CK2α Overexpression in Colorectal Cancer: Evidence for Sex- and Age-Linked Differences
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Immunohistochemical Staining
2.3. Image Processing
2.4. Multi-Cohort Meta-Analysis
2.5. Statistical Analysis
3. Results
3.1. Incidence of High CK2α Protein Intensity Is Greater in Female CRC Patients than in Male Patients
3.2. CK2α Protein Levels Are Correlated with Female Aging Across Multiple Clinical Datasets
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
5-FU | 5-fluorouracil |
BSA | Bovine serum albumin |
CDH1 | Cadherin-1 |
CK2 | Casein kinase 2 |
CK2α | Casein kinase 2 alpha |
COAD | Colon adenocarcinoma |
CPTAC | Clinical Proteomic Tumor Analysis Consortium |
CRC | Colorectal cancer |
DAB | 3,3′-diaminobenzidine |
DDX5 | DEAD-box helicase 5 |
DDX54 | DEAD-box helicase 54 |
EDTA | Ethylenediaminetetraacetic acid |
ERα | Estrogen receptor α (protein) |
ERβ | Estrogen receptor β (protein) |
ESR1 | Estrogen receptor α (gene) |
ESR2 | Estrogen receptor β (gene) |
FDA | Food and Drug Administration |
FFPE | Formalin-fixed, paraffin-embedded |
H&E | Hematoxylin and eosin |
H2O2 | Hydrogen peroxide |
HDAC1 | Histone deacetylase 1 |
HDACi | HDAC inhibition |
HNRNPD | Heterogeneous nuclear ribonucleoprotein D0 |
HRP | Horseradish peroxidase |
ICI | Immune checkpoint inhibitor |
IHC | Immunohistochemistry/immunohistochemical |
ITGA2 | Integrin alpha-2 |
MAP2K3 | Dual-specificity mitogen-activated protein kinase kinase 3 |
MBD3 | Methyl-CpG-binding domain protein 3 |
MED1 | Mediator subunit 1 |
MET | Hepatocyte growth factor receptor |
MLH1 | MutL protein homolog 1 |
MMR | DNA mismatch repair |
MSI-H | Microsatellite instability |
N-CoR2 | Corepressor nuclear corepressor 2 |
NHP2 | H/ACA ribonucleoprotein complex subunit 2 |
PBS | Phosphate-buffered saline |
PCNA | Proliferating cell nuclear antigen |
PHB2 | Prohibitin-2 |
READ | Rectum adenocarcinoma |
RRP1B | Ribosomal RNA processing protein 1 homolog B |
RT | Room temperature |
RUVBL2 | RuvB-like 2 |
SMRT | Retinoid/thyroid hormone receptors |
TOP2B | DNA topoisomerase 2-beta |
WT | Wildtype |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Colorectal Cancer Burden in EU-27. Available online: https://ecis.jrc.ec.europa.eu (accessed on 15 January 2021).
- Paulson, E.C.; Wirtalla, C.; Armstrong, K.; Mahmoud, N.N. Gender influences treatment and survival in colorectal cancer surgery. Dis. Colon Rectum 2009, 52, 1982–1991. [Google Scholar] [CrossRef]
- Streett, S.E. Endoscopic colorectal cancer screening in women: Can we do better? Gastrointest. Endosc. 2007, 65, 1047–1049. [Google Scholar] [CrossRef] [PubMed]
- Gaitonde, S.G.; Nissan, A.; Protic, M.; Stojadinovic, A.; Wainberg, Z.A.; Chen, D.C.; Bilchik, A.J. Sex-Specific Differences in Colon Cancer when Quality Measures Are Adhered to: Results from International, Prospective, Multicenter Clinical Trials. J. Am. Coll. Surg. 2017, 225, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Joo, H.J.; Lee, H.S.; Jang, B.I.; Kim, D.B.; Kim, J.H.; Park, J.J.; Kim, H.G.; Baek, I.H.; Lee, J.; Kim, B. Sex-specific differences in colorectal cancer: A multicenter retrospective cohort study. Cancer Rep. 2023, 6, e1845. [Google Scholar] [CrossRef]
