Can CT Radiomics Predict the Ki-67 Index of Gastrointestinal Stromal Tumors (GISTs)? A Systematic Review and Meta-Analysis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy and Eligibility Criteria
2.2. Inclusion and Exclusion Criteria
2.3. Quality Assessment
2.4. Data Extraction and Synthesis
2.5. Sensitivity Analysis
2.6. Subgroup Analysis
2.7. Publication Bias Risk Assessment
3. Results
3.1. Literature Search
3.2. Quality Assessment
3.3. Main Findings
3.4. Pooled Analysis of Diagnostic Performance
3.5. Sensitivity Analysis
3.6. Subgroup Analysis
3.6.1. By Type of Cohort
3.6.2. By CT Imaging Protocols
3.6.3. By the Number of Radiomics Features
3.6.4. By the Ki-67 Index Cutoff
3.7. Publication Bias
4. Discussion
5. Conclusions—Future Perspectives
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Blay, J.-Y.; Kang, Y.-K.; Nishida, T.; von Mehren, M. Gastrointestinal Stromal Tumours. Nat. Rev. Dis. Primer 2021, 7, 22. [Google Scholar] [CrossRef]
- Joensuu, H. Risk Stratification of Patients Diagnosed with Gastrointestinal Stromal Tumor. Hum. Pathol. 2008, 39, 1411–1419. [Google Scholar] [CrossRef]
- Miettinen, M.; Lasota, J. Gastrointestinal Stromal Tumors: Pathology and Prognosis at Different Sites. Semin. Diagn. Pathol. 2006, 23, 70–83. [Google Scholar] [CrossRef]
- von Mehren, M.; Kane, J.M.; Riedel, R.F.; Sicklick, J.K.; Pollack, S.M.; Agulnik, M.; Bui, M.M.; Carr-Ascher, J.; Choy, E.; Connelly, M.; et al. NCCN Guidelines® Insights: Gastrointestinal Stromal Tumors, Version 2.2022. J. Natl. Compr. Cancer Netw. JNCCN 2022, 20, 1204–1214. [Google Scholar] [CrossRef]
- Incorvaia, L.; Badalamenti, G.; Fanale, D.; Vincenzi, B.; Luca, I.D.; Algeri, L.; Barraco, N.; Brando, C.; Bonasera, A.; Bono, M.; et al. Not All KIT 557/558 Codons Mutations Have the Same Prognostic Influence on Recurrence-Free Survival: Breaking the Exon 11 Mutations in Gastrointestinal Stromal Tumors (GISTs). Ther. Adv. Med. Oncol. 2021, 13, 17588359211049779. [Google Scholar] [CrossRef] [PubMed]
- Judson, I.; Jones, R.L.; Wong, N.A.C.S.; Dileo, P.; Bulusu, R.; Smith, M.; Almond, M. Gastrointestinal Stromal Tumour (GIST): British Sarcoma Group Clinical Practice Guidelines. Br. J. Cancer 2025, 132, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yingzheng, R.; Linlin, J.; Yang, Y.; Junjie, A.; Yonghong, D. Study on the Predictive Value of Preoperative CT Features for the Mitotic Index of GIST Based on the Nomogram. Sci. Rep. 2025, 15, 8627. [Google Scholar] [CrossRef]
- Campora, M.; Paudice, M.; Gambella, A.; Comandini, D.; Parente, P.; Sbaraglia, M.; Dei Tos, A.P.; Grillo, F.; Mastracci, L. Counting Mitoses in Gastrointestinal Stromal Tumours (GISTs): Variable Practices in the Real-World Setting and Their Clinical Implications. Virchows Arch. 2023, 482, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, N.; Yamamoto, H.; Yao, T.; Oda, Y.; Nishiyama, K.; Imamura, M.; Yamada, T.; Nawata, H.; Tsuneyoshi, M. Prognostic Significance of Expressions of Cell-Cycle Regulatory Proteins in Gastrointestinal Stromal Tumor and the Relevance of the Risk Grade. Hum. Pathol. 2005, 36, 828–837. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Abi-Raad, R.; Tang, H.; Cai, G. Ki-67 Index Assessment on FNA Specimens of Gastrointestinal Stromal Tumor: Correlation with Mitotic Rate and Potential Predictive Value for Risk Stratification. Cancer Cytopathol. 2022, 130, 974–982. [Google Scholar] [CrossRef]
