differences) |
| IMPRINT (2016) [33] | Two-center phase II | 50.4 Gy/28 Fr | Adjuvant RT after neoadjuvant cisplatin-pemtrexed chemotherapy and P/D | 27 | Incidence of G3 RP: 7.4% (2/27) | mPFS: 12.4 mo; mOS: 23.7 mo |
4. The Role of Chemotherapy
4.1. Neoadjuvant Setting
4.1.1. Platinum Compound Plus Gemcitabine
4.1.2. Platinum Compound Plus Pemetrexed
4.2. Adjuvant Setting
4.3. Intraoperative Chemotherapy
5. The Role of Immunotherapy
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brims, F. Epidemiology and Clinical Aspects of Malignant Pleural Mesothelioma. Cancers 2021, 13, 4194. [Google Scholar] [CrossRef]
- Bovolato, P.; Casadio, C.; Billè, A.; Ardissone, F.; Santambrogio, L.; Ratto, G.B.; Garofalo, G.; Bedini, A.V.; Garassino, M.; Porcu, L.; et al. Does Surgery Improve Survival of Patients with Malignant Pleural Mesothelioma?: A Multicenter Retrospective Analysis of 1365 Consecutive Patients. J. Thorac. Oncol. 2014, 9, 390–396. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network (NCCN). Mesothelioma: Pleural, Version 02.2025; National Comprehensive Cancer Network (NCCN): Plymouth Meeting, PA, USA, 2025.
- Scherpereel, A.; Opitz, I.; Berghmans, T.; Psallidas, I.; Glatzer, M.; Rigau, D.; Astoul, P.; Bölükbas, S.; Boyd, J.; Coolen, J.; et al. ERS/ESTS/EACTS/ESTRO Guidelines for the Management of Malignant Pleural Mesothelioma. Eur. Respir. J. 2020, 55, 1900953. [Google Scholar] [CrossRef]
- Popat, S.; Baas, P.; Faivre-Finn, C.; Girard, N.; Nicholson, A.G.; Nowak, A.K.; Opitz, I.; Scherpereel, A.; Reck, M. Malignant Pleural Mesothelioma: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2022, 33, 129–142. [Google Scholar] [CrossRef]
- Treasure, T.; Lang-Lazdunski, L.; Waller, D.; Bliss, J.M.; Tan, C.; Entwisle, J.; Snee, M.; O’Brien, M.; Thomas, G.; Senan, S.; et al. Extra-Pleural Pneumonectomy versus No Extra-Pleural Pneumonectomy for Patients with Malignant Pleural Mesothelioma: Clinical Outcomes of the Mesothelioma and Radical Surgery (MARS) Randomised Feasibility Study. Lancet Oncol. 2011, 12, 763–772. [Google Scholar] [CrossRef]
- Lim, E.; Waller, D.; Lau, K.; Steele, J.; Pope, A.; Ali, C.; Bilancia, R.; Keni, M.; Popat, S.; O’Brien, M.; et al. MARS 2: Extended Pleurectomy Decortication and Chemotherapy for Pleural Mesothelioma; SSRN: Rochester, NY, USA, 2023. [Google Scholar]
- Raskin, J.; Surmont, V.; Cornelissen, R.; Baas, P.; Van Schil, P.E.Y.; Van Meerbeeck, J.P. A Randomized Phase II Study of Pleurectomy/Decortication Preceded or Followed by (Neo-)Adjuvant Chemotherapy in Patients with Early Stage Malignant Pleural Mesothelioma (EORTC 1205). Transl. Lung Cancer Res. 2018, 7, 593–598. [Google Scholar] [CrossRef]
- Lim, E.; Opitz, I.; Woodard, G.; Bueno, R.; De Perrot, M.; Flores, R.; Gill, R.; Jablons, D.; Pass, H. A Perspective on the MARS2 Trial. J. Thorac. Oncol. 2025, 20, 262–272. [Google Scholar] [CrossRef]
- Kanayama, M.; Mori, M.; Matsumiya, H.; Taira, A.; Shinohara, S.; Takenaka, M.; Kuroda, K.; Tanaka, F. Surgical Strategy for Malignant Pleural Mesothelioma: The Superiority of Pleurectomy/Decortication. Surg. Today 2022, 52, 1031–1038. [Google Scholar] [CrossRef]
- Lee, H.-S.; Jang, H.-J.; Ramineni, M.; Wang, D.Y.; Ramos, D.; Choi, J.M.; Splawn, T.; Espinoza, M.; Almarez, M.; Hosey, L.; et al. A Phase II Window of Opportunity Study of Neoadjuvant PD-L1 versus PD-L1 plus CTLA-4 Blockade for Patients with Malignant Pleural Mesothelioma. Clin. Cancer Res. 2023, 29, 548–559. [Google Scholar] [CrossRef]
- Nelson, D.B.; Rice, D.C.; Niu, J.; Atay, S.; Vaporciyan, A.A.; Antonoff, M.; Hofstetter, W.L.; Walsh, G.L.; Swisher, S.G.; Roth, J.A.; et al. Long-Term Survival Outcomes of Cancer-Directed Surgery for Malignant Pleural Mesothelioma: Propensity Score Matching Analysis. J. Clin. Oncol. 2017, 35, 3354–3362. [Google Scholar] [CrossRef]
- Spaggiari, L.; Marulli, G.; Bovolato, P.; Alloisio, M.; Pagan, V.; Oliaro, A.; Ratto, G.B.; Facciolo, F.; Sacco, R.; Brambilla, D.; et al. Extrapleural Pneumonectomy for Malignant Mesothelioma: An Italian Multicenter Retrospective Study. Ann. Thorac. Surg. 2014, 97, 1859–1865. [Google Scholar] [CrossRef]
- Zhou, N.; Rice, D.C.; Tsao, A.S.; Lee, P.P.; Haymaker, C.L.; Corsini, E.M.; Antonoff, M.B.; Hofstetter, W.L.; Rajaram, R.; Roth, J.A.; et al. Extrapleural Pneumonectomy Versus Pleurectomy/Decortication for Malignant Pleural Mesothelioma. Ann. Thorac. Surg. 2022, 113, 200–208. [Google Scholar] [CrossRef]
- Casiraghi, M.; Maisonneuve, P.; Brambilla, D.; Solli, P.; Galetta, D.; Petrella, F.; Piperno, G.; De Marinis, F.; Spaggiari, L. Induction Chemotherapy, Extrapleural Pneumonectomy and Adjuvant Radiotherapy for Malignant Pleural Mesothelioma. Eur. J. Cardiothorac. Surg. 2017, 52, 975–981. [Google Scholar] [CrossRef]
