A Deep Learning Framework for Classification of Neuroendocrine Neoplasm Whole Slide Images
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Acquisition and Processing
2.2. Machine Learning-Based Analysis Workflow
2.2.1. Tissue Masks
2.2.2. Tumor Masks
2.2.3. Mitotic Figures Detection
2.2.4. Ki-67 Detection
2.2.5. Density Map Generation
2.2.6. Aggregation Modules
2.2.7. Statistical Methodology
3. Results
3.1. NEN Grading
Source | Method | Precision | Recall | F1 Score |
---|---|---|---|---|
H&E | Histogram MLP | 0.667 (0.590, 0.741) | 0.719 (0.646, 0.787) | 0.686 (0.611, 0.756) |
H&E + Ki67 | Naïve Combination 1 | 0.695 (0.620, 0.769) | 0.784 (0.732, 0.832) | 0.721 (0.650, 0.790) |
Naïve Combination 2 | 0.690 (0.618, 0.763) | 0.781 (0.729, 0.832) | 0.718 (0.647, 0.784) | |
MLP Concatenated Features | 0.759 (0.689, 0.826) | 0.757 (0.686, 0.824) | 0.756 (0.690, 0.818) | |
H&E + Ki67 (Corrected) | Naïve Combination 1 | 0.730 (0.654, 0.804) | 0.811 (0.759, 0.857) | 0.757 (0.689, 0.825) |
Naïve Combination 2 | 0.721 (0.649, 0.796) | 0.803 (0.749, 0.850) | 0.749 (0.681, 0.813) | |
H&E | Pathologist Grade | 0.924 (0.886, 0.955) | 0.810 (0.732, 0.880) | 0.849 (0.774, 0.910) |
H&E + Ki67 | Pathologist Grade (Ground Truth) | 1 (1, 1) | 1 (1, 1) | 1 (1, 1) |
Source | Method | c-Index | Median Survival (yrs) | ||
---|---|---|---|---|---|
G1 | G2 | G3 | |||
H&E | Histogram MLP | 0.63 | 7.20 | 4.88 | 1.74 |
H&E + Ki67 | Naïve Combination 1 | 0.63 | 6.85 | 4.88 | 1.74 |
Naïve Combination 2 | 0.65 | 7.78 | 4.56 | 2.10 | |
MLP Concatenated Features | 0.63 | 6.77 | 4.63 | 1.22 | |
H&E + Ki67 (Corrected) | Naïve Combination 1 | 0.63 | 7.20 | 4.88 | 1.74 |
Naïve Combination 2 | 0.65 | 7.50 | 4.56 | 1.74 | |
H&E | Pathologist Grade | 0.63 | 6.86 | 4.56 | 0.99 |
H&E + Ki67 | Pathologist Grade | 0.64 | 7.20 | 4.88 | 1.22 |
3.2. Survival Results
3.3. Multivariate Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NEN | Neuroendocrine Neoplasm |
H&E | Hematoxylin and Eosin |
NEC | Neuroendocrine Carcinoma |
WHO | World Health Organization |
GI | Gastrointestinal |
WSI | Whole Slide Image |
MIDOG22 | Mitosis Domain Generalization Challenge 2022 |
MIL | Multiple Instance Learning |
MLP | Multi-Layer Perceptron |
KM | Kaplan–Meier |
References
- Klimstra, D.S.; Yang, Z. Pathology, classification, and grading of neuroendocrine neoplasms arising in the digestive system. In UpToDate; UpToDate, Inc.: Waltham, MA, USA, 2019. [Google Scholar]
- Oronsky, B.; Ma, P.C.; Morgensztern, D.; Carter, C.A. Nothing But NET: A Review of Neuroendocrine Tumors and Carcinomas. Neoplasia 2017, 19, 981–992. [Google Scholar] [CrossRef] [PubMed]
- Cleveland Clinic. Neuroendocrine Tumor: Diagnosis, Symptoms, Treatment, & What It Is. Available online: https://my.clevelandclinic.org/health/diseases/22006-neuroendocrine-tumors-net (accessed on 14 November 2022).
