Proton Beam Therapy Provides Longer Survival and Preserves Muscle Mass in Hepatocellular Carcinoma Compared to TACE+RFA
Simple Summary
Abstract
1. Introduction
2. Patients and Methods
2.1. Patients
2.2. Assessment of Hepatic Reserve Function
2.3. Proton Beam Therapy
2.4. Transarterial Chemoembolization
2.5. Radiofrequency Ablation
2.6. Propensity Score Matching
2.7. Etiology of Liver Diseases
2.8. Measurement of Psoas Muscle Area
2.9. Evaluation of Outcomes
2.10. Evaluation of Adverse Events
2.11. Statistical Analyses
3. Results
3.1. Therapeutic Effects of PBT and TACE+RFA
3.2. Changes in Psoas Muscle Size After Treatments
3.3. Progression of Muscle Atrophy After Treatment and Survival Time
3.4. Adverse Events
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Imai, K.; Takai, K.; Unome, S.; Miwa, T.; Hanai, T.; Suetsugu, A.; Shimizu, M. Lenvatinib Exacerbates the Decrease in Skeletal Muscle Mass in Patients with Hepatocellular Carcinoma, Whereas Atezolizumab Plus Bevacizumab Does Not. Cancers 2024, 16, 442. [Google Scholar] [CrossRef]
- Lai, J.C.; Tandon, P.; Bernal, W.; Tapper, E.B.; Ekong, U.; Dasarathy, S.; Carey, E.J. Malnutrition, Frailty, and Sarcopenia in Patients With Cirrhosis: 2021 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 2021, 74, 1611–1644. [Google Scholar] [CrossRef]
- Imai, K.; Takai, K.; Hanai, T.; Ideta, T.; Miyazaki, T.; Kochi, T.; Suetsugu, A.; Shiraki, M.; Shimizu, M. Skeletal muscle depletion predicts the prognosis of patients with hepatocellular carcinoma treated with sorafenib. Int. J. Mol. Sci. 2015, 16, 9612–9624. [Google Scholar] [CrossRef] [PubMed]
- Iritani, S.; Imai, K.; Takai, K.; Hanai, T.; Ideta, T.; Miyazaki, T.; Suetsugu, A.; Shiraki, M.; Shimizu, M.; Moriwaki, H. Skeletal muscle depletion is an independent prognostic factor for hepatocellular carcinoma. J. Gastroenterol. 2015, 50, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Tantai, X.; Liu, Y.; Yeo, Y.H.; Praktiknjo, M.; Mauro, E.; Hamaguchi, Y.; Engelmann, C.; Zhang, P.; Jeong, J.Y.; van Vugt, J.L.A.; et al. Effect of sarcopenia on survival in patients with cirrhosis: A meta-analysis. J. Hepatol. 2022, 76, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Hanai, T.; Shiraki, M.; Ohnishi, S.; Miyazaki, T.; Ideta, T.; Kochi, T.; Imai, K.; Suetsugu, A.; Takai, K.; Moriwaki, H.; et al. Rapid skeletal muscle wasting predicts worse survival in patients with liver cirrhosis. Hepatol. Res. 2016, 46, 743–751. [Google Scholar] [CrossRef]
- Kim, T.H.; Jung, Y.K.; Yim, H.J.; Baik, J.W.; Yim, S.Y.; Lee, Y.-S.; Seo, Y.S.; Kim, J.H.; Yeon, J.E.; Byun, K.S. Impacts of muscle mass dynamics on prognosis of outpatients with cirrhosis. Clin. Mol. Hepatol. 2022, 28, 876–889. [Google Scholar] [CrossRef]
- Bush, D.A.; Kayali, Z.; Grove, R.; Slater, J.D. The safety and efficacy of high-dose proton beam radiotherapy for hepatocellular carcinoma: A phase 2 prospective trial. Cancer 2011, 117, 3053–3059. [Google Scholar] [CrossRef]
- Hong, T.S.; Wo, J.Y.; Yeap, B.Y.; Ben-Josef, E.; McDonnell, E.I.; Blaszkowsky, L.S.; Kwak, E.L.; Allen, J.N.; Clark, J.W.; Goyal, L.; et al. Multi-Institutional Phase II Study of High-Dose Hypofractionated Proton Beam Therapy in Patients With Localized, Unresectable Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. J. Clin. Oncol. 2016, 34, 460–468. [Google Scholar] [CrossRef]
