Hodgkin Lymphoma Classification—From Historical Concepts to Current Refinements
Simple Summary
Abstract
1. Introduction
2. Evolution of Classification Systems
2.1. Historical Classification of Hodgkin Lymphoma
2.2. Current WHO 5th Edition Classification of HL
2.2.1. Recognized Subtypes of HL
- Classic Hodgkin Lymphoma
- Nodular Lymphocyte-Predominant Hodgkin Lymphoma (NLPHL)
2.2.2. Diagnostic Criteria (Morphologic and Immunophenotypic) of Classic HL and NLPHL
2.2.3. Key Updates in the WHO 5th Edition (2022/2023)
3. Contributions of the International Consensus Classification (ICC)
4. Morphology of Classic Hodgkin Lymphoma
4.1. Morphological Features of HRS Cells
4.2. Subtype-Specific Morphological Features
5. Clinical Relevance of Classification
5.1. Relevance for Diagnosis and Treatment Planning
5.2. Prognostic Implications of EBV Positivity
5.3. Role of CD30 and CD15 in Diagnosis and Therapy
5.4. Combining Morphological and Molecular Approaches
5.5. Clinical Management
6. Tumor Microenvironment and Cellular Composition
7. Unresolved Issues
7.1. Unresolved Issues in the Classification of Hodgkin Lymphoma
7.2. Unresolved Aspects of HRS Cell Morphology and Phenotype
7.3. Unresolved Therapeutic Implications of TME Variability
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Marafioti, T.; Hummel, M.; Foss, H.D.; Laumen, H.; Korbjuhn, P.; Anagnostopoulos, I.; Lammert, H.; Demel, G.; Theil, J.; Wirth, T.; et al. Hodgkin and reed-sternberg cells represent an expansion of a single clone originating from a germinal center B-cell with functional immunoglobulin gene rearrangements but defective immunoglobulin transcription. Blood 2000, 95, 1443–1450. [Google Scholar] [CrossRef]
- Kanzler, H.; Kuppers, R.; Hansmann, M.L.; Rajewsky, K. Hodgkin and Reed-Sternberg cells in Hodgkin’s disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J. Exp. Med. 1996, 184, 1495–1505. [Google Scholar] [CrossRef]
- Glaser, S.L.; Jarrett, R.F. The epidemiology of Hodgkin’s disease. Baillière’s Clin. Haematol. 1996, 9, 401–416. [Google Scholar] [CrossRef]
- Ansell, S.M. Hodgkin lymphoma: 2025 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 2024, 99, 2367–2378. [Google Scholar] [CrossRef]
- Singh, D.; Vaccarella, S.; Gini, A.; De Paula Silva, N.; Steliarova-Foucher, E.; Bray, F. Global patterns of Hodgkin lymphoma incidence and mortality in 2020 and a prediction of the future burden in 2040. Int. J. Cancer 2022, 150, 1941–1947. [Google Scholar] [CrossRef]
- Alaggio, R.; Amador, C.; Anagnostopoulos, I.; Attygalle, A.D.; Araujo, I.B.O.; Berti, E.; Bhagat, G.; Borges, A.M.; Boyer, D.; Calaminici, M.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 2022, 36, 1720–1748. [Google Scholar] [CrossRef] [PubMed]
- Kaseb, H.; Babiker, H.M. Hodgkin Lymphoma. In StatPearls [Internet]; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. A Review of Human Carcinogens: Part B: Biological Agents; World Health Organisation: Geneva, Switzerland, 2012. [Google Scholar]
- Carbone, A.; Gloghini, A. Epstein Barr Virus-Associated Hodgkin Lymphoma. Cancers 2018, 10, 163. [Google Scholar] [CrossRef] [PubMed]
- Shannon-Lowe, C.; Rickinson, A.B.; Bell, A.I. Epstein–Barr virus-associated lymphomas. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160271. [Google Scholar] [CrossRef] [PubMed]
- Berhan, A.; Bayleyegn, B.; Getaneh, Z. HIV/AIDS Associated Lymphoma: Review. Blood Lymphat. Cancer 2022, 12, 31–45. [Google Scholar] [CrossRef]
- Carbone, A.; Gloghini, A.; Caruso, A.; De Paoli, P.; Dolcetti, R. The impact of EBV and HIV infection on the microenvironmental niche underlying H odgkin lymphoma pathogenesis. Int. J. Cancer 2017, 140, 1233–1245. [Google Scholar] [CrossRef]
