A Novel Nuclear-Localized Micropeptide, MP60, Promotes Hepatocellular Carcinoma Progression via the Epithelial-Mesenchymal Transition
Simple Summary
Abstract
1. Introduction
2. Results
2.1. HCC-Associated LINC01138 (ENST00000614292) Is Conserved in Humans and Mice and Shows Potential for Encoding Micropeptides
2.2. LINC01138 (ENST00000614292) Encodes a 60-Amino-Acid Micropeptide (MP60) Localized in the Nucleus
2.3. High Expression of MP60 in HCC Promotes Tumor Growth and Metastasis, and Predicts Poor Prognosis
2.4. MP60 Binds Directly to RBM10 and Modulates Its Expression
2.5. MP60 Regulates EMT in HCC
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. TCGA Database Analysis
5.2. Bioinformatic Prediction
5.3. Cell Lines and Cell Culture
5.4. Cell Transfection and Vector Construction
5.5. Gene Editing
5.6. RNA Isolation and RT-qPCR Analysis
5.7. Protein Extraction and Western Blot Analysis
5.8. Co-Immunoprecipitation (Co-IP)
5.9. Cell Proliferation Assay
5.10. Transwell Migration Assays
5.11. Adhesion Assay
5.12. In Vivo Animal Model
5.13. RNA-Seq
5.14. Molecular Docking
5.15. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Konyn, P.; Ahmed, A.; Kim, D. Current epidemiology in hepatocellular carcinoma. Expert Rev. Gastroenterol. Hepatol. 2021, 15, 1295–1307. [Google Scholar] [CrossRef]
- Konyn, P.; Ahmed, A.; Kim, D. The current trends in the health burden of primary liver cancer across the globe. Clin. Mol. Hepatol. 2023, 29, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liu, L. Novel insights into small open reading frame-encoded micropeptides in hepatocellular carcinoma: A potential breakthrough. Cancer Lett. 2024, 587, 216691. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.; Chen, Y.; Li, X.; Li, J.; Zhao, Y.; Shen, J.; Du, F.; Kaboli, P.J.; Li, M.; Wu, X.; et al. Long Non-Coding RNAs: Potential Biomarkers and Targets for Hepatocellular Carcinoma Therapy and Diagnosis. Int. J. Biol. Sci. 2021, 17, 220–235. [Google Scholar] [CrossRef]
- Setrerrahmane, S.; Li, M.; Zoghbi, A.; Lv, X.; Zhang, S.; Zhao, W.; Lu, J.; Craik, D.J.; Xu, H. Cancer-related micropeptides encoded by ncRNAs: Promising drug targets and prognostic biomarkers. Cancer Lett. 2022, 547, 215723. [Google Scholar] [CrossRef]
- Xu, W.; Deng, B.; Lin, P.; Liu, C.; Li, B.; Huang, Q.; Zhou, H.; Yang, J.; Qu, L. Ribosome profiling analysis identified a KRAS-interacting microprotein that represses oncogenic signaling in hepatocellular carcinoma cells. Sci. China Life Sci. 2019, 63, 529–542. [Google Scholar] [CrossRef]
- Guo, Z.W.; Meng, Y.; Zhai, X.-M.; Xie, C.; Zhao, N.; Li, M.; Zhou, C.-L.; Li, K.; Liu, T.-C.; Yang, X.-X.; et al. Translated Long Non-Coding Ribonucleic Acid ZFAS1 Promotes Cancer Cell Migration by Elevating Reactive Oxygen Species Production in Hepatocellular Carcinoma. Front. Genet. 2019, 10, 1111. [Google Scholar] [CrossRef]
- Pang, Y.; Liu, Z.; Han, H.; Wang, B.; Li, W.; Mao, C.; Liu, S. Peptide SMIM30 promotes HCC development by inducing SRC/YES1 membrane anchoring and MAPK pathway activation. J. Hepatol. 2020, 73, 1155–1169. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhao, K.; Xu, X.; Yang, Y.; Yan, S.; Wei, P.; Liu, H.; Xu, J.; Xiao, F.; Zhou, H.; et al. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat. Commun. 2018, 9, 4475. [Google Scholar] [CrossRef]