- Abancens, M.; Bustos, V.; Harvey, H.; McBryan, J.; Harvey, B.J. Sexual Dimorphism in Colon Cancer. Front. Oncol. 2020, 10, 607909. [Google Scholar] [CrossRef] [PubMed]
- Abusal, F.; Aladwan, M.; Alomari, Y.; Obeidat, S.; Abuwardeh, S.; AlDahdouh, H.; Al-Shami, Q.; Odat, Q. Oral contraceptives and colorectal cancer risk—A meta-analysis and systematic review. Ann. Med. Surg. 2022, 83, 104254. [Google Scholar] [CrossRef]
- Tian, Y.; Lin, Y.; Qu, C.; Arndt, V.; Baurley, J.W.; Berndt, S.I.; Bien, S.A.; Bishop, D.T.; Brenner, H.; Buchanan, D.D.; et al. Genetic risk impacts the association of menopausal hormone therapy with colorectal cancer risk. Br. J. Cancer 2024, 130, 1687–1696. [Google Scholar] [CrossRef]
- Amitay, E.L.; Carr, P.R.; Jansen, L.; Alwers, E.; Roth, W.; Herpel, E.; Kloor, M.; Blaker, H.; Chang-Claude, J.; Brenner, H.; et al. Postmenopausal hormone replacement therapy and colorectal cancer risk by molecular subtypes and pathways. Int. J. Cancer 2020, 147, 1018–1026. [Google Scholar] [CrossRef]
- Chen, P.; Li, B.; Ou-Yang, L. Role of estrogen receptors in health and disease. Front. Endocrinol. 2022, 13, 839005. [Google Scholar] [CrossRef]
- Topi, G.; Ghatak, S.; Satapathy, S.R.; Ehrnstrom, R.; Lydrup, M.L.; Sjolander, A. Combined Estrogen Alpha and Beta Receptor Expression Has a Prognostic Significance for Colorectal Cancer Patients. Front. Med. 2022, 9, 739620. [Google Scholar] [CrossRef] [PubMed]
- Taieb, J.; Svrcek, M.; Cohen, R.; Basile, D.; Tougeron, D.; Phelip, J.M. Deficient mismatch repair/microsatellite unstable colorectal cancer: Diagnosis, prognosis and treatment. Eur. J. Cancer 2022, 175, 136–157. [Google Scholar] [CrossRef]
- Marques, A.; Cavaco, P.; Torre, C.; Sepodes, B.; Rocha, J. Tumor mutational burden in colorectal cancer: Implications for treatment. Crit. Rev. Oncol. Hematol. 2024, 197, 104342. [Google Scholar] [CrossRef]
- Dong, L.; Jiang, H.; Kang, Z.; Guan, M. Biomarkers for chemotherapy and drug resistance in the mismatch repair pathway. Clin. Chim. Acta 2023, 544, 117338. [Google Scholar] [CrossRef]
- He, Y.; Zhang, L.; Zhou, R.; Wang, Y.; Chen, H. The role of DNA mismatch repair in immunotherapy of human cancer. Int. J. Biol. Sci. 2022, 18, 2821–2832. [Google Scholar] [CrossRef]
- Ulreich, K.; Firnau, M.B.; Tagscherer, N.; Beyer, S.; Ackermann, A.; Plotz, G.; Brieger, A. High Expression of Casein Kinase 2 Alpha Is Responsible for Enhanced Phosphorylation of DNA Mismatch Repair Protein MLH1 and Increased Tumor Mutation Rates in Colorectal Cancer. Cancers 2022, 14, 1553. [Google Scholar] [CrossRef]
- Wessbecher, I.M.; Hinrichsen, I.; Funke, S.; Oellerich, T.; Plotz, G.; Zeuzem, S.; Grus, F.H.; Biondi, R.M.; Brieger, A. DNA mismatch repair activity of MutLalpha is regulated by CK2-dependent phosphorylation of MLH1 (S477). Mol. Carcinog. 2018, 57, 1723–1734. [Google Scholar] [CrossRef]
- Firnau, M.B.; Brieger, A. CK2 and the Hallmarks of Cancer. Biomedicines 2022, 10, 1987. [Google Scholar] [CrossRef]