- Chuong, M.; Kaiser, A.; Molitoris, J.; Romero, A.M.; Apisarnthanarax, S. Proton beam therapy for liver cancers. J. Gastrointest. Oncol. 2020, 11, 157–165. [Google Scholar] [CrossRef]
- Toramatsu, C.; Katoh, N.; Shimizu, S.; Nihongi, H.; Matsuura, T.; Takao, S.; Miyamoto, N.; Suzuki, R.; Sutherland, K.; Kinoshita, R.; et al. What is the appropriate size criterion for proton radiotherapy for hepatocellular carcinoma? A dosimetric comparison of spot-scanning proton therapy versus intensity-modulated radiation therapy. Radiat. Oncol. 2013, 8, 48. [Google Scholar] [CrossRef]
- Nosaka, T.; Matsuda, H.; Sugata, R.; Akazawa, Y.; Takahashi, K.; Naito, T.; Ohtani, M.; Kinoshita, K.; Tsujikawa, T.; Sato, Y.; et al. Longer Survival and Preserved Liver Function after Proton Beam Therapy for Patients with Unresectable Hepatocellular Carcinoma. Curr. Oncol. 2023, 30, 3915–3926. [Google Scholar] [CrossRef]
- Chen, L.; Sun, J.; Yang, X. Radiofrequency ablation-combined multimodel therapies for hepatocellular carcinoma: Current status. Cancer Lett. 2016, 370, 78–84. [Google Scholar] [CrossRef]
- Lee, S.; Kang, T.W.; Cha, D.I.; Song, K.D.; Lee, M.W.; Rhim, H.; Lim, H.K.; Sinn, D.H.; Kim, J.M.; Kim, K. Radiofrequency ablation vs. surgery for perivascular hepatocellular carcinoma: Propensity score analyses of long-term outcomes. J. Hepatol. 2018, 69, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Zou, Y.; Lyu, T.; Fan, Z.; Guan, H.; Song, L.; Tong, X.; Wang, J. Long-term outcomes of combined transarterial chemoembolization and radiofrequency ablation versus RFA monotherapy for single hepatocellular carcinoma ≤3 cm: Emphasis on local tumor progression. Int. J. Hyperthermia 2022, 39, 1–7. [Google Scholar] [CrossRef]
- Hatzidakis, A.; Müller, L.; Krokidis, M.; Kloeckner, R. Local and Regional Therapies for Hepatocellular Carcinoma and Future Combinations. Cancers 2022, 14, 2469. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Cao, Y.; Ma, H.; Kan, X.; Zhou, C.; Liu, J.; Shi, Q.; Feng, G.; Xiong, B.; Zheng, C. Improved clinical outcome using transarterial chemoembolization combined with radiofrequency ablation for patients in Barcelona clinic liver cancer stage A or B hepatocellular carcinoma regardless of tumor size: Results of a single-center retrospective case control study. BMC Cancer 2019, 19, 983. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, H.; Qi, L.; Liu, C.; Feng, Y.; Qi, J.; Li, J.; Zhu, Q. Combined radiofrequency ablation or microwave ablation with transarterial chemoembolization can increase efficiency in intermediate-stage hepatocellular carcinoma without more complication: A systematic review and meta-analysis. Int. J. Hyperthermia 2022, 39, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Hiraoka, A.; Kumada, T.; Kudo, M.; Hirooka, M.; Koizumi, Y.; Hiasa, Y.; Tajiri, K.; Toyoda, H.; Tada, T.; Ochi, H.; et al. Hepatic Function during Repeated TACE Procedures and Prognosis after Introducing Sorafenib in Patients with Unresectable Hepatocellular Carcinoma: Multicenter Analysis. Digestive. Diseases. 2017, 35, 602–610. [Google Scholar] [CrossRef]
- Jing, C.; Li, J.; Yuan, C.; Hu, C.; Ma, L.; Zheng, J.; Zhang, Y. Therapeutic analysis of 632 cases treated by transcatheter arterial chemoembolization combined with ablation in hepatocellular carcinoma: A retrospective study. Eur. J. Radiol. 2024, 178, 111619. [Google Scholar] [CrossRef]