- Kuppers, R. Advances in Hodgkin lymphoma research. Trends Mol. Med. 2025, 31, 326–343. [Google Scholar] [CrossRef]
- Aoki, T.; Wierzbicki, K.; Sun, S.; Steidl, C.; Giulino-Roth, L. Tumor-microenvironment and molecular biology of classic Hodgkin lymphoma in children, adolescents, and young adults. Front. Oncol. 2025, 15, 1515250. [Google Scholar] [CrossRef]
- Pourmaleki, M.; Jones, C.J.; Mellinghoff, S.D.; Greenstein, B.D.; Kumar, P.; Foronda, M.; Navarrete, D.A.; Campos, C.; Roshal, M.; Schultz, N.; et al. Multiplexed Spatial Profiling of Hodgkin Reed-Sternberg Cell Neighborhoods in Classic Hodgkin Lymphoma. Clin. Cancer Res. 2024, 30, 3881–3893. [Google Scholar] [CrossRef]
- Weniger, M.A.; Kuppers, R. Molecular biology of Hodgkin lymphoma. Leukemia 2021, 35, 968–981. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 5th ed.; IARC: Lyon, France, 2023; pp. 1–21. [Google Scholar]
- Arber, D.A. The International Consensus Classification of Myeloid and Lymphoid Neoplasms; Wolters Kluwer: Hürth, Germany, 2025. [Google Scholar]
- Jackson, H., Jr.; Parker, F., Jr. Hodgkin’s disease: General considerations. N. Engl. J. Med. 1944, 230, 1–8. [Google Scholar] [CrossRef]
- Rappaport, H. Tumors of the Hematopoietic System; Armed Forces Institute of Pathology: Washington, DC, USA, 1966. [Google Scholar]
- Lukes, R.J.; Craver, L.F.; Hall, T.C.; Rappaport, H.; Ruben, P. Report of the nomenclature committee. Cancer Res. 1966, 26, 1311. [Google Scholar]
- Lukes, R.J.; Butler, J.J. The pathology and nomenclature of Hodgkin’s disease. Cancer Res. 1966, 26, 1063–1083. [Google Scholar]
- Harris, N.L.; Jaffe, E.S.; Stein, H.; Banks, P.M.; Chan, J.K.; Cleary, M.L.; Delsol, G.; De Wolf-Peeters, C.; Falini, B.; Gatter, K.C.; et al. A revised European-American classification of lymphoid neoplasms: A proposal from the International Lymphoma Study Group. Blood 1994, 84, 1361–1392. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues; IARC: Lyon, France, 2008. [Google Scholar]
- International Agency for Research on Cancer. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th ed.; IARC: Lyon, France, 2017. [Google Scholar]
- Campo, E.; Jaffe, E.S.; Cook, J.R.; Quintanilla-Martinez, L.; Swerdlow, S.H.; Anderson, K.C.; Brousset, P.; Cerroni, L.; de Leval, L.; Dirnhofer, S.; et al. The International Consensus Classification of Mature Lymphoid Neoplasms: A report from the Clinical Advisory Committee. Blood 2022, 140, 1229–1253. [Google Scholar] [CrossRef] [PubMed]
- Lam, E.; Wan, J.Y.; Aparicio, J.; Pullarkat, S.; Colombo, A.; Song, J.Y.; Chao, C.; Mejia-Arangure, J.M.; Hernandez, B.; Jiang, A. EBV Prevalence and Overall Survival in the Multi ethnic Study of Hodgkin Lymphoma (MESH). Blood 2023, 142, 6188. [Google Scholar] [CrossRef]
- Rossi, C.; Boegeholz, J.; Alig, S.K.; Garofalo, A.; Esfahani, M.S.; Schroers-Martin, J.; Olsen, M.; Kang, X.; Kurtz, D.M.; Sugio, T. Distinct Circulating Genomic Features of Classical Hodgkin Lymphoma of Older Adults. Blood 2023, 142, 4369. [Google Scholar] [CrossRef]
- Fend, F.; Quintanilla-Martinez, L. Hodgkin lymphoma. In Hematopathology, 3rd ed.; Elsevier: Philadelphia, PA, USA, 2018; pp. 363–393.e2. [Google Scholar]
- Navarro, J.T.; Molto, J.; Tapia, G.; Ribera, J.M. Hodgkin Lymphoma in People Living with HIV. Cancers 2021, 13, 4366. [Google Scholar] [CrossRef]
- Nam-Cha, S.H.; Montes-Moreno, S.; Salcedo, M.T.; Sanjuan, J.; Garcia, J.F.; Piris, M.A. Lymphocyte-rich classical Hodgkin’s lymphoma: Distinctive tumor and microenvironment markers. Mod. Pathol. 2009, 22, 1006–1015. [Google Scholar] [CrossRef] [PubMed]