- Chua, M.M.; Ortega, C.E.; Sheikh, A.; Lee, M.; Abdul-Rassoul, H.; Hartshorn, K.L.; Dominguez, I. CK2 in Cancer: Cellular and Biochemical Mechanisms and Potential Therapeutic Target. Pharmaceuticals 2017, 10, 18. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.Y.; Tai, C.; Hsu, J.C.; Li, C.F.; Fang, C.L.; Lai, H.C.; Hseu, Y.C.; Lin, Y.F.; Uen, Y.H. Overexpression of nuclear protein kinase CK2 alpha catalytic subunit (CK2alpha) as a poor prognosticator in human colorectal cancer. PLoS ONE 2011, 6, e17193. [Google Scholar] [CrossRef]
- Li, Y.; Dou, Y.; Da Veiga Leprevost, F.; Geffen, Y.; Calinawan, A.P.; Aguet, F.; Akiyama, Y.; Anand, S.; Birger, C.; Cao, S.; et al. Proteogenomic data and resources for pan-cancer analysis. Cancer Cell 2023, 41, 1397–1406. [Google Scholar] [CrossRef]
- Geffen, Y.; Anand, S.; Akiyama, Y.; Yaron, T.M.; Song, Y.; Johnson, J.L.; Govindan, A.; Babur, O.; Li, Y.; Huntsman, E.; et al. Pan-cancer analysis of post-translational modifications reveals shared patterns of protein regulation. Cell 2023, 186, 3945–3967.e26. [Google Scholar] [CrossRef]
- Li, Y.; Wang, B.; Ma, F.; Jiang, D.; Wang, Y.; Li, K.; Tan, S.; Feng, J.; Wang, Y.; Qin, Z.; et al. Proteomic characterization of the colorectal cancer response to chemoradiation and targeted therapies reveals potential therapeutic strategies. Cell Rep. Med. 2023, 4, 101311. [Google Scholar] [CrossRef] [PubMed]
- Carbon, S.; Ireland, A.; Mungall, C.J.; Shu, S.; Marshall, B.; Lewis, S.; Ami, G.O.H.; Web Presence Working, G. AmiGO: Online access to ontology and annotation data. Bioinformatics 2009, 25, 288–289. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef]
- Gene Ontology, C.; Aleksander, S.A.; Balhoff, J.; Carbon, S.; Cherry, J.M.; Drabkin, H.J.; Ebert, D.; Feuermann, M.; Gaudet, P.; Harris, N.L.; et al. The Gene Ontology knowledgebase in 2023. Genetics 2023, 224, iyad031. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef]
- Aguilar-Garcia, X.J.; Luna-Alvear, A.E.; Narvaez-Bandera, I.; Suarez-Gomez, D.; Isaza, C.E.; Cabrera-Rios, M. Breast and Colorectal Cancers in Women: A Meta-Analysis Driven by BioOptimatics. Puerto Rico Health Sci. J. 2024, 43, 186–195. [Google Scholar]
- Fuentes, N.; Silveyra, P. Estrogen receptor signaling mechanisms. Adv. Protein Chem. Struct. Biol. 2019, 116, 135–170. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.R.; Pinkerton, J.; Santoro, N.; Simoncini, T. Menopause-Biology, consequences, supportive care, and therapeutic options. Cell 2023, 186, 4038–4058. [Google Scholar] [CrossRef]
- Liu, Q.; Wei, F.; Wang, J.; Liu, H.; Zhang, H.; Liu, M.; Liu, K.; Ye, Z. Molecular mechanisms regulating natural menopause in the female ovary: A study based on transcriptomic data. Front. Endocrinol. 2023, 14, 1004245. [Google Scholar] [CrossRef]
- Diaz-Gay, M.; Dos Santos, W.; Moody, S.; Kazachkova, M.; Abbasi, A.; Steele, C.D.; Vangara, R.; Senkin, S.; Wang, J.; Fitzgerald, S.; et al. Geographic and age variations in mutational processes in colorectal cancer. Nature 2025, 643, 230–240. [Google Scholar] [CrossRef]