- Krug, L.M.; Pass, H.I.; Rusch, V.W.; Kindler, H.L.; Sugarbaker, D.J.; Rosenzweig, K.E.; Flores, R.; Friedberg, J.S.; Pisters, K.; Monberg, M.; et al. Multicenter Phase II Trial of Neoadjuvant Pemetrexed Plus Cisplatin Followed by Extrapleural Pneumonectomy and Radiation for Malignant Pleural Mesothelioma. J. Clin. Oncol. 2009, 27, 3007–3013. [Google Scholar] [CrossRef]
- Weder, W.; Stahel, R.A.; Bernhard, J.; Bodis, S.; Vogt, P.; Ballabeni, P.; Lardinois, D.; Betticher, D.; Schmid, R.; Stupp, R.; et al. Multicenter Trial of Neo-Adjuvant Chemotherapy Followed by Extrapleural Pneumonectomy in Malignant Pleural Mesothelioma. Ann. Oncol. 2007, 18, 1196–1202. [Google Scholar] [CrossRef]
- Marulli, G.; Faccioli, E.; Bellini, A.; Mammana, M.; Rea, F. Induction Chemotherapy vs Post-Operative Adjuvant Therapy for Malignant Pleural Mesothelioma. Expert Rev. Respir. Med. 2017, 11, 649–660. [Google Scholar] [CrossRef]
- Van Schil, P.E.; Baas, P.; Gaafar, R.; Maat, A.P.; Van De Pol, M.; Hasan, B.; Klomp, H.M.; Abdelrahman, A.M.; Welch, J.; Van Meerbeeck, J.P.; et al. Trimodality Therapy for Malignant Pleural Mesothelioma: Results from an EORTC Phase II Multicentre Trial. Eur. Respir. J. 2010, 36, 1362–1369. [Google Scholar] [CrossRef]
- Rea, F.; Favaretto, A.; Marulli, G.; Spaggiari, L.; De Pas, M.; Ceribelli, A.; Paccagnella, A.; Crivellari, A.; Russo, F.; Kazeem, G.; et al. Phase II Trial of Neoadjuvant Pemetrexed plus Cisplatin Followed by Surgery and Radiation in the Treatment of Pleural Mesothelioma. BMC Cancer 2013, 13, 22. [Google Scholar] [CrossRef]
- Trovo, M.; Relevant, A.; Polesel, J.; Muraro, E.; Barresi, L.; Drigo, A.; Baresic, T.; Bearz, A.; Fanetti, G.; Del Conte, A.; et al. Radical Hemithoracic Radiotherapy Versus Palliative Radiotherapy in Non-Metastatic Malignant Pleural Mesothelioma: Results from a Phase 3 Randomized Clinical Trial. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 1368–1376. [Google Scholar] [CrossRef]
- Thompson, A.B.; Quinn, T.J.; Siddiqui, Z.A.; Almahariq, M.F.; Grills, I.S.; Stevens, C.W. Addition of Radiotherapy to Surgery and Chemotherapy Improves Survival in Localized Malignant Pleural Mesothelioma: A Surveillance, Epidemiology, and End Results (SEER) Study. Lung Cancer 2020, 146, 120–126. [Google Scholar] [CrossRef]
- Lian, L.; Lei, H.; Cheng, S.; Zheng, R.; Yao, H.; Chen, J.; Chen, T. Survival Benefit after Radiotherapy for Patients with Malignant Pleural Mesothelioma: A Propensity Score—Matched Study. MedComm 2023, 4, e241. [Google Scholar] [CrossRef]
- Nelson, D.B.; Rice, D.C.; Mitchell, K.G.; Tsao, A.S.; Vaporciyan, A.A.; Antonoff, M.B.; Hofstetter, W.L.; Walsh, G.L.; Swisher, S.G.; Roth, J.A.; et al. Defining the Role of Adjuvant Radiotherapy for Malignant Pleural Mesothelioma: A Propensity-Matched Landmark Analysis of the National Cancer Database. J. Thorac. Dis. 2019, 11, 1269–1278. [Google Scholar] [CrossRef]
- Thieke, C.; Nicolay, N.H.; Sterzing, F.; Hoffmann, H.; Roeder, F.; Safi, S.; Debus, J.; Huber, P.E. Long-Term Results in Malignant Pleural Mesothelioma Treated with Neoadjuvant Chemotherapy, Extrapleural Pneumonectomy and Intensity-Modulated Radiotherapy. Radiat. Oncol. 2015, 10, 267. [Google Scholar] [CrossRef]
- Chance, W.W.; Rice, D.C.; Allen, P.K.; Tsao, A.S.; Fontanilla, H.P.; Liao, Z.; Chang, J.Y.; Tang, C.; Pan, H.Y.; Welsh, J.W.; et al. Hemithoracic Intensity Modulated Radiation Therapy After Pleurectomy/Decortication for Malignant Pleural Mesothelioma: Toxicity, Patterns of Failure, and a Matched Survival Analysis. Int. J. Radiat. Oncol. 2015, 91, 149–156. [Google Scholar] [CrossRef]
- Raman, V.; Voigt, S.L.; Jawitz, O.K.; Farrow, N.E.; Rhodin, K.E.; Yang, C.-F.J.; Tong, B.C.; D’Amico, T.A.; Harpole, D.H. The Impact of Adjuvant Hemithoracic Radiation on Outcomes in Patients with Stage I-III Malignant Pleural Mesothelioma: A Dual Registry Analysis. Ann. Surg. 2023, 277, e648–e656. [Google Scholar] [CrossRef]
- Thompson, M.R.; Dumane, V.A.; Lazarev, S.A.; Zia, Y.; Rosenzweig, K.E. Dosimetric Correlates of Pulmonary Toxicity in Patients with Malignant Pleural Mesothelioma Receiving Radiation Therapy to the Intact Lungs. Pract. Radiat. Oncol. 2019, 9, e331–e337. [Google Scholar] [CrossRef]
- Gomez, D.R.; Rimner, A.; Simone, C.B.; Cho, B.C.J.; De Perrot, M.; Adjei, A.A.; Bueno, R.; Gill, R.R.; Harpole, D.H.; Hesdorffer, M.; et al. The Use of Radiation Therapy for the Treatment of Malignant Pleural Mesothelioma: Expert Opinion from the National Cancer Institute Thoracic Malignancy Steering Committee, International Association for the Study of Lung Cancer, and Mesothelioma Applied Research Foundation. J. Thorac. Oncol. 2019, 14, 1172–1183. [Google Scholar] [CrossRef]
- Stahel, R.A.; Riesterer, O.; Xyrafas, A.; Opitz, I.; Beyeler, M.; Ochsenbein, A.; Früh, M.; Cathomas, R.; Nackaerts, K.; Peters, S.; et al. Neoadjuvant Chemotherapy and Extrapleural Pneumonectomy of Malignant Pleural Mesothelioma with or without Hemithoracic Radiotherapy (SAKK 17/04): A Randomised, International, Multicentre Phase 2 Trial. Lancet Oncol. 2015, 16, 1651–1658. [Google Scholar] [CrossRef]