- Klimstra, D.S.; Kloppel, G.; La Rosa, S.; Rindi, G. Classification of neuroendocrine neoplasms of the digestive system. In WHO Classification of Tumours, Digestive System Tumours, 5th ed.; IARC Press: Lyon, France, 2019. [Google Scholar]
- Popa, O.; Taban, S.; Pantea, S.; Plopeanu, A.; Barna, R.; Cornianu, M.; Pascu, A.-A.; Dema, A.L. The new WHO classification of gastrointestinal neuroendocrine tumors and immunohistochemical expression of somatostatin receptor 2 and 5. Exp. Ther. Med. 2021, 22, 705. [Google Scholar] [CrossRef] [PubMed]
- Pavel, M.; Öberg, K.; Falconi, M.; Krenning, E.; Sundin, A.; Perren, A.; Berruti, A.; O’Connor, J.M.; Tamburrano, P.; Uz Zanabili, A.; et al. Gastroenteropancreatic neuroendocrine neoplasms: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2020, 31, 844–860. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, N. Neuroendocrine Neoplasms of the Pancreas: The Pathological Viewpoint. JOP J. Pancreas 2018, 19, 328–334. [Google Scholar]
- Halfdanarson, T.R.; Strosberg, J.R.; Tang, L.; Bellizzi, A.M.; Bergsland, E.K.; O’Dorisio, T.M.; Halperin, D.M.; Fishbein, L.; Eads, J.; Hope, T.A.; et al. The North American neuroendocrine tumor society consensus guidelines for surveillance and medical management of pancreatic neuroendocrine tumors. Pancreas 2020, 49, 863–881. [Google Scholar] [CrossRef]
- Donovan, T.A.; Moore, F.M.; Bertram, C.A.; Luong, R.; Bolfa, P.; Klopfleisch, R.; Tvedten, H.; Salas, E.N.; Whitley, D.B.; Aubreville, M.; et al. Mitotic figures—Normal, atypical, and imposters: A guide to identification. Vet. Pathol. 2021, 58, 243–257. [Google Scholar] [CrossRef]
- Bertram, C.A.; Aubreville, M.; Marzahl, C.; Maier, A.; Klopfleisch, R. A large-scale dataset for mitotic figure assessment on whole slide images of canine cutaneous mast cell tumor. Sci. Data 2019, 6, 293. [Google Scholar] [CrossRef]
- Elmaci, I.; Altinoz, M.A.; Sari, R.; Bolukbasi, F.H. Phosphorylated histone H3 (PHH3) as a novel cell proliferation marker and prognosticator for meningeal tumors: A short review. Appl. Immunohistochem. Mol. Morphol. 2018, 26, 627–631. [Google Scholar] [CrossRef]
- Govind, D.; Jen, K.-Y.; Matsukuma, K.; Gao, G.; Olson, K.A.; Gui, D.; Wilding, G.; Border, S.P.; Sarder, P. Improving the accuracy of gastrointestinal neuroendocrine tumor grading with deep learning. Sci. Rep. 2020, 10, 14811. [Google Scholar] [CrossRef]
- Shaker, N.; Shen, R.; Limbach, A.L.; Satturwar, S.; Kobalka, P.; Ahmadian, S.; Sun, S.; Chen, W.; Lujan, G.; Esnakula, A.; et al. Automated imaging analysis of Ki-67 immunohistochemistry on whole slide images of cell blocks from pancreatic neuroendocrine neoplasms. J. Am. Soc. Cytopathol. 2024, 13, 205–212. [Google Scholar] [CrossRef]
- Houpt, J.A.; Liu, E.; Wang, H.; Cecchini, M.J.; Ling, C.; Zhang, Q. Determination of Ki-67 indices in neuroendocrine tumours of the gastrointestinal tract: The past, the present, and the future. Virchows Arch. 2025, 486, 1001–1009. [Google Scholar] [CrossRef]
- Ma, M.; Gu, W.; Liang, Y.; Han, X.; Zhang, M.; Xu, M.; Gao, H.; Tang, W.; Huang, D. A novel model for predicting postoperative liver metastasis in R0 resected pancreatic neuroendocrine tumors: Integrating computational pathology and deep learning-radiomics. J. Transl. Med. 2024, 22, 768. [Google Scholar] [CrossRef]
- Li, X.; Yang, F.; Zhang, Y.; Yang, Z.; Chen, R.; Zhou, M.; Yang, L. DeepTFtyper: An interpretable morphology-aware graph neural network for translating histopathology images into molecular subtypes in small cell lung cancer. Brief. Bioinform. 2025, 26, bbaf284. [Google Scholar] [CrossRef]
- Shen, Z.; Simard, M.; Brand, D.; Andrei, V.; Al-Khader, A.; Oumlil, F.; Trevers, K.; Butters, T.; Haefliger, S.; Kara, E.; et al. A deep learning framework deploying segment anything to detect pan-cancer mitotic figures from haematoxylin and eosin-stained slides. Commun. Biol. 2024, 7, 1674. [Google Scholar] [CrossRef] [PubMed]
- Farnell, D.A.; Huntsman, D.; Bashashati, A. The coming 15 years in gynaecological pathology: Digitisation, artificial intelligence, and new technologies. Histopathology 2020, 76, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Aubreville, M.; Bertram, C.A.; Breininger, K.; Jabari, S.; Stathonikos, N.; Veta, M. MItosis DOmain Generalization Challenge 2022. Zenodo. 2022. Available online: https://doi.org/10.5281/zenodo.6362337 (accessed on 14 November 2022).