- Gong, Y.; Liu, Y.; Wang, T.; Li, Z.; Gao, L.; Chen, H.; Shu, Y.; Li, Y.; Xu, H.; Zhou, Z.; et al. Age-Associated Proteomic Signatures and Potential Clinically Actionable Targets of Colorectal Cancer. Mol. Cell. Proteom. 2021, 20, 100115. [Google Scholar] [CrossRef]
- Pretzsch, E.; Niess, H.; Bosch, F.; Westphalen, C.B.; Jacob, S.; Neumann, J.; Werner, J.; Heinemann, V.; Angele, M.K. Age and metastasis—How age influences metastatic spread in cancer. Colorectal cancer as a model. Cancer Epidemiol. 2022, 77, 102112. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhou, Y.; Zhou, G.; Qin, G.; Tan, C.; Yin, T.; Zhao, D.; Yao, S. Age-stratified proteomic characteristics and identification of promising precise clinical treatment targets of colorectal cancer. J. Proteom. 2023, 277, 104863. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Li, C.; Tan, X. An age stratified analysis of the biomarkers in patients with colorectal cancer. Sci. Rep. 2021, 11, 22464. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Ling, X.; Chakraborty, S.; Fountzilas, C.; Wang, J.; Jamroze, A.; Liu, X.; Kalinski, P.; Tang, D.G. Role of the DEAD-box RNA helicase DDX5 (p68) in cancer DNA repair, immune suppression, cancer metabolic control, virus infection promotion, and human microbiome (microbiota) negative influence. J. Exp. Clin. Cancer Res. 2023, 42, 213. [Google Scholar] [CrossRef]
- Samaan, S.; Tranchevent, L.C.; Dardenne, E.; Polay Espinoza, M.; Zonta, E.; Germann, S.; Gratadou, L.; Dutertre, M.; Auboeuf, D. The Ddx5 and Ddx17 RNA helicases are cornerstones in the complex regulatory array of steroid hormone-signaling pathways. Nucleic Acids Res. 2014, 42, 2197–2207. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, J.L.; Meng, L.L.; Hu, C.T.; Yan, Z.W.; He, Z.P.; Shi, X.Q.; Fu, G.H.; Zu, L.D. DDX54 Plays a Cancerous Role Through Activating P65 and AKT Signaling Pathway in Colorectal Cancer. Front. Oncol. 2021, 11, 650360. [Google Scholar] [CrossRef]
- Kawai, H.; Li, H.; Avraham, S.; Jiang, S.; Avraham, H.K. Overexpression of histone deacetylase HDAC1 modulates breast cancer progression by negative regulation of estrogen receptor alpha. Int. J. Cancer 2003, 107, 353–358. [Google Scholar] [CrossRef]
- Qiao, W.; Liu, H.; Liu, R.; Liu, Q.; Zhang, T.; Guo, W.; Li, P.; Deng, M. Prognostic and clinical significance of histone deacetylase 1 expression in breast cancer: A meta-analysis. Clin. Chim. Acta 2018, 483, 209–215. [Google Scholar] [CrossRef]
- Gryder, B.E.; Rood, M.K.; Johnson, K.A.; Patil, V.; Raftery, E.D.; Yao, L.P.; Rice, M.; Azizi, B.; Doyle, D.F.; Oyelere, A.K. Histone deacetylase inhibitors equipped with estrogen receptor modulation activity. J. Med. Chem. 2013, 56, 5782–5796. [Google Scholar] [CrossRef]
- Duan, N.; Hu, X.; Qiu, H.; Zhou, R.; Li, Y.; Lu, W.; Zhu, Y.; Shen, S.; Wu, W.; Yang, F.; et al. Targeting the E2F1/Rb/HDAC1 axis with the small molecule HR488B effectively inhibits colorectal cancer growth. Cell Death Dis. 2023, 14, 801. [Google Scholar] [CrossRef] [PubMed]