- Riesterer, O.; Ciernik, I.F.; Stahel, R.A.; Xyrafas, A.; Aebersold, D.M.; Plasswilm, L.; Mahmut Ozsahin, E.; Zwahlen, D.R.; Nackaerts, K.; Zimmermann, F.; et al. Pattern of Failure after Adjuvant Radiotherapy Following Extrapleural Pneumonectomy of Pleural Mesothelioma in the SAKK 17/04 Trial. Radiother. Oncol. 2019, 138, 121–125. [Google Scholar] [CrossRef]
- Cho, B.C.J.; Donahoe, L.; Bradbury, P.A.; Leighl, N.; Keshavjee, S.; Hope, A.; Pal, P.; Cabanero, M.; Czarnecka, K.; McRae, K.; et al. Surgery for Malignant Pleural Mesothelioma after Radiotherapy (SMART): Final Results from a Single-Centre, Phase 2 Trial. Lancet Oncol. 2021, 22, 190–197. [Google Scholar] [CrossRef]
- Rimner, A.; Zauderer, M.G.; Gomez, D.R.; Adusumilli, P.S.; Parhar, P.K.; Wu, A.J.; Woo, K.M.; Shen, R.; Ginsberg, M.S.; Yorke, E.D.; et al. Phase II Study of Hemithoracic Intensity-Modulated Pleural Radiation Therapy (IMPRINT) as Part of Lung-Sparing Multimodality Therapy in Patients with Malignant Pleural Mesothelioma. J. Clin. Oncol. 2016, 34, 2761–2768. [Google Scholar] [CrossRef]
- National Cancer Institute (NCI). A Feasibility Study Evaluating Surgery for Mesothelioma After Radiation Therapy Using Extensive Pleural Resection (SMARTER). (NCT04028570). Available online: https://clinicaltrials.gov/study/NCT04028570?term=NCT04028570&rank=1 (accessed on 18 September 2025).
- National Cancer Institute (NCI). SMARTEST Trial. (NCT05380713). Available online: https://clinicaltrials.gov/study/NCT05380713 (accessed on 18 September 2025).
- National Cancer Institute (NCI). Accelerated Hypofractionated Radiotherapy in the Treatment of Malignant Pleural Mesothelioma (MesoRT). (NCT03269227). Available online: https://clinicaltrials.gov/study/NCT03269227 (accessed on 18 September 2025).
- Parisi, E.; Arpa, D.; Ghigi, G.; Fabbri, L.; Foca, F.; Tontini, L.; Neri, E.; Pieri, M.; Cima, S.; Burgio, M.A.; et al. Malignant Pleural Mesothelioma: Preliminary Toxicity Results of Adjuvant Radiotherapy Hypofractionation in a Prospective Trial (MESO-RT). Cancers 2023, 15, 1057. [Google Scholar] [CrossRef]
- Mohan, R.; Grosshans, D. Proton Therapy—Present and Future. Adv. Drug Deliv. Rev. 2017, 109, 26–44. [Google Scholar] [CrossRef]
- Patel, N.V.; Yu, N.Y.; Koroulakis, A.; Diwanji, T.; Sawant, A.; Sio, T.T.; Mohindra, P. Proton Therapy for Thoracic Malignancies: A Review of Oncologic Outcomes. Expert Rev. Anticancer Ther. 2021, 21, 177–191. [Google Scholar] [CrossRef]
- Lee, H.; Zeng, J.; Bowen, S.R.; Rengan, R. Proton Therapy for Malignant Pleural Mesothelioma: A Three Case Series Describing the Clinical and Dosimetric Advantages of Proton-Based Therapy. Cureus 2017, 9, e1705. [Google Scholar] [CrossRef]
- Pan, H.Y.; Jiang, S.; Sutton, J.; Liao, Z.; Chance, W.W.; Frank, S.J.; Zhu, X.R.; Li, H.; Fontanilla, H.P.; Zhang, X.; et al. Early Experience with Intensity Modulated Proton Therapy for Lung-Intact Mesothelioma: A Case Series. Pract. Radiat. Oncol. 2015, 5, e345–e353. [Google Scholar] [CrossRef]
- Zeng, J.; Badiyan, S.N.; Garces, Y.I.; Wong, T.; Zhang, X.; Simone, C.B.; Chang, J.Y.; Knopf, A.C.; Mori, S.; Iwata, H.; et al. Consensus Statement on Proton Therapy in Mesothelioma. Pract. Radiat. Oncol. 2021, 11, 119–133. [Google Scholar] [CrossRef]
- Pagan, V.; Ceron, L.; Paccagnella, A.; Pizzi, G. 5-Year Prospective Results of Trimodality Treatment for Malignant Pleural Mesothelioma. J. Cardiovasc. Surg. 2006, 47, 595–601. [Google Scholar]
- Lang-Lazdunski, L.; Bille, A.; Lal, R.; Cane, P.; McLean, E.; Landau, D.; Steele, J.; Spicer, J. Pleurectomy/Decortication Is Superior to Extrapleural Pneumonectomy in the Multimodality Management of Patients with Malignant Pleural Mesothelioma. J. Thorac. Oncol. 2012, 7, 737–743. [Google Scholar] [CrossRef]
- Opitz, I.; Kestenholz, P.; Lardinois, D.; Müller, M.; Rousson, V.; Schneiter, D.; Stahel, R.; Weder, W. Incidence and Management of Complications after Neoadjuvant Chemotherapy Followed by Extrapleural Pneumonectomy for Malignant Pleural Mesothelioma. Eur. J. Cardiothorac. Surg. 2006, 29, 579–584. [Google Scholar] [CrossRef]
- Flores, R.M.; Krug, L.M.; Rosenzweig, K.E.; Venkatraman, E.; Vincent, A.; Heelan, R.; Akhurst, T.; Rusch, V.W. Induction Chemotherapy, Extrapleural Pneumonectomy, and Postoperative High-Dose Radiotherapy for Locally Advanced Malignant Pleural Mesothelioma: A Phase II Trial. J. Thorac. Oncol. 2006, 1, 289–295. [Google Scholar] [CrossRef]
- Buduhan, G.; Menon, S.; Aye, R.; Louie, B.; Mehta, V.; Vallières, E. Trimodality Therapy for Malignant Pleural Mesothelioma. Ann. Thorac. Surg. 2009, 88, 870–876. [Google Scholar] [CrossRef]