- Burgart, L.J.; Chopp, W.V.; Jain, D. Protocol for the Examination of Specimens from Patients with Well-Differentiated Neuroendocrine Tumors (Carcinoid Tumors); College of American Pathologists: Northfield, IL, USA, 2021. [Google Scholar]
- Chu, J. (Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada). Personal communication, 10 March 2023.
- Janowczyk, A.; Zuo, R.; Gilmore, H.; Feldman, M.; Madabhushi, A. HistoQC: An open-source quality control tool for digital pathology slides. JCO Clin. Cancer Inform. 2019, 3, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; Le, Q.V. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Wilm, F.; Marzahl, C.; Breininger, K.; Aubreville, M. Domain adversarial RetinaNet as a reference algorithm for the MItosis DOmain generalization challenge. In Proceedings of the MICCAI 2021 Challenges, Strasbourg, France, 27 September–1 October 2021; pp. 5–13. [Google Scholar]
- Lakshmi, S.; Ritwik, K.V.S.; Vijayasenan, D.; Sreeram, S.; Suresh, P.K. Deep learning model based Ki-67 index estimation with automatically labelled data. In Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 1412–1415. [Google Scholar]
- OpenCV. Hough Circle Transform. Available online: https://docs.opencv.org/4.x/d9/d61/tutorial_py_morphological_ops.html (accessed on 13 April 2023).
- Riasatian, A.; Babaie, M.; Maleki, D.; Kalra, S.; Valipour, M.; Hemati, S.; Zaveri, M.; Safarpoor, A.; Shafiei, S.; Afshari, M.; et al. Fine-tuning and training of densenet for histopathology image representation using TCGA diagnostic slides. Med. Image Anal. 2021, 70, 102028. [Google Scholar] [CrossRef]
- Ilse, M.; Tomczak, J.M.; Welling, M. Attention-based deep multiple instance learning. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 2127–2136. [Google Scholar]
- Farahani, H.; Boschman, J.; Farnell, D.; Darbandsari, A.; Zhang, A.; Ahmadvand, P.; Jones, S.J.M.; Huntsman, D.G.; Köbel, M.; Gilks, C.B.; et al. Deep learning-based histotype diagnosis of ovarian carcinoma whole-slide pathology images. Mod. Pathol. 2022, 35, 1983–1990. [Google Scholar] [CrossRef]
- Schirris, Y.; Gavves, E.; Nederlof, I.; Horlings, H.M.; Teuwen, J. DeepSMILE: Self-supervised heterogeneity-aware multiple instance learning for DNA damage response defect classification directly from H&E whole-slide images. arXiv 2021, arXiv:2107.09405. [Google Scholar]
- Kraus, O.Z.; Ba, J.L.; Frey, B.J. Classifying and segmenting microscopy images with deep multiple instance learning. Bioinformatics 2016, 32, i52–i59. [Google Scholar] [CrossRef]
- Davidson-Pilon, C. lifelines: Survival analysis in Python. J. Open Source Softw. 2019, 4, 1317. [Google Scholar] [CrossRef]
- Alabdallah, A.; Ohlsson, M.; Pashami, S.; Rognvaldsson, T. The Concordance Index decomposition—A measure for a deeper understanding of survival prediction models. arXiv 2022, arXiv:2203.00144. [Google Scholar] [CrossRef]
- Scikit Survival. Evaluating Survival Models. Available online: https://scikit-survival.readthedocs.io/en/stable/user_guide/evaluating-survival-models.html (accessed on 1 January 2023).