- Adorno-Cruz, V.; Hoffmann, A.D.; Liu, X.; Dashzeveg, N.K.; Taftaf, R.; Wray, B.; Keri, R.A.; Liu, H. ITGA2 promotes expression of ACLY and CCND1 in enhancing breast cancer stemness and metastasis. Genes. Dis. 2021, 8, 493–508. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S.; Li, W.; Wang, J.; Gong, Y.; Chen, Q.; Cao, S.; Pang, D.; Gao, S. PSAT1 Promotes Metastasis via p-AKT/SP1/ITGA2 Axis in Estrogen Receptor-Negative Breast Cancer Cell. Biomolecules 2024, 14, 990. [Google Scholar] [CrossRef]
- Maga, G.; Hubscher, U. Proliferating cell nuclear antigen (PCNA): A dancer with many partners. J. Cell Sci. 2003, 116, 3051–3060. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Zheng, J.; Ma, L.; Meng, F.; Huang, L.; Ma, D. Comparison of HER-2/neu, ER and PCNA expression in premenopausal and postmenopausal patients with breast carcinoma. APMIS 2005, 113, 175–181. [Google Scholar] [CrossRef]
- Liao, X.H.; Lu, D.L.; Wang, N.; Liu, L.Y.; Wang, Y.; Li, Y.Q.; Yan, T.B.; Sun, X.G.; Hu, P.; Zhang, T.C. Estrogen receptor alpha mediates proliferation of breast cancer MCF-7 cells via a p21/PCNA/E2F1-dependent pathway. FEBS J. 2014, 281, 927–942. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Huang, T.; Xiong, Y.; Peng, L.; Wang, R.; Zhang, G.J. The prognostic value of proliferating cell nuclear antigen expression in colorectal cancer: A meta-analysis. Medicine 2018, 97, e13752. [Google Scholar] [CrossRef]
- Masih, P.J.; Kunnev, D.; Melendy, T. Mismatch Repair proteins are recruited to replicating DNA through interaction with Proliferating Cell Nuclear Antigen (PCNA). Nucleic Acids Res. 2008, 36, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, W.; Cao, J.; Zhou, Y.; Yuan, X. Prohibitin 2: A key regulator of cell function. Life Sci. 2024, 338, 122371. [Google Scholar] [CrossRef]
- Qi, A.; Lamont, L.; Liu, E.; Murray, S.D.; Meng, X.; Yang, S. Essential Protein PHB2 and Its Regulatory Mechanisms in Cancer. Cells 2023, 12, 1211. [Google Scholar] [CrossRef]
- Chigira, T.; Nagatoishi, S.; Tsumoto, K. Differential binding of prohibitin-2 to estrogen receptor alpha and to drug-resistant ERalpha mutants. Biochem. Biophys. Res. Commun. 2015, 463, 726–731. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.; Ganesan, S.; Xia, B.; Huo, Y. Targeting c-MET Alterations in Cancer: A Review of Genetic Drivers and Therapeutic Implications. Cancers 2025, 17, 1493. [Google Scholar] [CrossRef]
- Okuda, K.; Sasaki, H.; Yukiue, H.; Yano, M.; Fujii, Y. Met gene copy number predicts the prognosis for completely resected non-small cell lung cancer. Cancer Sci. 2008, 99, 2280–2285. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, H.; Okamoto, I.; Arao, T.; Okamoto, W.; Matsumoto, K.; Taniguchi, H.; Kuwata, K.; Yamaguchi, H.; Nishio, K.; Nakagawa, K.; et al. MET amplification as a potential therapeutic target in gastric cancer. Oncotarget 2013, 4, 9–17. [Google Scholar] [CrossRef]
- Boichuck, M.; Zorea, J.; Elkabets, M.; Wolfson, M.; Fraifeld, V.E. c-Met as a new marker of cellular senescence. Aging 2019, 11, 2889–2897. [Google Scholar] [CrossRef]