- De Perrot, M.; Feld, R.; Cho, B.C.J.; Bezjak, A.; Anraku, M.; Burkes, R.; Roberts, H.; Tsao, M.S.; Leighl, N.; Keshavjee, S.; et al. Trimodality Therapy with Induction Chemotherapy Followed by Extrapleural Pneumonectomy and Adjuvant High-Dose Hemithoracic Radiation for Malignant Pleural Mesothelioma. J. Clin. Oncol. 2009, 27, 1413–1418. [Google Scholar] [CrossRef]
- Pasello, G.; Marulli, G.; Polo, V.; Breda, C.; Bonanno, L.; Loreggian, L.; Rea, F.; Favaretto, A. Pemetrexed plus carboplatin or cisplatin as neoadjuvant treatment of operable malignant pleural mesothelioma (MPM). Anticancer Res. 2012, 32, 5393–5399. [Google Scholar]
- Lauk, O.; Hoda, M.A.; De Perrot, M.; Friess, M.; Klikovits, T.; Klepetko, W.; Keshavjee, S.; Weder, W.; Opitz, I. Extrapleural Pneumonectomy After Induction Chemotherapy: Perioperative Outcome in 251 Mesothelioma Patients from Three High-Volume Institutions. Ann. Thorac. Surg. 2014, 98, 1748–1754. [Google Scholar] [CrossRef]
- Hasegawa, S.; Okada, M.; Tanaka, F.; Yamanaka, T.; Soejima, T.; Kamikonya, N.; Tsujimura, T.; Fukuoka, K.; Yokoi, K.; Nakano, T. Trimodality Strategy for Treating Malignant Pleural Mesothelioma: Results of a Feasibility Study of Induction Pemetrexed plus Cisplatin Followed by Extrapleural Pneumonectomy and Postoperative Hemithoracic Radiation (Japan Mesothelioma Interest Group 0601 Trial). Int. J. Clin. Oncol. 2016, 21, 523–530. [Google Scholar] [CrossRef]
- Sugarbaker, D.J.; Flores, R.M.; Jaklitsch, M.T.; Richards, W.G.; Strauss, G.M.; Corson, J.M.; DeCamp, M.M.; Swanson, S.J.; Bueno, R.; Lukanich, J.M.; et al. Resection Margins, Extrapleural Nodal Status, and Cell Type Determine Postoperative Long-Term Survival in Trimodality Therapy of Malignant Pleural Mesothelioma: Results in 183 Patients. J. Thorac. Cardiovasc. Surg. 1999, 117, 54–65. [Google Scholar] [CrossRef]
- Luckraz, H.; Rahman, M.; Patel, N.; Szafranek, A.; Gibbs, A.R.; Butchart, E.G. Three Decades of Experience in the Surgical Multi-Modality Management of Pleural Mesothelioma. Eur. J. Cardiothorac. Surg. 2010, 37, 552–556. [Google Scholar] [CrossRef]
- Borasio, P.; Berruti, A.; Billé, A.; Lausi, P.; Levra, M.G.; Giardino, R.; Ardissone, F. Malignant Pleural Mesothelioma: Clinicopathologic and Survival Characteristics in a Consecutive Series of 394 Patients. Eur. J. Cardiothorac. Surg. 2008, 33, 307–313. [Google Scholar] [CrossRef]
- Ambrogi, V.; Baldi, A.; Schillaci, O.; Mineo, T.C. Clinical Impact of Extrapleural Pneumonectomy for Malignant Pleural Mesothelioma. Ann. Surg. Oncol. 2012, 19, 1692–1699. [Google Scholar] [CrossRef]
- Bölükbas, S.; Manegold, C.; Eberlein, M.; Bergmann, T.; Fisseler-Eckhoff, A.; Schirren, J. Survival after Trimodality Therapy for Malignant Pleural Mesothelioma: Radical Pleurectomy, Chemotherapy with Cisplatin/Pemetrexed and Radiotherapy. Lung Cancer 2011, 71, 75–81. [Google Scholar] [CrossRef]
- Batirel, H.F.; Metintas, M.; Caglar, H.B.; Yildizeli, B.; Lacin, T.; Bostanci, K.; Akgul, A.G.; Evman, S.; Yuksel, M. Trimodality Treatment of Malignant Pleural Mesothelioma. J. Thorac. Oncol. 2008, 3, 499–504. [Google Scholar] [CrossRef]
- Verma, V.; Ahern, C.A.; Berlind, C.G.; Lindsay, W.D.; Grover, S.; Friedberg, J.S.; Simone, C.B. Treatment of Malignant Pleural Mesothelioma with Chemotherapy Preceding versus after Surgical Resection. J. Thorac. Cardiovasc. Surg. 2019, 157, 758–766.e1. [Google Scholar] [CrossRef]
- Sharkey, A.J.; O’Byrne, K.J.; Nakas, A.; Tenconi, S.; Fennell, D.A.; Waller, D.A. How Does the Timing of Chemotherapy Affect Outcome Following Radical Surgery for Malignant Pleural Mesothelioma? Lung Cancer 2016, 100, 5–13. [Google Scholar] [CrossRef]
- Marulli, G.; Rea, F.; Nicotra, S.; Favaretto, A.G.; Perissinotto, E.; Chizzolini, M.; Vianello, A.; Braccioni, F. Effect of Induction Chemotherapy on Lung Function and Exercise Capacity in Patients Affected by Malignant Pleural Mesothelioma. Eur. J. Cardiothorac. Surg. 2010, 37, 1464–1469. [Google Scholar] [CrossRef]
- National Cancer Institute (NCI). Pleurectomy/Decortication (Neo) Adjuvant Chemotherapy and Intensity Modulated Radiation Therapy to the Pleura in Patients with Locally Advanced Malignant Pleural Mesothelioma. (NCT00715611). Available online: https://clinicaltrials.gov/study/NCT00715611?term=NCT00715611&rank=1 (accessed on 18 September 2025).
- Zauderer, M.G.; Tsao, A.S.; Dao, T.; Panageas, K.; Lai, W.V.; Rimner, A.; Rusch, V.W.; Adusumilli, P.S.; Ginsberg, M.S.; Gomez, D.; et al. A Randomized Phase II Trial of Adjuvant Galinpepimut-S, WT-1 Analogue Peptide Vaccine, After Multimodality Therapy for Patients with Malignant Pleural Mesothelioma. Clin. Cancer Res. 2017, 23, 7483–7489. [Google Scholar] [CrossRef]
- National Cancer Institute (NCI). Pleurectomy/Decortication (P/D) Preceded or Followed by Chemotherapy in Patients with Early Stage MPM. (NCT02436733). Available online: https://clinicaltrials.gov/study/NCT02436733?term=NCT02436733&rank=1 (accessed on 6 February 2024).