- Vesterinen, T.; Säilä, J.; Blom, S.; Pennanen, M.; Leijon, H.; Arola, J. Automated assessment of Ki-67 proliferation index in neuroendocrine tumors by deep learning. APMIS 2022, 130, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Luchini, C.; Pantanowitz, L.; Adsay, V.; Asa, S.L.; Antonini, P.; Girolami, I.; Veronese, N.; Nottegar, A.; Cingarlini, S.; Landoni, L.; et al. Ki-67 assessment of pancreatic neuroendocrine neoplasms: Systematic review and meta-analysis of manual vs. digital pathology scoring. Mod. Pathol. 2022, 35, 712–720. [Google Scholar] [CrossRef] [PubMed]
- Kosaraju, S.; Park, J.; Lee, H.; Yang, J.W.; Kang, M. Deep learning-based framework for slide-based histopathological image analysis. Sci. Rep. 2022, 12, 19075. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Tan, C.; Wang, X.; Ding, X.; Zhang, B.; Yang, Z.; Wang, Y.; Sheng, W.; Huang, D. Digital Image Analysis of Ki67 heterogeneity improves the diagnosis and prognosis of gastroenteropancreatic neuroendocrine neoplasms. Mod. Pathol. 2023, 36, 100017. [Google Scholar] [CrossRef]
- Bera, K.; Schalper, K.A.; Rimm, D.L.; Velcheti, V.; Madabhushi, A. Artificial intelligence in digital pathology—New tools for diagnosis and precision oncology. Nat. Rev. Clin. Oncol. 2019, 16, 703–715. [Google Scholar] [CrossRef]
- Ayesha, S.; Karim, M.M.; Shahid, A.H.; Rehman, A.U.; Uddin, Z.; Abid, S. Diagnostic role of endoscopic ultrasonography in defining the clinical features and histopathological spectrum of gastroenteropancreatic neuroendocrine tumors. World J. Gastrointest. Endosc. 2025, 17, 104539. [Google Scholar] [CrossRef]
- Massironi, S.; Conte, D.; Sciola, V.; Pirola, L.; Paggi, S.; Fraquelli, M.; Ciafardini, C.; Spampatti, M.P.; Peracchi, M. Contrast-enhanced ultrasonography in evaluating hepatic metastases from neuroendocrine tumours. Dig. Liver Dis. 2010, 42, 635–641. [Google Scholar] [CrossRef]
Biology | Grade | Mitotic Count 1 | Ki-67 Index 2 |
---|---|---|---|
G1 | <2 | <3 | |
Well-Differentiated (NETs) | G2 | 2–20 | 3–20 |
G3 | >20 | >20 | |
Poorly Differentiated (NECs) | G3 | >20 | >20 |
Stain | Unit | Grade | ||
---|---|---|---|---|
G1 | G2 | G3 | ||
H&E | Patients | 109 | 56 | 21 |
Slides | 145 | 76 | 26 | |
Ki-67 | Patients | 77 | 38 | 20 |
Slides | 78 | 38 | 22 |
Source | Method | 3-Fold Average Balanced Accuracy (%) |
---|---|---|
H&E | Patch-Based | 52.8 |
DeepMIL [29] | 46.6 | |
VarMIL [31] | 36.5 | |
NoisyAND [32] | 41.5 | |
Histogram MLP RetinaNet-DA [25] | 77.5 | |
H&E + Ki-67 | Naïve Combination 1 | 82.1 |
Naïve Combination 2 | 82.1 | |
MLP Concatenated Features | 83.0 | |
Log Concatenated Features | 74.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadjifaradji, A.; Diaz-Stewart, M.; Chu, J.; Farnell, D.; Schaeffer, D.; Farahani, H.; Bashashati, A.; Loree, J.M. A Deep Learning Framework for Classification of Neuroendocrine Neoplasm Whole Slide Images. Cancers 2025, 17, 2991. https://doi.org/10.3390/cancers17182991
Hadjifaradji A, Diaz-Stewart M, Chu J, Farnell D, Schaeffer D, Farahani H, Bashashati A, Loree JM. A Deep Learning Framework for Classification of Neuroendocrine Neoplasm Whole Slide Images. Cancers. 2025; 17(18):2991. https://doi.org/10.3390/cancers17182991
Chicago/Turabian StyleHadjifaradji, Amir, Michael Diaz-Stewart, Jenny Chu, David Farnell, David Schaeffer, Hossein Farahani, Ali Bashashati, and Jonathan M. Loree. 2025. "A Deep Learning Framework for Classification of Neuroendocrine Neoplasm Whole Slide Images" Cancers 17, no. 18: 2991. https://doi.org/10.3390/cancers17182991
APA StyleHadjifaradji, A., Diaz-Stewart, M., Chu, J., Farnell, D., Schaeffer, D., Farahani, H., Bashashati, A., & Loree, J. M. (2025). A Deep Learning Framework for Classification of Neuroendocrine Neoplasm Whole Slide Images. Cancers, 17(18), 2991. https://doi.org/10.3390/cancers17182991