- Shimose, S.; Tanaka, M.; Iwamoto, H.; Niizeki, T.; Shirono, T.; Aino, H.; Noda, Y.; Kamachi, N.; Okamura, S.; Nakano, M.; et al. Prognostic impact of transcatheter arterial chemoembolization (TACE) combined with radiofrequency ablation in patients with unresectable hepatocellular carcinoma: Comparison with TACE alone using decision-tree analysis after propensity score matching. Hepatol. Res. 2019, 49, 919–928. [Google Scholar] [CrossRef] [PubMed]
- Singal, A.G.; Llovet, J.M.; Yarchoan, M.; Mehta, N.; Heimbach, J.K.; Dawson, L.A.; Jou, J.H.; Kulik, L.M.; Agopian, V.G.; Marrero, J.A.; et al. AASLD Practice Guidance on prevention, diagnosis, and treatment of hepatocellular carcinoma. Hepatology 2023, 78, 1922–1965. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.J.; Berhane, S.; Kagebayashi, C.; Satomura, S.; Teng, M.; Reeves, H.L.; O’Beirne, J.; Fox, R.; Skowronska, A.; Palmer, D.; et al. Assessment of liver function in patients with hepatocellular carcinoma: A new evidence-based approach-the ALBI grade. J. Clin. Oncol. 2015, 33, 550–558. [Google Scholar] [CrossRef]
- Hiraoka, A.; Kumada, T.; Tsuji, K.; Takaguchi, K.; Itobayashi, E.; Kariyama, K.; Ochi, H.; Tajiri, K.; Hirooka, M.; Shimada, N.; et al. Validation of Modified ALBI Grade for More Detailed Assessment of Hepatic Function in Hepatocellular Carcinoma Patients: A Multicenter Analysis. Liver Cancer 2019, 8, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Maeda, Y.; Kobashi, K.; Sato, Y.; Tamamura, H.; Yamamoto, K.; Matsushita, K.; Sasaki, M.; Tatebe, H.; Asahi, T.; Matsumoto, S.; et al. Effectiveness of CT-image guidance in proton therapy for liver cancer and the importance of daily dose monitoring for tumors and organs at risk. Med. Phys. 2023, 50, 3274–3288. [Google Scholar] [CrossRef]
- Komatsu, S.; Fukumoto, T.; Demizu, Y.; Miyawaki, D.; Terashima, K.; Sasaki, R.; Hori, Y.; Hishikawa, Y.; Ku, Y.; Murakami, M. Clinical results and risk factors of proton and carbon ion therapy for hepatocellular carcinoma. Cancer 2011, 117, 4890–4904. [Google Scholar] [CrossRef]
- Nishikawa, H.; Shiraki, M.; Hiramatsu, A.; Moriya, K.; Hino, K.; Nishiguchi, S. Japan Society of Hepatology guidelines for sarcopenia in liver disease (1st edition): Recommendation from the working group for creation of sarcopenia assessment criteria. Hepatol. Res. 2016, 46, 951–963. [Google Scholar] [CrossRef]
- Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013, 48, 452–458. [Google Scholar] [CrossRef]
- Barone, M.; Losurdo, G.; Iannone, A.; Leandro, G.; Di Leo, A.; Trerotoli, P. Assessment of body composition: Intrinsic methodological limitations and statistical pitfalls. Nutrition 2022, 102, 111736. [Google Scholar] [CrossRef]
- Hiraoka, A.; Aibiki, T.; Okudaira, T.; Toshimori, A.; Kawamura, T.; Nakahara, H.; Suga, Y.; Azemoto, N.; Miyata, H.; Miyamoto, Y.; et al. Muscle atrophy as pre-sarcopenia in Japanese patients with chronic liver disease: Computed tomography is useful for evaluation. J. Gastroenterol. 2015, 50, 1206–1213. [Google Scholar] [CrossRef]
- Imai, K.; Takai, K.; Unome, S.; Miwa, T.; Hanai, T.; Suetsugu, A.; Shimizu, M. Lenvatinib or Sorafenib Treatment Causing a Decrease in Skeletal Muscle Mass, an Independent Prognostic Factor in Hepatocellular Carcinoma: A Survival Analysis Using Time-Varying Covariates. Cancers 2023, 15, 4223. [Google Scholar] [CrossRef]
- Sekino, Y.; Tateishi, R.; Fukumitsu, N.; Okumura, T.; Maruo, K.; Iizumi, T.; Numajiri, H.; Mizumoto, M.; Minami, T.; Nakagomi, R.; et al. Proton Beam Therapy versus Radiofrequency Ablation for Patients with Treatment-Naïve Single Hepatocellular Carcinoma: A Propensity Score Analysis. Liver Cancer 2023, 12, 297–308. [Google Scholar] [CrossRef]