- Slack, G.W.; Ferry, J.A.; Hasserjian, R.P.; Sohani, A.R.; Longtine, J.A.; Harris, N.L.; Zukerberg, L.R. Lymphocyte depleted Hodgkin lymphoma: An evaluation with immunophenotyping and genetic analysis. Leuk. Lymphoma 2009, 50, 937–943. [Google Scholar] [CrossRef]
- Benharroch, D.; Levy, A.; Gopas, J.; Sacks, M. Lymphocyte-depleted classic Hodgkin lymphoma-a neglected entity? Virchows Arch. 2008, 453, 611–616. [Google Scholar] [CrossRef]
- Martig, D.S.; Fromm, J.R. A comparison and review of the flow cytometric findings in classic Hodgkin lymphoma, nodular lymphocyte predominant Hodgkin lymphoma, T cell/histiocyte rich large B cell lymphoma, and primary mediastinal large B cell lymphoma. Cytom. B Clin. Cytom. 2022, 102, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Salvaris, R.T.; Allanson, B.M.; Collins, G.; Cheah, C. Nodular lymphocyte-predominant Hodgkin lymphoma: Advances in disease biology, risk stratification, and treatment. Haematologica 2024, 109, 3476–3487. [Google Scholar] [CrossRef]
- Eichenauer, D.A.; Engert, A. Nodular lymphocyte-predominant Hodgkin lymphoma: A unique disease deserving unique management. Hematol. Am. Soc. Hematol. Educ. Program. 2017, 2017, 324–328. [Google Scholar] [CrossRef]
- Seliem, R.M.; Ferry, J.A.; Hasserjian, R.P.; Harris, N.L.; Zukerberg, L.R. Nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) with CD30-positive lymphocyte-predominant (LP) cells. J. Hematop. 2011, 4, 175. [Google Scholar] [CrossRef]
- Ding, Y.; Jaffe, E.S. Histopathologic Features and Differential Diagnosis in Challenging Cases of Nodular Lymphocyte Predominant B-cell Lymphoma/Nodular Lymphocyte Predominant Hodgkin Lymphoma. J. Clin. Transl. Pathol. 2024, 4, 61–69. [Google Scholar] [CrossRef]
- Borchmann, P.; Eichenauer, D.A.; Frigola, G.; Campo, E. Nodular Lymphocyte-Predominant Hodgkin Lymphoma: Update on Biology and Treatment. Hematol. Oncol. 2025, 43 (Suppl. S2), e70080. [Google Scholar] [CrossRef]
- Fan, Z.; Natkunam, Y.; Bair, E.; Tibshirani, R.; Warnke, R.A. Characterization of variant patterns of nodular lymphocyte predominant hodgkin lymphoma with immunohistologic and clinical correlation. Am. J. Surg. Pathol. 2003, 27, 1346–1356. [Google Scholar] [CrossRef]
- Hartmann, S.; Eray, M.; Doring, C.; Lehtinen, T.; Brunnberg, U.; Kujala, P.; Vornanen, M.; Hansmann, M.L. Diffuse large B cell lymphoma derived from nodular lymphocyte predominant Hodgkin lymphoma presents with variable histopathology. BMC Cancer 2014, 14, 332. [Google Scholar] [CrossRef]
- Wang, H.W.; Balakrishna, J.P.; Pittaluga, S.; Jaffe, E.S. Diagnosis of Hodgkin lymphoma in the modern era. Br. J. Haematol. 2019, 184, 45–59. [Google Scholar] [CrossRef]
- Carbone, A.; Gloghini, A. Hodgkin lymphoma classification: Are we at a crossroads? Cancer 2017, 123, 3654–3655. [Google Scholar] [CrossRef] [PubMed]
- Boudová, L.; Torlakovic, E.; Delabie, J.; Reimer, P.; Pfistner, B.; Wiedenmann, S.; Diehl, V.; Müller-Hermelink, H.-K.; Rüdiger, T. Nodular lymphocyte-predominant Hodgkin lymphoma with nodules resembling T-cell/histiocyte-rich B-cell lymphoma: Differential diagnosis between nodular lymphocyte-predominant Hodgkin lymphoma and T-cell/histiocyte-rich B-cell lymphoma. Blood 2003, 102, 3753–3758. [Google Scholar] [CrossRef] [PubMed]
- Veldman, J.; Visser, L.; Huberts-Kregel, M.; Muller, N.; Hepkema, B.; van den Berg, A.; Diepstra, A. Rosetting T cells in Hodgkin lymphoma are activated by immunological synapse components HLA class II and CD58. Blood 2020, 136, 2437–2441. [Google Scholar] [CrossRef] [PubMed]
- Kosydar, S.; Ansell, S.M. The biology of classical Hodgkin lymphoma. Semin. Hematol. 2024, 64, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Connors, J.M.; Cozen, W.; Steidl, C.; Carbone, A.; Hoppe, R.T.; Flechtner, H.-H.; Bartlett, N.L. Hodgkin lymphoma. Nat. Rev. Dis. Primers 2020, 6, 61. [Google Scholar] [CrossRef]