- Xiao, M.-H.; Lin, Y.-F.; Xie, P.-P.; Chen, H.-X.; Deng, J.-W.; Zhang, W.; Zhao, N.; Xie, C.; Meng, Y.; Liu, X.; et al. Downregulation of a mitochondrial micropeptide, MPM, promotes hepatoma metastasis by enhancing mitochondrial complex I activity. Mol. Ther. 2022, 30, 714–725. [Google Scholar] [CrossRef]
- Polenkowski, M.; de Lara, S.B.; Allister, A.B.; Nguyen, T.N.Q.; Tamura, T.; Tran, D.D.H. Identification of Novel Micropeptides Derived from Hepatocellular Carcinoma-Specific Long Noncoding RNA. Int. J. Mol. Sci. 2021, 23, 58. [Google Scholar] [CrossRef]
- Sang, Y.; Liu, J.-Y.; Wang, F.-Y.; Luo, X.-Y.; Chen, Z.-Q.; Zhuang, S.-M.; Zhu, Y. Mitochondrial micropeptide STMP1 promotes G1/S transition by enhancing mitochondrial complex IV activity. Mol. Ther. 2022, 30, 2844–2855. [Google Scholar] [CrossRef]
- Zhang, Q.; Wei, T.; Yan, L.; Zhu, S.; Jin, W.; Bai, Y.; Zeng, Y.; Zhang, X.; Yin, Z.; Yang, J.; et al. Hypoxia-Responsive lncRNA AC115619 Encodes a Micropeptide That Suppresses m6A Modifications and Hepatocellular Carcinoma Progression. Cancer Res. 2023, 83, 2496–2512. [Google Scholar] [CrossRef]
- Huang, K.; Lu, Z.; Li, L.; Peng, G.; Zhou, W.; Ye, Q. Construction of a ceRNA network and a genomic-clinicopathologic nomogram to predict survival for HBV-related HCC. Hum. Cell 2021, 34, 1830–1842. [Google Scholar] [CrossRef]
- Yang, S.; Zhou, Y.; Zhang, X.; Wang, L.; Fu, J.; Zhao, X.; Yang, L. The prognostic value of an autophagy-related lncRNA signature in hepatocellular carcinoma. BMC Bioinform. 2021, 22, 1–16. [Google Scholar] [CrossRef]
- Gao, C.; Zhou, G.; Cheng, M.; Feng, L.; Cao, P.; Zhou, G. Identification of senescence-associated long non-coding RNAs to predict prognosis and immune microenvironment in patients with hepatocellular carcinoma. Front. Genet. 2022, 13, 956094. [Google Scholar] [CrossRef] [PubMed]
- Su, D.; Zhang, Z.; Xu, Z.; Xia, F.; Yan, Y. A prognostic exosome-related LncRNA risk model correlates with the immune microenvironment in liver cancer. Front. Genet. 2022, 13, 965329. [Google Scholar] [CrossRef]
- Li, F.; Xue, X.; Zheng, M. Identification and Characterization of an Ageing-Associated 13-lncRNA Signature That Predicts Prognosis and Immunotherapy in Hepatocellular Carcinoma. J. Oncol. 2023, 2023, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, J.; Liu, X.; Li, S.; Wang, Q.; Chen, D.; Hu, Z.; Yu, T.; Ding, J.; Li, J.; et al. The LINC01138 drives malignancies via activating arginine methyltransferase 5 in hepatocellular carcinoma. Nat. Commun. 2018, 9, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Rodor, J.; FitzPatrick, D.R.; Eyras, E.; Cáceres, J.F. The RNA-binding landscape of RBM10 and its role in alternative splicing regulation in models of mouse early development. RNA Biol. 2016, 14, 45–57. [Google Scholar] [CrossRef]
- Zhao, J.; Sun, Y.; Huang, Y.; Song, F.; Huang, Z.; Bao, Y.; Zuo, J.; Saffen, D.; Shao, Z.; Liu, W.; et al. Functional analysis reveals that RBM10 mutations contribute to lung adenocarcinoma pathogenesis by deregulating splicing. Sci. Rep. 2017, 7, 40488. [Google Scholar] [CrossRef]
- Dou, X.; Chen, X.; Zhou, Q.; Wen, M.; Zhang, S.; Zhang, S. miR-335 modulates Numb alternative splicing via targeting RBM10 in endometrial cancer. Kaohsiung J. Med Sci. 2020, 36, 171–177. [Google Scholar] [CrossRef]