- Lahtela, J.; Corson, L.B.; Hemmes, A.; Brauer, M.J.; Koopal, S.; Lee, J.; Hunsaker, T.L.; Jackson, P.K.; Verschuren, E.W. A high-content cellular senescence screen identifies candidate tumor suppressors, including EPHA3. Cell Cycle 2013, 12, 625–634. [Google Scholar] [CrossRef]
- Huentelman, M.J.; Piras, I.S.; Siniard, A.L.; De Both, M.D.; Richholt, R.F.; Balak, C.D.; Jamshidi, P.; Bigio, E.H.; Weintraub, S.; Loyer, E.T.; et al. Associations of MAP2K3 Gene Variants With Superior Memory in SuperAgers. Front. Aging Neurosci. 2018, 10, 155. [Google Scholar] [CrossRef] [PubMed]
- Pu, B.; Feng, S.; Gu, L.; Smerin, D.; Jian, Z.; Xiong, X.; Wei, L. Exploring MAP2K3 as a prognostic biomarker and potential immunotherapy target in glioma treatment. Front. Neurol. 2024, 15, 1387743. [Google Scholar] [CrossRef]
- Jia, M.; Souchelnytskyi, N.; Hellman, U.; O’Hare, M.; Jat, P.S.; Souchelnytskyi, S. Proteome profiling of immortalization-to-senescence transition of human breast epithelial cells identified MAP2K3 as a senescence-promoting protein which is downregulated in human breast cancer. Proteom. Clin. Appl. 2010, 4, 816–828. [Google Scholar] [CrossRef] [PubMed]
- Stramucci, L.; Pranteda, A.; Stravato, A.; Amoreo, C.A.; Pennetti, A.; Diodoro, M.G.; Bartolazzi, A.; Milella, M.; Bossi, G. MKK3 sustains cell proliferation and survival through p38DELTA MAPK activation in colorectal cancer. Cell Death Dis. 2019, 10, 842. [Google Scholar] [CrossRef] [PubMed]
- Baldari, S.; Ubertini, V.; Garufi, A.; D’Orazi, G.; Bossi, G. Targeting MKK3 as a novel anticancer strategy: Molecular mechanisms and therapeutical implications. Cell Death Dis. 2015, 6, e1621. [Google Scholar] [CrossRef]
- Vulliamy, T.; Beswick, R.; Kirwan, M.; Marrone, A.; Digweed, M.; Walne, A.; Dokal, I. Mutations in the telomerase component NHP2 cause the premature ageing syndrome dyskeratosis congenita. Proc. Natl. Acad. Sci. USA 2008, 105, 8073–8078. [Google Scholar] [CrossRef]
- Li, N.; Gao, L.J.; Guo, K.X.; Wang, J.; Wang, D.P.; Hou, J.Y.; Cao, J.M. NHP2 and PRPF4 are hub genes associated with the prognosis of colorectal cancer. BMC Cancer 2025, 25, 1088. [Google Scholar] [CrossRef]
- Lavasani, S.; Chlebowski, R.T.; Prentice, R.L.; Kato, I.; Wactawski-Wende, J.; Johnson, K.C.; Young, A.; Rodabough, R.; Hubbell, F.A.; Mahinbakht, A.; et al. Estrogen and colorectal cancer incidence and mortality. Cancer 2015, 121, 3261–3271. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.H.; Zhang, S.M.; Rexrode, K.M.; Manson, J.E.; Chan, A.T.; Wu, K.; Tworoger, S.S.; Hankinson, S.E.; Fuchs, C.; Gaziano, J.M.; et al. Association between sex hormones and colorectal cancer risk in men and women. Clin. Gastroenterol. Hepatol. 2013, 11, 419–424.e411. [Google Scholar] [CrossRef]
- Brandstedt, J.; Wangefjord, S.; Nodin, B.; Eberhard, J.; Jirstrom, K.; Manjer, J. Associations of hormone replacement therapy and oral contraceptives with risk of colorectal cancer defined by clinicopathological factors, beta-catenin alterations, expression of cyclin D1, p53, and microsatellite-instability. BMC Cancer 2014, 14, 371. [Google Scholar] [CrossRef]