- Chan, W.C. The Reed-Sternberg cell in classical Hodgkin’s disease. Hematol. Oncol. 2001, 19, 1–17. [Google Scholar] [CrossRef]
- Alibrahim, M.N.; Gloghini, A.; Carbone, A. Classic Hodgkin lymphoma: Pathobiological features that impact emerging therapies. Blood Rev. 2025, 71, 101271. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues, 3rd ed.; IARC: Lyon, France, 2001; Volume 3. [Google Scholar]
- Mani, H.; Jaffe, E.S. Hodgkin lymphoma: An update on its biology with new insights into classification. Clin. Lymphoma Myeloma 2009, 9, 206–216. [Google Scholar] [CrossRef]
- Sabharwal, R.; Sengupta, S.; Sharma, B.; Gupta, S. Update on Hodgkin′ s lymphoma. Clin. Cancer Investig. J. 2013, 2, 106–112. [Google Scholar] [CrossRef]
- Anagnostopoulos, I.; Hansmann, M.L.; Franssila, K.; Harris, M.; Harris, N.L.; Jaffe, E.S.; Han, J.; van Krieken, J.M.; Poppema, S.; Marafioti, T.; et al. European Task Force on Lymphoma project on lymphocyte predominance Hodgkin disease: Histologic and immunohistologic analysis of submitted cases reveals 2 types of Hodgkin disease with a nodular growth pattern and abundant lymphocytes. Blood 2000, 96, 1889–1899. [Google Scholar]
- Shimabukuro-Vornhagen, A.; Haverkamp, H.; Engert, A.; Balleisen, L.; Majunke, P.; Heil, G.; Eich, H.T.; Stein, H.; Diehl, V.; Josting, A. Lymphocyte-rich classical Hodgkin’s lymphoma: Clinical presentation and treatment outcome in 100 patients treated within German Hodgkin’s Study Group trials. J. Clin. Oncol. 2005, 23, 5739–5745. [Google Scholar] [CrossRef]
- Carbone, A.; Alibrahim, M.N.; Gloghini, A. What Is Still Unclear or Unresolved in Classic Hodgkin Lymphoma Pathobiology. Diagn. Treat. 2025, 6, 20. [Google Scholar]
- Pina-Oviedo, S.; Moran, C.A. Primary Mediastinal Classical Hodgkin Lymphoma. Adv. Anat. Pathol. 2016, 23, 285–309. [Google Scholar] [CrossRef] [PubMed]
- Thida, A.M.; Tun, A.M. Lymphocyte Depleted Hodgkin Lymphoma. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Eichenauer, D.A.; Engert, A. How I treat nodular lymphocyte-predominant Hodgkin lymphoma. Blood 2020, 136, 2987–2993. [Google Scholar] [CrossRef] [PubMed]
- Alibrahim, M.N.; Gloghini, A.; Carbone, A. Immune Deficiency/Dysregulation-Associated EBV-Positive Classic Hodgkin Lymphoma. Cancers 2025, 17, 1433. [Google Scholar] [CrossRef]
- Browne, P.; Petrosyan, K.; Hernandez, A.; Chan, J.A. The B-cell transcription factors BSAP, Oct-2, and BOB.1 and the pan-B-cell markers CD20, CD22, and CD79a are useful in the differential diagnosis of classic Hodgkin lymphoma. Am. J. Clin. Pathol. 2003, 120, 767–777. [Google Scholar] [CrossRef] [PubMed]
- Laumen, H.; Nielsen, P.J.; Wirth, T. The BOB. 1/OBF. 1 co-activator is essential for octamer-dependent transcription in B cells. Eur. J. Immunol. 2000, 30, 458–469. [Google Scholar] [CrossRef] [PubMed]
- Dumitru, A.V.; Tapoi, D.A.; Halcu, G.; Munteanu, O.; Dumitrascu, D.I.; Ceausu, M.C.; Gheorghisan-Galateanu, A.A. The Polyvalent Role of CD30 for Cancer Diagnosis and Treatment. Cells 2023, 12, 1783. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Hagemeister, F.; Wang, M.; Ahmed, S. A review of pathobiology and therapies for classic Hodgkin lymphoma. Blood Rev. 2022, 55, 100949. [Google Scholar] [CrossRef]
- Hollman-Hewgley, D.; Lazare, M.; Bordwell, A.; Zebadua, E.; Tripathi, P.; Ross, A.S.; Fisher, D.; Adams, A.; Bouman, D.; O’Malley, D.P.; et al. A single slide multiplex assay for the evaluation of classical Hodgkin lymphoma. Am. J. Surg. Pathol. 2014, 38, 1193–1202. [Google Scholar] [CrossRef]