- National Cancer Institute (NCI). Pembrolizumab in Combination with Chemotherapy and Image-Guided Surgery for Malignant Pleural Mesothelioma (MPM). (NCT03760575). Available online: https://clinicaltrials.gov/study/NCT03760575?term=NCT03760575&rank=1&tab=table (accessed on 18 September 2025).
- National Cancer Institute (NCI). A Study of Nivolumab and Chemotherapy Followed by Surgery for Mesothelioma. (NCT04162015). Available online: https://clinicaltrials.gov/study/NCT04162015?term=NCT04162015&rank=1 (accessed on 18 September 2025).
- National Cancer Institute (NCI). Neoadjuvant Immune Checkpoint Blockade in Resectable Malignant Pleural Mesothelioma. (NCT03918252). Available online: https://clinicaltrials.gov/study/NCT03918252?term=NCT03918252&rank=1 (accessed on 18 September 2025).
- National Cancer Institute (NCI). Atezolizumab, Pemetrexed Disodium, Cisplatin, and Surgery With or Without Radiation Therapy in Treating Patients with Stage I-III Pleural Malignant Mesothelioma. (NCT03228537). Available online: https://clinicaltrials.gov/study/NCT03228537?term=NCT03228537&rank=1&tab=table (accessed on 18 September 2025).
- National Cancer Institute (NCI). Testing the Addition of Immunotherapy Before Surgery for Patients with Sarcomatoid Mesothelioma. (NCT05647265). Available online: https://clinicaltrials.gov/study/NCT05647265?term=NCT05647265&rank=1 (accessed on 19 September 2025).
- National Cancer Institute (NCI). Induction Chemo+Immunotherapy in Resectable Epithelioid and Biphasic Pleural Mesothelioma (CHIMERA Study) (CHIMERA). (NCT06155279). Available online: https://clinicaltrials.gov/study/NCT06155279?term=NCT06155279&rank=1 (accessed on 19 September 2025).
- National Cancer Institute (NCI). Neoadjuvant Durvalumab and Tremelimumab with and Without Chemotherapy for Mesothelioma. (NCT05932199). Available online: https://clinicaltrials.gov/study/NCT05932199?term=NCT05932199&rank=1 (accessed on 20 September 2025).
- National Cancer Institute (NCI). Atezolizumab Versus Placebo for the Adjuvant Treatment of Malignant Pleural Mesothelioma (Atezomeso) (AtezoMeso). (NCT04996017). Available online: https://clinicaltrials.gov/study/NCT04996017?term=NCT04996017&rank=1 (accessed on 18 September 2025).
- Giraudo, M.; Jackson, Z.; Das, I.; Abiona, O.; Wald, D. Chimeric Antigen Receptor (CAR)-T Cell Therapy for Non-Hodgkin’s Lymphoma. Pathog. Immun. 2024, 9, 1–17. [Google Scholar] [CrossRef]
- Okubo, K.; Ishibashi, H.; Wakejima, R.; Baba, S.; Asakawa, A.; Seshima, H. Extended Pleurectomy/Decortication and Hyperthermic Intraoperative Intrapleural Cisplatin Perfusion for Malignant Pleural Mesothelioma. JTCVS Open 2023, 16, 977–986. [Google Scholar] [CrossRef]
- Bongiolatti, S.; Mazzoni, F.; Salimbene, O.; Caliman, E.; Ammatuna, C.; Comin, C.E.; Antonuzzo, L.; Voltolini, L. Induction Chemotherapy Followed by Pleurectomy Decortication and Hyperthermic Intraoperative Chemotherapy (HITHOC) for Early-Stage Epitheliod Malignant Pleural Mesothelioma—A Prospective Report. J. Clin. Med. 2021, 10, 5542. [Google Scholar] [CrossRef]
- Elsayed, H.H.; Elanany, M.E.E.; ElSayegh, M.T.; Hassaballa, A.S.; Abdel-gayed, M. Hyperthermic Intrathoracic Chemotherapy in Patients with Malignant Pleural Mesothelioma after Cytoreductive Surgical Procedures: A Systematic Review. World J. Surg. Oncol. 2025, 23, 132. [Google Scholar] [CrossRef]
- Van Sandick, J.W.; Kappers, I.; Baas, P.; Haas, R.L.; Klomp, H.M. Surgical Treatment in the Management of Malignant Pleural Mesothelioma: A Single Institution’s Experience. Ann. Surg. Oncol. 2008, 15, 1757–1764. [Google Scholar] [CrossRef]
- Sugarbaker, D.J.; Gill, R.R.; Yeap, B.Y.; Wolf, A.S.; DaSilva, M.C.; Baldini, E.H.; Bueno, R.; Richards, W.G. Hyperthermic Intraoperative Pleural Cisplatin Chemotherapy Extends Interval to Recurrence and Survival among Low-Risk Patients with Malignant Pleural Mesothelioma Undergoing Surgical Macroscopic Complete Resection. J. Thorac. Cardiovasc. Surg. 2013, 145, 955–963. [Google Scholar] [CrossRef]
- Elsayed, H.H.; Sharkawy, H.Y.; Ahmed, M.A.; Abdel-Gayed, M.; Eldewer, M. Effect of Intraoperative Hyperthermic Intrathoracic Chemotherapy after Pleurectomy Decortication for Treatment of Malignant Pleural Mesothelioma: A Comparative Study. Updat. Surg. 2024, 76, 2893–2901. [Google Scholar] [CrossRef]
- Harber, J.; Kamata, T.; Pritchard, C.; Fennell, D. Matter of TIME: The Tumor-Immune Microenvironment of Mesothelioma and Implications for Checkpoint Blockade Efficacy. J. Immunother. Cancer 2021, 9, e003032. [Google Scholar] [CrossRef] [PubMed]