- Martinez, A.; Grosclaude, P.; Lamy, S.; Delpierre, C. The Influence of Sex and/or Gender on the Occurrence of Colorectal Cancer in the General Population in Developed Countries: A Scoping Review. Int. J. Public. Health 2024, 69, 1606736. [Google Scholar] [CrossRef]
- Dymanus, K.A.; Butaney, M.; Magee, D.E.; Hird, A.E.; Luckenbaugh, A.N.; Ma, M.W.; Hall, M.E.; Huelster, H.L.; Laviana, A.A.; Davis, N.B.; et al. Assessment of gender representation in clinical trials leading to FDA approval for oncology therapeutics between 2014 and 2019: A systematic review-based cohort study. Cancer 2021, 127, 3156–3162. [Google Scholar] [CrossRef]
- Wagner, A.D.; Grothey, A.; Andre, T.; Dixon, J.G.; Wolmark, N.; Haller, D.G.; Allegra, C.J.; de Gramont, A.; VanCutsem, E.; Alberts, S.R.; et al. Sex and Adverse Events of Adjuvant Chemotherapy in Colon Cancer: An Analysis of 34 640 Patients in the ACCENT Database. J. Natl. Cancer Inst. 2021, 113, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Sarasqueta, C.; Zunzunegui, M.V.; Enriquez Navascues, J.M.; Querejeta, A.; Placer, C.; Perales, A.; Gonzalez, N.; Aguirre, U.; Bare, M.; Escobar, A.; et al. Gender differences in stage at diagnosis and preoperative radiotherapy in patients with rectal cancer. BMC Cancer 2020, 20, 759. [Google Scholar] [CrossRef] [PubMed]
Ulreich et al. 2022 [17] | CPTAC PanCan | Li et al. 2023 [24] | |||||
---|---|---|---|---|---|---|---|
Total | Low | High | Total | Low | High | Total | |
(n = 161; 100.00%) | (n = 91; 56.52%) | (n = 70; 43.48%) | (n = 95; 100.00%) | (n = 71; 74.74%) | (n = 24; 25.26%) | (n = 124; 100.00%) | |
Sex category | |||||||
Female | n = 81 (50.31%) | n = 45 (49.45%) | n = 36 (51.43%) | n = 54 (56.84%) | n = 41 (57.75%) | n = 13 (54.17%) | n = 27 (21.77%) |
Male | n = 80 (49.69%) | n = 46 (50.55%) | n = 34 (48.57%) | n = 41 (43.16%) | n = 30 (42.25%) | n = 11 (45.83%) | n = 97 (78.23%) |
Median age at diagnosis (IQR) | 72 (18) | 70 (19.5) | 74.5 (15.75) | 65 (18) | 67 (18) | 59 (13) | |
Localization | |||||||
Distal | n = 59 (36.65%) | n = 33 (36.26%) | n = 26 (37.14%) | ||||
Proximal | n = 95 (59.00%) | n = 55 (60.44%) | n = 40 (57.14%) | ||||
Left side of colon | n = 32 (25.81%) | ||||||
Right side of colon | n = 12 (9.68%) | ||||||
Rectum | n = 76 (61.29%) | ||||||
Unknown/other | n = 7 (4.35%) | n = 3 (3.30%) | n = 4 (5.72%) | n = 4 (3.23%) | |||
Year of diagnosis and operation | |||||||
2008 | n = 1 (0.62%) | n = 0 (0.00%) | n = 1 (1.43%) | ||||
2010 | n = 1 (0.62%) | n = 1 (1.10%) | n = 0 (0.00%) | ||||
2011 | n = 9 (5.59%) | n = 5 (5.49%) | n = 4 (5.72%) | ||||
2012 | n = 31 (19.25%) | n = 19 (20.88%) | n = 12 (17.14%) | ||||
2013 | n = 36 (22.36%) | n = 22 (24.18%) | n = 14 (20.00%) | ||||
2014 | n = 32 (19.88%) | n = 18 (19.78%) | n = 14 (20.00%) | ||||
2015 | n = 23 (14.29%) | n = 12 (13.19%) | n = 11 (15.71%) | ||||
2016 | n = 28 (17.39%) | n = 14 (15.38%) | n = 14 (20.00%) | ||||
Tumor | |||||||
pT1/pT1a | n = 12 (7.45%) | n = 9 (9.89%) | n = 3 (4.29%) | n = 0 (0.00%) | n = 0 (0.00%) | n = 0 (0.00%) | |
pT2 | n = 31 (19.26%) | n = 15 (16.48%) | n = 16 (22.86%) | n = 13 (13.68%) | n = 9 (12.68%) | n = 4 (16.67%) | |