- O’Malley, D.P.; Dogan, A.; Fedoriw, Y.; Medeiros, L.J.; Ok, C.Y.; Salama, M.E. American Registry of Pathology Expert Opinions: Immunohistochemical evaluation of classic Hodgkin lymphoma. Ann. Diagn. Pathol. 2019, 39, 105–110. [Google Scholar] [CrossRef]
- Pilichowska, M.; Pittaluga, S.; Ferry, J.A.; Hemminger, J.; Chang, H.; Kanakry, J.A.; Sehn, L.H.; Feldman, T.; Abramson, J.S.; Kritharis, A.; et al. Clinicopathologic consensus study of gray zone lymphoma with features intermediate between DLBCL and classical HL. Blood Adv. 2017, 1, 2600–2609. [Google Scholar] [CrossRef]
- Quintanilla-Martinez, L.; Fend, F. Mediastinal gray zone lymphoma. Haematologica 2011, 96, 496–499. [Google Scholar] [CrossRef]
- van Bladel, D.A.; van den Brand, M.; Rijntjes, J.; Naga, S.P.; Haacke, D.L.; Luijks, J.A.; Hebeda, K.M.; van Krieken, J.H.J.; Groenen, P.J.; Scheijen, B. Clonality assessment and detection of clonal diversity in classic Hodgkin lymphoma by next-generation sequencing of immunoglobulin gene rearrangements. Mod. Pathol. 2022, 35, 757–766. [Google Scholar] [CrossRef]
- Veltmaat, N.; Tan, G.W.; Zhong, Y.; Teesink, S.; Terpstra, M.; Bult, J.; Nijland, M.; Kluiver, J.; Diepstra, A.; van den Berg, A.; et al. Molecular profiling of cell-free DNA from classic Hodgkin lymphoma patients identifies potential prognostic clusters and corresponds with disease dynamics. Ann. Hematol. 2025, 104, 1789–1800. [Google Scholar] [CrossRef] [PubMed]
- Burton, C.; Allen, P.; Herrera, A.F. Paradigm Shifts in Hodgkin Lymphoma Treatment: From Frontline Therapies to Relapsed Disease. Am. Soc. Clin. Oncol. Educ. Book 2024, 44, e433502. [Google Scholar] [CrossRef] [PubMed]
- Ansell, S.M.; Radford, J.; Connors, J.M.; Dlugosz-Danecka, M.; Kim, W.S.; Gallamini, A.; Ramchandren, R.; Friedberg, J.W.; Advani, R.; Hutchings, M.; et al. Overall Survival with Brentuximab Vedotin in Stage III or IV Hodgkin’s Lymphoma. N. Engl. J. Med. 2022, 387, 310–320. [Google Scholar] [CrossRef]
- Straus, D.J.; Dlugosz-Danecka, M.; Connors, J.M.; Alekseev, S.; Illes, A.; Picardi, M.; Lech-Maranda, E.; Feldman, T.; Smolewski, P.; Savage, K.J.; et al. Brentuximab vedotin with chemotherapy for stage III or IV classical Hodgkin lymphoma (ECHELON-1): 5-year update of an international, open-label, randomised, phase 3 trial. Lancet Haematol. 2021, 8, e410–e421. [Google Scholar] [CrossRef] [PubMed]
- Connors, J.M.; Jurczak, W.; Straus, D.J.; Ansell, S.M.; Kim, W.S.; Gallamini, A.; Younes, A.; Alekseev, S.; Illes, A.; Picardi, M.; et al. Brentuximab Vedotin with Chemotherapy for Stage III or IV Hodgkin’s Lymphoma. N. Engl. J. Med. 2018, 378, 331–344. [Google Scholar] [CrossRef] [PubMed]
- Herrera, A.F.; LeBlanc, M.L.; Castellino, S.M.; Li, H.; Rutherford, S.C.; Evens, A.M.; Davison, K.; Punnett, A.; Hodgson, D.C.; Parsons, S.K. SWOG S1826, a randomized study of nivolumab (N)-AVD versus brentuximab vedotin (BV)-AVD in advanced stage (AS) classic Hodgkin lymphoma (HL). J. Clin. Oncol. 2023, 41, LBA4. [Google Scholar] [CrossRef]
- Kuruvilla, J.; Ramchandren, R.; Santoro, A.; Paszkiewicz-Kozik, E.; Gasiorowski, R.; Johnson, N.A.; Fogliatto, L.M.; Goncalves, I.; de Oliveira, J.S.R.; Buccheri, V.; et al. Pembrolizumab versus brentuximab vedotin in relapsed or refractory classical Hodgkin lymphoma (KEYNOTE-204): An interim analysis of a multicentre, randomised, open-label, phase 3 study. Lancet Oncol. 2021, 22, 512–524. [Google Scholar] [CrossRef] [PubMed]