- Demir, L.; Ekinci, N.; Erten, C.; Kucukzeybek, Y.; Alacacioglu, A.; Somali, I.; Can, A.; Dirican, A.; Bayoglu, V.; Akyol, M.; et al. Does Immunohistochemistry Provide Additional Prognostic Data in Gastrointestinal Stromal Tumors? Asian Pac. J. Cancer Prev. APJCP 2013, 14, 4751–4758. [Google Scholar] [CrossRef] [PubMed]
- Sözütek, D.; Yanık, S.; Akkoca, A.N.; Sözütek, A.; Ozdemir, Z.T.; Avşar, C.U.; Günaldı, M.; Sahin, B.; Doron, F. Diagnostic and Prognostic Roles of DOG1 and Ki-67, in GIST Patients with Localized or Advanced/Metastatic Disease. Int. J. Clin. Exp. Med. 2014, 7, 1914–1922. [Google Scholar] [PubMed]
- Liu, X.; Qiu, H.; Zhang, P.; Feng, X.; Chen, T.; Li, Y.; Tao, K.; Li, G.; Sun, X.; Zhou, Z. Ki-67 Labeling Index May Be a Promising Indicator to Identify “Very High-Risk” Gastrointestinal Stromal Tumor: A Multicenter Retrospective Study of 1022 Patients. Hum. Pathol. 2018, 74, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.-Y.; Xu, J.; Wang, M.; Zhang, Z.-Z.; Tu, L.; Wang, C.-J.; Lin, T.-L.; Shen, Y.-Y.; Liu, Q.; Cao, H. Prognostic Value of Ki67 Index in Gastrointestinal Stromal Tumors. Int. J. Clin. Exp. Pathol. 2014, 7, 2298–2304. [Google Scholar]
- Xiao, L.; Zhang, Y.; Wang, Y.; Liu, L.; Pan, Y. The Relationship between Ki-67 Expression and Imaging Signs and Pathological Features in GISTs. Front. Surg. 2023, 10, 1095924. [Google Scholar] [CrossRef]
- Saetiew, K.; Angkathunyakul, N.; Hunnangkul, S.; Pongpaibul, A. Digital Image Analysis of Ki67 Hotspot Detection and Index Counting in Gastroenteropancreatic Neuroendocrine Neoplasms. Ann. Diagn. Pathol. 2024, 71, 152295. [Google Scholar] [CrossRef]
- Van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in Medical Imaging—“How-to” Guide and Critical Reflection. Insights Imaging 2020, 11, 91. [Google Scholar] [CrossRef]
- Shofty, B.; Artzi, M.; Shtrozberg, S.; Fanizzi, C.; DiMeco, F.; Haim, O.; Peleg Hason, S.; Ram, Z.; Bashat, D.B.; Grossman, R. Virtual Biopsy Using MRI Radiomics for Prediction of BRAF Status in Melanoma Brain Metastasis. Sci. Rep. 2020, 10, 6623. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Whiting, P.F.; Rutjes, A.W.S.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.G.; Sterne, J.A.C.; Bossuyt, P.M.M. The QUADAS-2 Group* QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- Lee, J.; Kim, K.W.; Choi, S.H.; Huh, J.; Park, S.H. Systematic Review and Meta-Analysis of Studies Evaluating Diagnostic Test Accuracy: A Practical Review for Clinical Researchers-Part II. Statistical Methods of Meta-Analysis. Korean J. Radiol. 2015, 16, 1188–1196. [Google Scholar] [CrossRef]
- Schwarzer, G.; Rücker, G. Meta-Analysis of Proportions. In Meta-Research. Methods in Molecular Biology; Evangelou, E., Veroniki, A.A., Eds.; Springer US: New York, NY, USA, 2022; Volume 2345, pp. 159–172. ISBN 978-1-07-161565-2. [Google Scholar]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions, 1st ed.; Wiley: Hoboken, NJ, USA, 2019; ISBN 978-1-119-53662-8. [Google Scholar]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in Meta-Analysis Detected by a Simple, Graphical Test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; He, C.; Fang, W.; Peng, L.; Shi, F.; Xia, Y.; Zhou, Q.; Zhang, R.; Li, C. Prediction of Ki-67 Expression in Gastrointestinal Stromal Tumors Using Radiomics of Plain and Multiphase Contrast-Enhanced CT. Eur. Radiol. 2023, 33, 7609–7617. [Google Scholar] [CrossRef]