- Wang, K.; Bacon, M.L.; Tessier, J.J.; Rintala-Maki, N.D.; Tang, V.; Sutherland, L.C. RBM10 Modulates Apoptosis and Influences TNF-α Gene Expression. J. Cell Death 2012, 5, 1–19. [Google Scholar] [CrossRef]
- Bechara, E.G.; Sebestyén, E.; Bernardis, I.; Eyras, E.; Valcárcel, J. RBM5, 6, and 10 Differentially Regulate NUMB Alternative Splicing to Control Cancer Cell Proliferation. Mol. Cell 2013, 52, 720–733. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Xie, S.; Jiang, L.; Liu, L.; Li, L.; Luo, L.; Chen, Y.; Zhang, J.; Yu, L.; Zhang, Y.; et al. Increased cell apoptosis in human lung adenocarcinoma and in vivo tumor growth inhibition by RBM10, a tumor suppressor gene. Oncol. Lett. 2017, 14, 4663–4669. [Google Scholar] [CrossRef] [PubMed]
- Serrano, P.; Hammond, J.A.; Geralt, M.; Wüthrich, K. Splicing Site Recognition by Synergy of Three Domains in Splicing Factor RBM10. Biochemistry 2018, 57, 1563–1567. [Google Scholar] [CrossRef] [PubMed]
- Vinayanuwattikun, C.; Le Calvez-Kelm, F.; Abedi-Ardekani, B.; Zaridze, D.; Mukeria, A.; Voegele, C.; Vallée, M.; Purnomosari, D.; Forey, N.; Durand, G.; et al. Elucidating Genomic Characteristics of Lung Cancer Progression from In Situ to Invasive Adenocarcinoma. Sci. Rep. 2016, 6, 31628. [Google Scholar] [CrossRef]
- Yamada, H.; Tsutsumi, K.; Nakazawa, Y.; Shibagaki, Y.; Hattori, S.; Ohta, Y.; Garcia-Mata, R. Src Family Tyrosine Kinase Signaling Regulates FilGAP through Association with RBM10. PLoS ONE 2016, 11, e0146593. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, J.; Shen, F. Protective effect of the RNA-binding protein RBM10 in hepatocellular carcinoma. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 6005–6013. [Google Scholar] [CrossRef]
- Zhu, M.; Gribskov, M. MiPepid: MicroPeptide identification tool using machine learning. BMC Bioinform. 2019, 20, 1–11. [Google Scholar] [CrossRef]
- Wang, L.; Park, H.J.; Dasari, S.; Wang, S.; Kocher, J.-P.; Li, W. CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Res. 2013, 41, e74. [Google Scholar] [CrossRef]
- Kang, Y.-J.; Yang, D.-C.; Kong, L.; Hou, M.; Meng, Y.-Q.; Wei, L.; Gao, G. CPC2: A fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res. 2017, 45, 12–16. [Google Scholar] [CrossRef]
- Lin, M.F.; Jungreis, I.; Kellis, M. PhyloCSF: A comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics 2011, 27, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Bu, D.; Yu, K.; Sun, S.; Xie, C.; Skogerbø, G.; Miao, R.; Xiao, H.; Liao, Q.; Luo, H.; Zhao, G.; et al. NONCODE v3.0: Integrative annotation of long noncoding RNAs. Nucleic Acids Res. 2012, 40, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Thumuluri, V.; Armenteros, J.J.A.; Johansen, A.R.; Nielsen, H.; Winther, O. DeepLoc 2.0: Multi-label subcellular localization prediction using protein language models. Nucleic Acids Res. 2022, 50, 228–234. [Google Scholar] [CrossRef]
- Cao, Y.; Di, X.; Zhang, Q.; Li, R.; Wang, K. RBM10 Regulates Tumor Apoptosis, Proliferation, and Metastasis. Front. Oncol. 2021, 11, 603932. [Google Scholar] [CrossRef]
- Cao, Y.; Geng, J.; Wang, X.; Meng, Q.; Xu, S.; Lang, Y.; Zhou, Y.; Qi, L.; Wang, Z.; Wei, Z.; et al. RNA-binding motif protein 10 represses tumor progression through the Wnt/β- catenin pathway in lung adenocarcinoma. Int. J. Biol. Sci. 2022, 18, 124–139. [Google Scholar] [CrossRef]