- Santisteban-Espejo, A.; Perez-Requena, J.; Atienza-Cuevas, L.; Moran-Sanchez, J.; Fernandez-Valle, M.D.C.; Bernal-Florindo, I.; Romero-Garcia, R.; Garcia-Rojo, M. Prognostic Role of the Expression of Latent-Membrane Protein 1 of Epstein-Barr Virus in Classical Hodgkin Lymphoma. Viruses 2021, 13, 2523. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, X.; Tao, H.; Jia, Y. The prognostic value of Epstein-Barr virus infection in Hodgkin lymphoma: A systematic review and meta-analysis. Front. Oncol. 2022, 12, 1034398. [Google Scholar] [CrossRef]
- Nohtani, M.; Vrzalikova, K.; Ibrahim, M.; Powell, J.E.; Fennell, E.; Morgan, S.; Grundy, R.; McCarthy, K.; Dewberry, S.; Bouchal, J.; et al. Impact of Tumour Epstein-Barr Virus Status on Clinical Outcome in Patients with Classical Hodgkin Lymphoma (cHL): A Review of the Literature and Analysis of a Clinical Trial Cohort of Children with cHL. Cancers 2022, 14, 4297. [Google Scholar] [CrossRef]
- Satou, A.; Takahara, T.; Nakamura, S. An Update on the Pathology and Molecular Features of Hodgkin Lymphoma. Cancers 2022, 14, 2647. [Google Scholar] [CrossRef]
- Ohshima, K.; Sugihara, M.; Suzumiya, J.; Haraoka, S.; Kanda, M.; Shimazaki, K.; Katoh, K.; Kumagawa, M.; Kikuchi, M. Basic fibroblast growth factor and fibrosis in Hodgkin’s disease. Pathol.-Res. Pract. 1999, 195, 149–155. [Google Scholar] [CrossRef]
- Birgersdotter, A.; Baumforth, K.R.; Porwit, A.; Sjoberg, J.; Wei, W.; Bjorkholm, M.; Murray, P.G.; Ernberg, I. Inflammation and tissue repair markers distinguish the nodular sclerosis and mixed cellularity subtypes of classical Hodgkin’s lymphoma. Br. J. Cancer 2009, 101, 1393–1401. [Google Scholar] [CrossRef]
- Ribatti, D.; Tamma, R.; Annese, T.; Ingravallo, G.; Specchia, G. Inflammatory microenvironment in classical Hodgkin’s lymphoma with special stress on mast cells. Front. Oncol. 2022, 12, 964573. [Google Scholar] [CrossRef]
- Skinnider, B.F.; Mak, T.W. The role of cytokines in classical Hodgkin lymphoma. Blood 2002, 99, 4283–4297. [Google Scholar] [CrossRef]
- Cattaruzza, L.; Gloghini, A.; Olivo, K.; Di Francia, R.; Lorenzon, D.; De Filippi, R.; Carbone, A.; Colombatti, A.; Pinto, A.; Aldinucci, D. Functional coexpression of Interleukin (IL)-7 and its receptor (IL-7R) on Hodgkin and Reed-Sternberg cells: Involvement of IL-7 in tumor cell growth and microenvironmental interactions of Hodgkin’s lymphoma. Int. J. Cancer 2009, 125, 1092–1101. [Google Scholar] [CrossRef]
- Barros, M.H.; Vera-Lozada, G.; Soares, F.A.; Niedobitek, G.; Hassan, R. Tumor microenvironment composition in pediatric classical Hodgkin lymphoma is modulated by age and Epstein-Barr virus infection. Int. J. Cancer 2012, 131, 1142–1152. [Google Scholar] [CrossRef]
- Carbone, A.; Gloghini, A.; Carlo-Stella, C. Tumor microenvironment contribution to checkpoint blockade therapy: Lessons learned from Hodgkin lymphoma. Blood 2023, 141, 2187–2193. [Google Scholar] [CrossRef] [PubMed]
- Mottok, A.; Steidl, C. Biology of classical Hodgkin lymphoma: Implications for prognosis and novel therapies. Blood 2018, 131, 1654–1665. [Google Scholar] [CrossRef] [PubMed]
- Wein, F.; Kuppers, R. The role of T cells in the microenvironment of Hodgkin lymphoma. J. Leukoc. Biol. 2016, 99, 45–50. [Google Scholar] [CrossRef]
- Schreck, S.; Friebel, D.; Buettner, M.; Distel, L.; Grabenbauer, G.; Young, L.S.; Niedobitek, G. Prognostic impact of tumour-infiltrating Th2 and regulatory T cells in classical Hodgkin lymphoma. Hematol. Oncol. 2009, 27, 31–39. [Google Scholar] [CrossRef]
- Green, M.R.; Monti, S.; Rodig, S.J.; Juszczynski, P.; Currie, T.; O’Donnell, E.; Chapuy, B.; Takeyama, K.; Neuberg, D.; Golub, T.R.; et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 2010, 116, 3268–3277. [Google Scholar] [CrossRef]