- Xie, Z.; Suo, S.; Zhang, W.; Zhang, Q.; Dai, Y.; Song, Y.; Li, X.; Zhou, Y. Prediction of High Ki-67 Proliferation Index of Gastrointestinal Stromal Tumors Based on CT at Non-Contrast-Enhanced and Different Contrast-Enhanced Phases. Eur. Radiol. 2024, 34, 2223–2232. [Google Scholar] [CrossRef]
- Cai, W.; Guo, K.; Chen, Y.; Shi, Y.; Chen, J. Sub-Regional CT Radiomics for the Prediction of Ki-67 Proliferation Index in Gastrointestinal Stromal Tumors: A Multi-Center Study. Acad. Radiol. 2024, 31, 4974–4984. [Google Scholar] [CrossRef]
- Zheng, J.; Liao, Q.; Chen, X.; Hong, M.; Mazzocca, A.; Urbini, M.; Liu, Z.; Li, Y. Development and Validation of a Computed Tomography-Based Radiomics Signature to Predict “Highest-Risk” from Patients with High-Risk Gastrointestinal Stromal Tumor. J. Gastrointest. Oncol. 2024, 15, 125–133. [Google Scholar] [CrossRef]
- Zhang, Q.-W.; Gao, Y.-J.; Zhang, R.-Y.; Zhou, X.-X.; Chen, S.-L.; Zhang, Y.; Liu, Q.; Xu, J.-R.; Ge, Z.-Z. Personalized CT-Based Radiomics Nomogram Preoperative Predicting Ki-67 Expression in Gastrointestinal Stromal Tumors: A Multicenter Development and Validation Cohort. Clin. Transl. Med. 2020, 9, 12. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, M.; Wang, M.; Zhang, L.; Li, M.; Huang, C. CT Radiomics for the Preoperative Prediction of Ki67 Index in Gastrointestinal Stromal Tumors: A Multi-Center Study. Front. Oncol. 2021, 11, 689136. [Google Scholar] [CrossRef] [PubMed]
- Pyo, J.-S.; Kang, G.; Sohn, J.H. Ki-67 Labeling Index Can Be Used as a Prognostic Marker in Gastrointestinal Stromal Tumor: A Systematic Review and Meta-Analysis. Int. J. Biol. Markers 2016, 31, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.-W.; Zhang, R.-Y.; Yan, Z.-B.; Zhao, Y.-X.; Wang, X.-Y.; Jin, J.-Z.; Qiu, Q.-X.; Chen, J.-J.; Xie, Z.-H.; Lin, J.; et al. Personalized Radiomics Signature to Screen for KIT-11 Mutation Genotypes among Patients with Gastrointestinal Stromal Tumors: A Retrospective Multicenter Study. J. Transl. Med. 2023, 21, 726. [Google Scholar] [CrossRef]
- Xie, Z.; Zhang, Q.; Zhang, R.; Zhao, Y.; Zhang, W.; Song, Y.; Yu, D.; Lin, J.; Li, X.; Suo, S.; et al. Identification of D842V Mutation in Gastrointestinal Stromal Tumors Based on CT Radiomics: A Multi-Center Study. Cancer Imaging Off. Publ. Int. Cancer Imaging Soc. 2024, 24, 169. [Google Scholar] [CrossRef]
- Wang, M.; Feng, Z.; Zhou, L.; Zhang, L.; Hao, X.; Zhai, J. Computed-Tomography-Based Radiomics Model for Predicting the Malignant Potential of Gastrointestinal Stromal Tumors Preoperatively: A Multi-Classifier and Multicenter Study. Front. Oncol. 2021, 11, 582847. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Shang, Y.; Tan, L.; Hu, Y.; Liu, J.; Song, L.; Zhang, J.; Wang, J.; Ye, Y.; Zhang, H.; et al. Prediction of High-Risk Gastrointestinal Stromal Tumor Recurrence Based on Delta-CT Radiomics Modeling: A 3-Year Follow-up Study After Surgery. Clin. Med. Insights Oncol. 2024, 18, 11795549241245698. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Du, D.; Zheng, T.; Liu, L.; Wang, Z.; Du, J.; Yi, H.; Cui, Y.; Liu, D.; Fang, Y. Deep Learning and Radiomics to Predict the Mitotic Index of Gastrointestinal Stromal Tumors Based on Multiparametric MRI. Front. Oncol. 2022, 12, 948557. [Google Scholar] [CrossRef] [PubMed]