- Marcq, E.; Siozopoulou, V.; De Waele, J.; Van Audenaerde, J.; Zwaenepoel, K.; Santermans, E.; Hens, N.; Pauwels, P.; Van Meerbeeck, J.P.; Smits, E.L.J. Prognostic and Predictive Aspects of the Tumor Immune Microenvironment and Immune Checkpoints in Malignant Pleural Mesothelioma. OncoImmunology 2017, 6, e1261241. [Google Scholar] [CrossRef] [PubMed]
- Brcic, L.; Klikovits, T.; Megyesfalvi, Z.; Mosleh, B.; Sinn, K.; Hritcu, R.; Laszlo, V.; Cufer, T.; Rozman, A.; Kern, I.; et al. Prognostic Impact of PD-1 and PD-L1 Expression in Malignant Pleural Mesothelioma: An International Multicenter Study. Transl. Lung Cancer Res. 2021, 10, 1594–1607. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-S.; Hamaji, M.; Palivela, N.; Jang, H.-J.; Splawn, T.; Ramos, D.; Lee, A.K.; Raghuram, A.C.; Ramineni, M.; Amos, C.I.; et al. Prognostic Role of Programmed Cell Death 1 Ligand 1 in Resectable Pleural Mesothelioma. Ann. Thorac. Surg. 2021, 112, 1575–1583. [Google Scholar] [CrossRef]
- Baas, P.; Scherpereel, A.; Nowak, A.K.; Fujimoto, N.; Peters, S.; Tsao, A.S.; Mansfield, A.S.; Popat, S.; Jahan, T.; Antonia, S.; et al. First-Line Nivolumab plus Ipilimumab in Unresectable Malignant Pleural Mesothelioma (CheckMate 743): A Multicentre, Randomised, Open-Label, Phase 3 Trial. Lancet 2021, 397, 375–386. [Google Scholar] [CrossRef]
- Chu, Q.; Perrone, F.; Greillier, L.; Tu, W.; Piccirillo, M.C.; Grosso, F.; Lo Russo, G.; Florescu, M.; Mencoboni, M.; Morabito, A.; et al. Pembrolizumab plus Chemotherapy versus Chemotherapy in Untreated Advanced Pleural Mesothelioma in Canada, Italy, and France: A Phase 3, Open-Label, Randomised Controlled Trial. Lancet 2023, 402, 2295–2306. [Google Scholar] [CrossRef]
- Jin, L.; Gu, W.; Li, X.; Xie, L.; Wang, L.; Chen, Z. PD-L1 and Prognosis in Patients with Malignant Pleural Mesothelioma: A Meta-Analysis and Bioinformatics Study. Ther. Adv. Med. Oncol. 2020, 12, 175883592096236. [Google Scholar] [CrossRef]
- Pagano, M.; Alloisio, M.; Cappuzzo, F.; Facciolo, F.; Bironzo, P.; Pastorino, U.; Rea, F.; Santoro, A.; Zanelli, F.; Alberti, G.; et al. Phase III Study with Atezolizumab versus Placebo in Patients with Malignant Pleural Mesothelioma after Pleurectomy/Decortication (AtezoMeso Study). J. Clin. Oncol. 2022, 40, TPS8591. [Google Scholar] [CrossRef]
- National Cancer Institute (NCI). Nivolumab with Chemotherapy in Pleural Mesothelioma After Surgery. (NCT04177953). Available online: https://clinicaltrials.gov/study/NCT04177953?term=NCT04177953&rank=1&tab=table (accessed on 18 September 2025).
- Shah, R.; Klotz, L.V.; Chung, I.; Feißt, M.; Schneider, M.A.; Riedel, J.; Bischoff, H.; Eichhorn, M.E.; Thomas, M. A Phase II Trial of Nivolumab with Chemotherapy Followed by Maintenance Nivolumab in Patients with Pleural Mesothelioma After Surgery: The NICITA Study Protocol. Clin. Lung Cancer 2021, 22, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Heymach, J.V.; Harpole, D.; Mitsudomi, T.; Taube, J.M.; Galffy, G.; Hochmair, M.; Winder, T.; Zukov, R.; Garbaos, G.; Gao, S.; et al. Perioperative Durvalumab for Resectable Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2023, 389, 1672–1684. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.P.; Othus, M.; Chen, Y.; Wright, G.P.; Yost, K.J.; Hyngstrom, J.R.; Hu-Lieskovan, S.; Lao, C.D.; Fecher, L.A.; Truong, T.-G.; et al. Neoadjuvant–Adjuvant or Adjuvant-Only Pembrolizumab in Advanced Melanoma. N. Engl. J. Med. 2023, 388, 813–823. [Google Scholar] [CrossRef]
- Forde, P.M.; Spicer, J.; Lu, S.; Provencio, M.; Mitsudomi, T.; Awad, M.M.; Felip, E.; Broderick, S.R.; Brahmer, J.R.; Swanson, S.J.; et al. Neoadjuvant Nivolumab plus Chemotherapy in Resectable Lung Cancer. N. Engl. J. Med. 2022, 386, 1973–1985. [Google Scholar] [CrossRef]
- Blank, C.U.; Rozeman, E.A.; Fanchi, L.F.; Sikorska, K.; Van De Wiel, B.; Kvistborg, P.; Krijgsman, O.; Van Den Braber, M.; Philips, D.; Broeks, A.; et al. Neoadjuvant versus Adjuvant Ipilimumab plus Nivolumab in Macroscopic Stage III Melanoma. Nat. Med. 2018, 24, 1655–1661. [Google Scholar] [CrossRef]
- Tsao, A.; Qian, L.; Cetnar, J.; Sepesi, B.; Gomez, D.; Wrangle, J.; Simon, G.; Mott, F.; Hall, R.; Santana-Davila, R.; et al. OA13.01 S1619 A Trial of Neoadjuvant Cisplatin-Pemetrexed with Atezolizumab in Combination and Maintenance for Resectable Pleural Mesothelioma. J. Thorac. Oncol. 2021, 16, S870. [Google Scholar] [CrossRef]
- National Cancer Institute (NCI). Using a Targeted Cancer Vaccine (Galinpepimut-S) with Immunotherapy (Nivolumab) in Mesothelioma. (NCT04040231). Available online: https://clinicaltrials.gov/study/NCT04040231?term=NCT04040231&rank=1 (accessed on 18 September 2025).
- National Cancer Institute (NCI). Poly-ICLC (Hiltonol®) Vaccine In Malignant Pleural Mesothelioma. (NCT04525859). Available online: https://clinicaltrials.gov/study/NCT04525859 (accessed on 18 September 2025).