- Loiselle, J.J.; Roy, J.G.; Sutherland, L.C.; Ahmad, A. RBM10 promotes transformation-associated processes in small cell lung cancer and is directly regulated by RBM5. PLoS ONE 2017, 12, e0180258. [Google Scholar] [CrossRef]
- van Heesch, S.; Witte, F.; Schneider-Lunitz, V.; Schulz, J.F.; Adami, E.; Faber, A.B.; Kirchner, M.; Maatz, H.; Blachut, S.; Sandmann, C.-L.; et al. The Translational Landscape of the Human Heart. Cell 2019, 178, 242–260. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Brunner, A.-D.; Cogan, J.Z.; Nuñez, J.K.; Fields, A.P.; Adamson, B.; Itzhak, D.N.; Li, J.Y.; Mann, M.; Leonetti, M.D.; et al. Pervasive functional translation of noncanonical human open reading frames. Science 2020, 367, 1140–1146. [Google Scholar] [CrossRef]
- Prensner, J.R.; Enache, O.M.; Luria, V.; Krug, K.; Clauser, K.R.; Dempster, J.M.; Karger, A.; Wang, L.; Stumbraite, K.; Wang, V.M.; et al. Noncanonical open reading frames encode functional proteins essential for cancer cell survival. Nat. Biotechnol. 2021, 39, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Inoue, A. RBM10: Structure, functions, and associated diseases. Gene 2021, 783, 145463. [Google Scholar] [CrossRef] [PubMed]
ENST ID | Mipepid | Ribo-Seq | MS | PhyloCSF | m6A | CPAT | CPC2 | CNCI |
---|---|---|---|---|---|---|---|---|
ENST00000614292 | 0.999996 | ribo | 1 | 1 | 1 | 0.157888 | 0.065434 | −0.06922 |
ENST00000333487 | 0.999996 | ribo | 0 | 1 | 0 | 0.307358 | 0.115502 | −0.0385 |
ENST00000435419 | 0.999993 | NA | 0 | 1 | 0 | 0.185621 | 0.066343 | −0.06717 |
ENST00000607286 | 0.999948 | ribo | 0 | 1 | 1 | 0.528369 | 0.081465 | −0.04014 |
ENST00000533481 | 0.999944 | ribo | 0 | 0 | 1 | 0.04631 | 0.025215 | −0.01556 |
ENST00000428940 | 0.999931 | ribo | 1 | 1 | 1 | 0.070693 | 0.138509 | −0.06513 |
ENST00000450728 | 0.999917 | ribo | 1 | 0 | 0 | 0.28031 | 0.286989 | −0.04956 |
ENST00000575741 | 0.999911 | ribo | 1 | 1 | 1 | 0.215749 | 0.5 | −0.03482 |
ENST00000440016 | 0.999893 | NA | 0 | 1 | 0 | 0.294139 | 0.15444 | −0.06922 |
ENST00000498967 | 0.999885 | ribo | 0 | 1 | 1 | 0.484077 | 0.750083 | −0.13353 |
Protein | Score | Sequence |
---|---|---|
RMB10 | 248 | 4 |
SRSF4 | 255 | 3 |
SRSF8 | 139 | 3 |
U2AF2 | 72 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Hong, X.; Setrerrahmane, S.; Sun, X.; Zhang, X.; Xu, H. A Novel Nuclear-Localized Micropeptide, MP60, Promotes Hepatocellular Carcinoma Progression via the Epithelial-Mesenchymal Transition. Cancers 2025, 17, 2932. https://doi.org/10.3390/cancers17172932
Li C, Hong X, Setrerrahmane S, Sun X, Zhang X, Xu H. A Novel Nuclear-Localized Micropeptide, MP60, Promotes Hepatocellular Carcinoma Progression via the Epithelial-Mesenchymal Transition. Cancers. 2025; 17(17):2932. https://doi.org/10.3390/cancers17172932
Chicago/Turabian StyleLi, Chencheng, Xiu Hong, Sarra Setrerrahmane, Xiaoyi Sun, Xue Zhang, and Hanmei Xu. 2025. "A Novel Nuclear-Localized Micropeptide, MP60, Promotes Hepatocellular Carcinoma Progression via the Epithelial-Mesenchymal Transition" Cancers 17, no. 17: 2932. https://doi.org/10.3390/cancers17172932
APA StyleLi, C., Hong, X., Setrerrahmane, S., Sun, X., Zhang, X., & Xu, H. (2025). A Novel Nuclear-Localized Micropeptide, MP60, Promotes Hepatocellular Carcinoma Progression via the Epithelial-Mesenchymal Transition. Cancers, 17(17), 2932. https://doi.org/10.3390/cancers17172932