Outcome of Interest | Number of Studies | Effect Size (95% CI) | Effect Model | Heterogeneity | ||
---|---|---|---|---|---|---|
I2 | p-value | Q-statistic | ||||
Prediction of Ki-67 index of GISTs through CT radiomics | ||||||
Pooled AUC | 6 | 0.79 (0.74–0.84) | Fixed | 0% | 0.99 | 0.15 |
Pooled Sensitivity | 4 | 0.71 (0.63–0.79) | Random | 72% | 0.01 | 10.83 |
Pooled Specificity | 4 | 0.76 (0.73–0.78) | Fixed | 50% | 0.11 | 5.95 |
(sensitivity analysis after excluding large studies) | ||||||
Pooled Sensitivity | 2 | 0.73 (0.69–0.76) | Fixed | 46% | 0.16 | 3.68 |
Pooled Specificity | 2 | 0.73 (0.70–0.76) | Fixed | 0% | 0.58 | 1.10 |
(sensitivity analysis after excluding low-quality studies) | ||||||
Pooled Sensitivity | 2 | 0.72 (0.28–1.17) | Random | 70% | 0.07 | 3.37 |
Pooled Specificity | 2 | 0.74 (0.70–0.77) | Fixed | 7% | 0.30 | 1.08 |
(subgroup analysis by type of cohort) | ||||||
Pooled Sensitivity | 4 | 0.74 (0.73–0.77) | Random | 46% | <0.01 | 74.10 |
Pooled Specificity | 4 | 0.73 (0.73–0.74) | Fixed | 0% | 0.76 | 34.28 |
(subgroup analysis by CT imaging protocols) | ||||||
Pooled Sensitivity | 3 | 0.75 (0.74–0.76) | Fixed | 0% | 0.96 | 24.41 |
Pooled Specificity | 3 | 0.73 (0.72–0.74) | Fixed | 0% | 1.00 | 7.54 |
(subgroup analysis by number of radiomics features) | ||||||
Pooled Sensitivity | 4 | 0.74 (0.73–0.75) | Random | 46% | <0.01 | 74.10 |
Pooled Specificity | 4 | 0.73 (0.73–0.74) | Fixed | 0% | 0.76 | 34.28 |
(subgroup analysis by Ki-67 index cutoff) | ||||||
Pooled Sensitivity | 4 | 0.74 (0.73–0.74) | Random | 46% | <0.01 | 74.10 |
Pooled Specificity | 4 | 0.73 (0.73–0.74) | Fixed | 0% | 0.76 | 34.28 |
CI, confidence interval; |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadakos, S.P.; Argyrou, A.; Karniadakis, I.; Theocharopoulos, C.; Katsaros, I.; Machairas, N.; Vlachogiannakos, J.; Theocharis, S. Can CT Radiomics Predict the Ki-67 Index of Gastrointestinal Stromal Tumors (GISTs)? A Systematic Review and Meta-Analysis. Cancers 2025, 17, 2855. https://doi.org/10.3390/cancers17172855
Papadakos SP, Argyrou A, Karniadakis I, Theocharopoulos C, Katsaros I, Machairas N, Vlachogiannakos J, Theocharis S. Can CT Radiomics Predict the Ki-67 Index of Gastrointestinal Stromal Tumors (GISTs)? A Systematic Review and Meta-Analysis. Cancers. 2025; 17(17):2855. https://doi.org/10.3390/cancers17172855
Chicago/Turabian StylePapadakos, Stavros P., Alexandra Argyrou, Ioannis Karniadakis, Charalampos Theocharopoulos, Ioannis Katsaros, Nikolaos Machairas, Jiannis Vlachogiannakos, and Stamatios Theocharis. 2025. "Can CT Radiomics Predict the Ki-67 Index of Gastrointestinal Stromal Tumors (GISTs)? A Systematic Review and Meta-Analysis" Cancers 17, no. 17: 2855. https://doi.org/10.3390/cancers17172855
APA StylePapadakos, S. P., Argyrou, A., Karniadakis, I., Theocharopoulos, C., Katsaros, I., Machairas, N., Vlachogiannakos, J., & Theocharis, S. (2025). Can CT Radiomics Predict the Ki-67 Index of Gastrointestinal Stromal Tumors (GISTs)? A Systematic Review and Meta-Analysis. Cancers, 17(17), 2855. https://doi.org/10.3390/cancers17172855