pT3 | n = 93 (57.76%) | n = 54 (59.34%) | n = 39 (55.71%) | n = 71 (74.74%) | n = 55 (77.46%) | n = 16 (66.67%) | |
pT4/pT4a/pT4b | n = 25 (15.53%) | n = 13 (14.29%) | n = 12 (17.14%) | n = 11 (11.58%) | n = 7 (9.86%) | n = 4 (16.67%) | |
Metastases | |||||||
M0 | n = 121 (75.16%) | n = 69 (75.82%) | n = 52 (74.29%) | n = 45 (47.37%) | n = 35 (49.30%) | n = 10 (41.67%) | n = 39 (31.45%) |
M1 | n = 40 (24.84%) | n = 22 (24.18%) | n = 18 (25.71%) | n = 7 (7.37%) | n = 5 (7.04%) | n = 2 (8.33%) | n = 83 (66.94%) |
MX | n = 43 (45.26%) | n = 31 (43.66%) | n = 12 (50.00%) | n = 2 (1.61%) | |||
UICC Stage | |||||||
I | n = 37 (22.98%) | n = 20 (21.98%) | n = 17 (24.29%) | n = 10 (10.53%) | n = 7 (9.86%) | n = 3 (12.50%) | |
II/IIA/IIB/IIC | n = 47 (29.19%) | n = 32 (35.16%) | n = 15 (21.43%) | n = 39 (41.05%) | n = 29 (40.85%) | n = 10 (41.67%) | |
III/IIIA/IIIB/IIIC | n = 39 (24.23%) | n = 20 (21.98%) | n = 19 (27.14%) | n = 39 (41.05%) | n = 30 (42.25%) | n = 9 (37.50%) | |
IV/IVA/IVB | n = 38 (23.60%) | n = 19 (20.88%) | n = 19 (27.14%) | n = 7 (74.74%) | n = 5 (7.04%) | n = 2 (8.33%) | |
Histology | |||||||
Adenocarcinoma | n = 148 (91.93%) | n = 80 (87.91%) | n = 68 (97.14%) | n = 76 (80.00%) | n = 55 (77.46%) | n = 21 (87.50%) | |
Mucinous adenocarcinoma | n = 10 (6.21%) | n = 8 (8.79%) | n = 2 (2.86%) | n = 18 (18.95%) | n = 16 (22.54%) | n = 2 (8.33%) | |
Mucin-producing adenocarcinoma | n = 2 (1.24%) | n = 2 (2.20%) | n = 0 (0.00%) | ||||
Neuroendocrine carcinoma | n = 1 (0.62%) | n = 1 (1.10%) | n = 0 (0.00%) | ||||
Not reported | n = 1 (1.05%) | n = 0 (0.00%) | n = 1 (4.17%) | ||||
Race | |||||||
American Indian | n = 1 (1.05%) | n = 1 (1.41%) | n = 0 (0.00%) | ||||
Asian | n = 16 (16.84%) | n = 11 (15.49%) | n = 5 (20.83%) | ||||
Black or African American | n = 7 (74.74%) | n = 5 (7.04%) | n = 2 (8.33%) | ||||
White/Hispanic | n = 3 (3.16%) | n = 2 (2.82%) | n = 1 (4.17%) | ||||
White/not Hispanic | n = 65 (68.42%) | n = 49 (69.01%) | n = 16 (16.67%) | ||||
Unknown | n = 2 (2.11%) | n = 2 (2.82%) | n = 0 (0.00%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Friedrich, J.R.; Meier, C.; Plotz, G.; Zeuzem, S.; Brieger, A.; Overby, S.J. CK2α Overexpression in Colorectal Cancer: Evidence for Sex- and Age-Linked Differences. Cancers 2025, 17, 2857. https://doi.org/10.3390/cancers17172857
Friedrich JR, Meier C, Plotz G, Zeuzem S, Brieger A, Overby SJ. CK2α Overexpression in Colorectal Cancer: Evidence for Sex- and Age-Linked Differences. Cancers. 2025; 17(17):2857. https://doi.org/10.3390/cancers17172857
Chicago/Turabian StyleFriedrich, Jana Romy, Clara Meier, Guido Plotz, Stefan Zeuzem, Angela Brieger, and Sarah J. Overby. 2025. "CK2α Overexpression in Colorectal Cancer: Evidence for Sex- and Age-Linked Differences" Cancers 17, no. 17: 2857. https://doi.org/10.3390/cancers17172857
APA StyleFriedrich, J. R., Meier, C., Plotz, G., Zeuzem, S., Brieger, A., & Overby, S. J. (2025). CK2α Overexpression in Colorectal Cancer: Evidence for Sex- and Age-Linked Differences. Cancers, 17(17), 2857. https://doi.org/10.3390/cancers17172857