- Roemer, M.G.; Advani, R.H.; Ligon, A.H.; Natkunam, Y.; Redd, R.A.; Homer, H.; Connelly, C.F.; Sun, H.H.; Daadi, S.E.; Freeman, G.J.; et al. PD-L1 and PD-L2 Genetic Alterations Define Classical Hodgkin Lymphoma and Predict Outcome. J. Clin. Oncol. 2016, 34, 2690–2697. [Google Scholar] [CrossRef]
- Roemer, M.G.M.; Redd, R.A.; Cader, F.Z.; Pak, C.J.; Abdelrahman, S.; Ouyang, J.; Sasse, S.; Younes, A.; Fanale, M.; Santoro, A.; et al. Major Histocompatibility Complex Class II and Programmed Death Ligand 1 Expression Predict Outcome After Programmed Death 1 Blockade in Classic Hodgkin Lymphoma. J. Clin. Oncol. 2018, 36, 942–950. [Google Scholar] [CrossRef]
- Carey, C.D.; Gusenleitner, D.; Lipschitz, M.; Roemer, M.G.M.; Stack, E.C.; Gjini, E.; Hu, X.; Redd, R.; Freeman, G.J.; Neuberg, D.; et al. Topological analysis reveals a PD-L1-associated microenvironmental niche for Reed-Sternberg cells in Hodgkin lymphoma. Blood 2017, 130, 2420–2430. [Google Scholar] [CrossRef]
- Cader, F.Z.; Schackmann, R.C.J.; Hu, X.; Wienand, K.; Redd, R.; Chapuy, B.; Ouyang, J.; Paul, N.; Gjini, E.; Lipschitz, M.; et al. Mass cytometry of Hodgkin lymphoma reveals a CD4(+) regulatory T-cell-rich and exhausted T-effector microenvironment. Blood 2018, 132, 825–836. [Google Scholar] [CrossRef] [PubMed]
- Werner, L.; Dreyer, J.H.; Hartmann, D.; Barros, M.H.M.; Buttner-Herold, M.; Grittner, U.; Niedobitek, G. Tumor-associated macrophages in classical Hodgkin lymphoma: Hormetic relationship to outcome. Sci. Rep. 2020, 10, 9410. [Google Scholar] [CrossRef]
- Steidl, C.; Farinha, P.; Gascoyne, R.D. Macrophages predict treatment outcome in Hodgkin’s lymphoma. Haematologica 2011, 96, 186–189. [Google Scholar] [CrossRef] [PubMed]
- Steidl, C.; Lee, T.; Shah, S.P.; Farinha, P.; Han, G.; Nayar, T.; Delaney, A.; Jones, S.J.; Iqbal, J.; Weisenburger, D.D. Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N. Engl. J. Med. 2010, 362, 875–885. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.S.; Weirather, J.L.; Lipschitz, M.; Lako, A.; Chen, P.H.; Griffin, G.K.; Armand, P.; Shipp, M.A.; Rodig, S.J. The microenvironmental niche in classic Hodgkin lymphoma is enriched for CTLA-4-positive T cells that are PD-1-negative. Blood 2019, 134, 2059–2069. [Google Scholar] [CrossRef]
- Aoki, T.; Chong, L.C.; Takata, K.; Milne, K.; Hav, M.; Colombo, A.; Chavez, E.A.; Nissen, M.; Wang, X.; Miyata-Takata, T.; et al. Single-Cell Transcriptome Analysis Reveals Disease-Defining T-cell Subsets in the Tumor Microenvironment of Classic Hodgkin Lymphoma. Cancer Discov. 2020, 10, 406–421. [Google Scholar] [CrossRef] [PubMed]
- Reichel, J.; Chadburn, A.; Rubinstein, P.G.; Giulino-Roth, L.; Tam, W.; Liu, Y.; Gaiolla, R.; Eng, K.; Brody, J.; Inghirami, G.; et al. Flow sorting and exome sequencing reveal the oncogenome of primary Hodgkin and Reed-Sternberg cells. Blood 2015, 125, 1061–1072. [Google Scholar] [CrossRef] [PubMed]
- Tiacci, E.; Ladewig, E.; Schiavoni, G.; Penson, A.; Fortini, E.; Pettirossi, V.; Wang, Y.; Rosseto, A.; Venanzi, A.; Vlasevska, S.; et al. Pervasive mutations of JAK-STAT pathway genes in classical Hodgkin lymphoma. Blood 2018, 131, 2454–2465. [Google Scholar] [CrossRef] [PubMed]
- Steidl, C.; Shah, S.P.; Woolcock, B.W.; Rui, L.; Kawahara, M.; Farinha, P.; Johnson, N.A.; Zhao, Y.; Telenius, A.; Neriah, S.B.; et al. MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature 2011, 471, 377–381. [Google Scholar] [CrossRef]
- Li, Z.; Mu, W.; Xiao, M. Genetic lesions and targeted therapy in Hodgkin lymphoma. Ther. Adv. Hematol. 2023, 14, 1–21. [Google Scholar] [CrossRef]
- Aoki, T.; Steidl, C. Novel insights into Hodgkin lymphoma biology by single-cell analysis. Blood 2023, 141, 1791–1801. [Google Scholar] [CrossRef]
Topic | WHO 5th Edition (WHO-HAEM5) | ICC (2022) |
---|---|---|