- Fitzgerald, B.G.; Marron, T.U.; Sweeney, R.; Gomez, J.; Hall, N.; O’Grady, D.; Rolfo, C.; Veluswamy, R.; Doroshow, D.; Mandeli, J.; et al. Abstract CT205: A Phase I/Ib Trial of Intratumoral Poly-ICLC in Resectable Malignant Pleural Mesothelioma. Cancer Res. 2022, 82, CT205. [Google Scholar] [CrossRef]
- Cornelissen, R.; Hegmans, J.P.J.J.; Maat, A.P.W.M.; Kaijen-Lambers, M.E.H.; Bezemer, K.; Hendriks, R.W.; Hoogsteden, H.C.; Aerts, J.G.J.V. Extended Tumor Control after Dendritic Cell Vaccination with Low-Dose Cyclophosphamide as Adjuvant Treatment in Patients with Malignant Pleural Mesothelioma. Am. J. Respir. Crit. Care Med. 2016, 193, 1023–1031. [Google Scholar] [CrossRef]
- National Cancer Institute (NCI). dENdritic Cell Therapy Combined with SURgEry in Mesothelioma (ENSURE). (NCT05304208). Available online: https://clinicaltrials.gov/study/NCT05304208?tab=table (accessed on 18 September 2025).
- Castelletti, L.; Yeo, D.; Van Zandwijk, N.; Rasko, J.E.J. Anti-Mesothelin CAR T Cell Therapy for Malignant Mesothelioma. Biomark. Res. 2021, 9, 11. [Google Scholar] [CrossRef]
- Haas, A.R.; Tanyi, J.L.; O’Hara, M.H.; Gladney, W.L.; Lacey, S.F.; Torigian, D.A.; Soulen, M.C.; Tian, L.; McGarvey, M.; Nelson, A.M.; et al. Phase I Study of Lentiviral-Transduced Chimeric Antigen Receptor-Modified T Cells Recognizing Mesothelin in Advanced Solid Cancers. Mol. Ther. 2019, 27, 1919–1929. [Google Scholar] [CrossRef]
- Adusumilli, P.S.; Zauderer, M.G.; Rivière, I.; Solomon, S.B.; Rusch, V.W.; O’Cearbhaill, R.E.; Zhu, A.; Cheema, W.; Chintala, N.K.; Halton, E.; et al. A Phase I Trial of Regional Mesothelin-Targeted CAR T-Cell Therapy in Patients with Malignant Pleural Disease, in Combination with the Anti–PD-1 Agent Pembrolizumab. Cancer Discov. 2021, 11, 2748–2763. [Google Scholar] [CrossRef]
| Study Reference | Design | Agent | Intervention | Patients N° | Primary Endpoint | Secondary Endpoint |
|---|---|---|---|---|---|---|
| Neoadjuvant chemotherapy | ||||||
| ISRCTN95583524 (MARS) (2011) [6] | multicenter randomized (1:1) controlled feasibility trial | platinum-based CT | Prerandomisation registration phase induction platinum-based CT followed by clinical review. After further consent, randomization (1:1) to: Arm A EPP followed by postoperative hemithorax RT; Arm B no EPP. | Pre-randomization registration phase: 112; Randomization phase 50: Arm A n° 24, Arm B n° 26 | feasibility of randomly assigning 50 patients in 1 year: not reached 50 patients randomized in 3 years | Arm A: n° of patients completing EPP: 16 (66.7%). Post-operative mortality rate: 12.5%. Median OS: 14.4 months. ArmB: Median OS: 19.5 months. HR 1.90 (95% CI 0.92–3.93) |
| Weder et al. (2007) [17] | phase 2 single-arm multicenter trial | cisplatin plus gemcitabine | Neoadjuvant cisplatin + gemcitabine, EPP and post-operative RT | 61 | QoL: no significant deterioration reporte | CT completion rate: 95%. N° of patients completing EPP: 45 (74%). MCR rate: 61%. Post-operative mortality rate: 2.2%. Median OS ITT population: 19.8 months. Median OS in patients undergoing EPP: 23 months. |
| Krug et al. (2009) [16] | phase 2 single-arm multicenter trial | cisplatin plus pemetrexed | Neoadjuvant cisplatin + pemetrexed, EPP and post-operative hemithoracic RT | 77 | pCR rate: 5.3% | CT completion rate: 83%. Radiological RR: 32.5%. N° of patients completing EPP: 54 (70%). Post-operative mortality rate: 4%. Median PFS ITT population: 10.1 months. median OS ITT population: 16.8 months. Median OS in patients undergoing EPP: 21.9 months. |
| EORTC 08031 (2010) [19] | phase 2 single-arm multicenter trial | cisplatin plus pemetrexed | Neoadjuvant cisplatin + pemetrexed, EPP and post-operative RT | 58 | Success of treatment rate: 42.1% | CT completion rate: 93%. N° of patients completing EPP: 42 (74%). Post-operative mortality rate: 6.5%. Median PFS ITT population: 13.9 months. Median OS ITT population: 18.4 months. Median OS in patients completing trimodality therapy: 37 months. |
| Rea et al. (2013) [20] | phase 2 single-arm, open label trial | cisplatin plus pemetrexed | Neoadjuvant cisplatin + pemetrexed, EPP and post-operative hemithoracic RT | 54 | median EFS: 6.9 months | CT completion rate: 96.3%. N° of patients completing EPP: 45 (83.3%). Post-operative mortality rate: 4.4%. Median PFS ITT population: 8.6 months. Median TTR: 4.8 months. Median OS ITT population: 15.5 months. |
| Adjuvant chemotherapy | ||||||
| Pagan et al. (2006) [43] | single-arm, open label trial | Paclitaxel plus carboplatin | EPP, adjuvant paclitaxel + carboplatin and RT | 54 | OS 5-year rate in survived patients after EPP: 19%. | N° of patients completing EPP: 44 (81%). CT completion rate: 73%. Post-operative mortality rate: 4.5%. Median OS in survived patients after EPP: 20 months. |
| Lang-Lazdunski et al. (2012) [44] | Nonrandomized single-center trial | Cisplatin plus gemcitabine/ pemetrexed | Arm A: neoadjuvant CT, EPP and post-operative RT. Arm B: P/D and HIOC, followed by prophylactic RT and adjuvant CT | Arm A: 25; Arm B: 54 | Arm A median OS: 12.8 months; Arm B Median OS: 23 months | Arm A: n° of patients completing EPP: 22 (88%). Post-operative mortality rate: 4.5%. Arm B: CT completion rate 96.3%; Post-operative mortality rate: 0%. |
| Immunotherapy and Cancer Vaccines | ||||||
|---|---|---|---|---|---|---|
| Study Reference | Phase | Agent | Intervention | Patients N° | Primary Endpoint | Secondary Endpoint |