Top-level placement | “Hodgkin lymphoma” family includes cHL and NLPHL. | “Hodgkin lymphoma” includes cHL; NLPHL is moved/renamed to NLPBCL under B-cell lymphomas. |
cHL subtypes | Four subtypes retained: NScHL, MCcHL, LRcHL, LDcHL. | Same four subtypes retained. |
LRcHL | LRcHL is a true cHL subtype; may mimic NLPHL morphologically but is not an intermediate or hybrid entity. | Same. |
NLPHL/NLPBCL | Kept within HL as NLPHL (distinct entity). | Reclassified as NLPBCL (mature B-cell lymphoma). |
Relationship to THRLBCL | Notes overlap/transition; encourages recognizing THRLBCL-like (diffuse) areas when present. | Emphasizes continuum with THRLBCL; both NLPBCL and THRLBCL are in large B-cell lymphoma group. |
Gray-zone interface | MGZL placed among large B-cell lymphomas at the PMBL–cHL interface. | Same. |
Reporting emphasis | Strong on integrated diagnosis (morphology + IHC ± genetics); retains historical continuity for trials. | Adds granular pattern reporting (e.g., NLPHL/NLPBCL variant patterns, diffuse components) to inform prognosis/management. |
Nomenclature & usage | Uses NLPHL; cHL subtype names as above. | Uses NLPBCL; same cHL subtype names. |
Cells | Distinctive Morphological Features | Commonly Associated Subtype(s) |
---|---|---|
LP (Popcorn) cell | Multilobated nucleus with small, distinct nucleoli; B-cell immunophenotype | NLPHL |
Hodgkin cell | Large mononuclear cell with prominent nucleolus | All cHL subtypes |
Lacunar cell | Cytoplasmic retraction with clear perinuclear space (“lacuna”), often due to fixation artifact | NSCHL |
Mummified cell | Shrunken cell body with condensed, hyperchromatic (pyknotic) nuclei | Advanced stages of cHL |
Pleomorphic HRS cell | Markedly irregular nuclear contours with variable nucleolar size | MCcHL, advanced disease |
Area | Unresolved Issues | Details |
---|---|---|
1. Classification of Hodgkin Lymphoma | Lack of universally accepted subtyping criteria | Evolving definitions blur boundaries between subtypes. |
Clinical significance of rare or borderline variants | Intermediate features between cHL and NLPHL complicate diagnosis and treatment | |
2. Morphological and Phenotypic Specificity of HRS Cells | Mechanisms underlying phenotype heterogeneity | Inconsistent antigen expression (CD15/CD30; occasional CD20) not fully explained by genetics/epigenetics |
Role of disrupted B-cell program | Loss of B-cell identity markers (OCT2, BOB1) may affect prognosis and immune evasion, remains unclear | |
3. Therapeutic Relevance of TME Variability | Impact of cellular composition on treatment response | Tregs, macrophages, eosinophils variably influence chemotherapy, immunotherapy, and targeted agent outcomes |
Predictive value of TME-based stratification | Potential role of TME profiling in patient risk stratification and therapy selection remains under study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carbone, A.; Alibrahim, M.N. Hodgkin Lymphoma Classification—From Historical Concepts to Current Refinements. Cancers 2025, 17, 2929. https://doi.org/10.3390/cancers17172929
Carbone A, Alibrahim MN. Hodgkin Lymphoma Classification—From Historical Concepts to Current Refinements. Cancers. 2025; 17(17):2929. https://doi.org/10.3390/cancers17172929
Chicago/Turabian StyleCarbone, Antonino, and Mohamed N. Alibrahim. 2025. "Hodgkin Lymphoma Classification—From Historical Concepts to Current Refinements" Cancers 17, no. 17: 2929. https://doi.org/10.3390/cancers17172929
APA StyleCarbone, A., & Alibrahim, M. N. (2025). Hodgkin Lymphoma Classification—From Historical Concepts to Current Refinements. Cancers, 17(17), 2929. https://doi.org/10.3390/cancers17172929