| NCT02592551 (2023) [11] | Phase II | Durvalumab ± Tremelimumab | Cohort 1: pre-operative (1–6 weeks) single durvalumab; Cohort 2: pre-operative (1–6 weeks) single durvalumab + tremelimumab; Cohort 3: placebo; followed by surgery | 24 | No differences CD8/Treg ratio among the cohorts | Increased PD-L1 expression on EC after both single and combination ICI, and on M1-TAMs after combination ICI; mDFS: 8.4 mo (single ICI) vs. NR (dual ICI) [p = 0.009]; mOS: 14.0 mo (single ICI) vs. NR (dual ICI) [p = 0.040] |
| Zaudere M. et al. (2017) [62] | Phase II | Galinpepimut-S, WT-1 Analog Peptide Vaccine | Adjuvant galinpepimut-S plus GM-CSF and Montanide vs. GM-CSF and Montanide alone after surgery and another treatment modality | 41 | 1/year PFS rate: 33% (experimental arm) vs. 45% (control arm) | \ |
| Study | Phase | Agent | Intervention | Setting | Primary endpoint | Status |
| Ongoing clinical trials on Chemotherapy | ||||||
| NCT02436733 [63] | II | Pemetrexed + Cisplatin | Arm A—immediate P/D followed by adjuvant pemetrexed + cisplatin for non-progressing patients Arm B—Neoadjuvant pemetrexed + cisplatin followed by P/D, for non-progressing patients. | Adjuvant VS. Neoadjuvant | Rate of success to complete the full treatment | Active, unknown status |
| NCT00715611 [61] | II | Pemetrexed + Cis-/carboplatin and IMRT | Neo-/adjuvant platin and pemetrexed proceeded or followed by P/D, and subsequent IMRT | Neo-/adjuvant + adjuvant IMRT | number of patients ≥ grade 3 pneumonitis | Active, not recruiting |
| Ongoing clinical trials on radiotherapy | ||||||
| NCT04028570 (SMARTER) [34] | Not applicable | Neoadjuvant RT | Starting cohort: Background radiation 0 cGy + 2100 Gy boost radiation to a part of GTV; if no DLT background radiation dose is increased to 600 cGy and up to 1800 cGy followed by surgery | Neoadjuvant | Maximum tolerated dose /Aes | Active, not recruiting |
| NCT05380713 (SMARTEST) [35] | II | Neoadjuvant sub-ablative RT and cyclophosphamide | Sub-ablative RT plus cyclophosphamide vs. sub-ablative RT alone followed by surgery and adjuvant immunotherapy | Neoadjuavant | CD8 TIL density / GTV | Recruiting |
| NCT03269227 (MesoRT) [36] | Not applicable | Adjuvant RT | Accelerated hypofractionation with Tomotherapy (30 Gy in 5 daily fr) with an internal increasing inhomogenous dose of up to 37.5–40 Gy for GTV | Adjuvant | AEs | Unknown status |
| Ongoing clinical trials on Immune Checkpoint Inhibitors | ||||||
| NCT03760575 [64] | I | Pembrolizumab | Neoadjuvant pembrolizumab followed by P/D and adjuvant chemo-IO and IO maintenance | Neoadjuvant | AEs | Recruiting |
| NCT04162015 [65] | I | Nivolumab | Neoadjuvant nivolumab and platinum-based chemotherapy | Neoadjuvant | N of patients undergoing surgery | Active, not recruiting |
| NCT03918252 [66] | I/II | Nivolumab ± ipilimumab | Neoadjuvant nivolumab ± ipilimumab for 3 cycles followed by surgery and adjuvant nivolumab for 12 months | Neoadjuvant | AEs/N of patients undergoing surgery | Active, not recruiting |
| NCT03228537 [67] | I | Atezolizumab | Neoadjuvant atezolizumab, cisplatin and pemetrexed followed by surgery. Adjuvant atezolizymab for 12 months | Neoadjuvant | PFS/OS/ORR | Active, not recruiting |
| NCT05647265 [68] | II | Nivolumab + ipilimumab | Neoadjuvant nivolumab + ipilimumab in sarcomatoid (>50%) mesothelioma | Neoadjuvant/adjuvant | Surgery rate/PFS | Recruiting |
| NCT06155279 (CHIMERA) [69] | II | Pembrolizumab + Cisplatin/Carboplatin + Pemetrexed | Neoadjuvant pembrolizumab, cisplatin/carboplatin and pemetrexed, followed by surgery and adjuvant pembrolizumab for 12 months | Neoadjuvant/adjuvant | pCR | Recruiting |
| NCT05932199 [70] | Ib/IIa | Durvalumab+ tremelimumab ± Cisplatin/Carboplatin + Pemetrexed | Neoadjuvant durvalumab + tremelimumab ± Cisplatin/Carboplatin + Pemetrexed for 3 cycles followed by surgery and adjuvant durvalumab for 12 months | Neoadjuvant/adjuvant | 1 year-RFS | Recruiting |
| NCT04996017 (AtezoMeso) [71] | III | Atezolizumab | Adjuvant atezolizumab/placebo in resected PM patients | Adjuvant | DFS | Recruiting |
| Ongoing clinical trials on cancer vaccines | ||||||
| NCT05304208 (ENSURE) [72] | I | DC therapy | Pre-operative DC therapy after NAC in resectable PM | Perioperative | Feasibility | Recruiting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cecchi, L.G.; Aliprandi, M.; De Vincenzo, F.; Perrino, M.; Cordua, N.; Borea, F.; Bertocchi, A.; Federico, A.; Marulli, G.; Santoro, A.; et al. Perioperative Treatments in Pleural Mesothelioma: State of the Art and Future Directions. Cancers 2025, 17, 3199. https://doi.org/10.3390/cancers17193199
Cecchi LG, Aliprandi M, De Vincenzo F, Perrino M, Cordua N, Borea F, Bertocchi A, Federico A, Marulli G, Santoro A, et al. Perioperative Treatments in Pleural Mesothelioma: State of the Art and Future Directions. Cancers. 2025; 17(19):3199. https://doi.org/10.3390/cancers17193199
Chicago/Turabian StyleCecchi, Luigi Giovanni, Marta Aliprandi, Fabio De Vincenzo, Matteo Perrino, Nadia Cordua, Federica Borea, Alessandro Bertocchi, Antonio Federico, Giuseppe Marulli, Armando Santoro, and et al. 2025. "Perioperative Treatments in Pleural Mesothelioma: State of the Art and Future Directions" Cancers 17, no. 19: 3199. https://doi.org/10.3390/cancers17193199
APA StyleCecchi, L. G., Aliprandi, M., De Vincenzo, F., Perrino, M., Cordua, N., Borea, F., Bertocchi, A., Federico, A., Marulli, G., Santoro, A., Ceresoli, G. L., & Zucali, P. A. (2025). Perioperative Treatments in Pleural Mesothelioma: State of the Art and Future Directions. Cancers, 17(19), 3199. https://doi.org/10.3390/cancers17193199