- Lee, S.U.; Kim, T.H. Current evidence and the potential role of proton beam therapy for hepatocellular carcinoma. Clin. Mol. Hepatol. 2023, 29, 958–968. [Google Scholar] [CrossRef] [PubMed]
- Bush, D.A.; Volk, M.; Smith, J.C.; Reeves, M.E.; Sanghvi, S.; Slater, J.D.; deVera, M. Proton beam radiotherapy versus transarterial chemoembolization for hepatocellular carcinoma: Results of a randomized clinical trial. Cancer 2023, 129, 3554–3563. [Google Scholar] [CrossRef] [PubMed]
- Fujita, M.; Takahashi, A.; Hayashi, M.; Okai, K.; Abe, K.; Ohira, H. Skeletal muscle volume loss during transarterial chemoembolization predicts poor prognosis in patients with hepatocellular carcinoma. Hepatol. Res. 2019, 49, 778–786. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Kawai, H.; Nakano, O.; Abe, S.; Kamimura, H.; Sakamaki, A.; Kamimura, K.; Tsuchiya, A.; Takamura, M.; Yamagiwa, S.; et al. Rapidly declining skeletal muscle mass predicts poor prognosis of hepatocellular carcinoma treated with transcatheter intra-arterial therapies. BMC Cancer 2018, 18, 756. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, Z.; Su, T.; Yu, J.; Cao, S.; Wang, H.; Jin, L. CT-based skeletal muscle loss for predicting poor survival in patients with hepatocellular carcinoma experiencing curative hepatectomy plus adjuvant transarterial chemoembolization: A preliminary retrospective study. Eur. J. Med. Res. 2022, 27, 131. [Google Scholar] [CrossRef]
- Fujita, M.; Abe, K.; Kuroda, H.; Oikawa, T.; Ninomiya, M.; Masamune, A.; Okumoto, K.; Katsumi, T.; Sato, W.; Iijima, K.; et al. Influence of skeletal muscle volume loss during lenvatinib treatment on prognosis in unresectable hepatocellular carcinoma: A multicenter study in Tohoku, Japan. Sci. Rep. 2022, 12, 6479. [Google Scholar] [CrossRef]
- Yamashima, M.; Miyaaki, H.; Honda, T.; Shibata, H.; Miuma, S.; Taura, N.; Nakao, K. Significance of psoas muscle thickness as an indicator of muscle atrophy in patients with hepatocellular carcinoma treated with sorafenib. Mol. Clin. Oncol. 2017, 7, 449–453. [Google Scholar] [CrossRef]
- Dasarathy, S.; Merli, M. Sarcopenia from mechanism to diagnosis and treatment in liver disease. J. Hepatol. 2016, 65, 1232–1244. [Google Scholar] [CrossRef] [PubMed]
- Ebadi, M.; Bhanji, R.A.; Mazurak, V.C.; Montano-Loza, A.J. Sarcopenia in cirrhosis: From pathogenesis to interventions. J. Gastroenterol. 2019, 54, 845–859. [Google Scholar] [CrossRef] [PubMed]
- Demirtas, C.O.; D’Alessio, A.; Rimassa, L.; Sharma, R.; Pinato, D.J. ALBI grade: Evidence for an improved model for liver functional estimation in patients with hepatocellular carcinoma. JHEP Rep. 2021, 3, 100347. [Google Scholar] [CrossRef]
- Loosen, S.H.; Schulze-Hagen, M.; Bruners, P.; Tacke, F.; Trautwein, C.; Kuhl, C.; Luedde, T.; Roderburg, C. Sarcopenia Is a Negative Prognostic Factor in Patients Undergoing Transarterial Chemoembolization (TACE) for Hepatic Malignancies. Cancers 2019, 11, 1503. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total Cohort | PSM Cohort | ||||
---|---|---|---|---|---|---|
PBT (n = 41) | TACE+RFA (n = 50) | p Value | PBT (n = 33) | TACE+RFA (n = 33) | p Value | |
Age, years | ||||||
Median (IQR) | 74 (67–77) | 75 (70–81) | 0.342 * | 75 (70–80) | 73 (68–76) | 0.228 * |
<65 | 4 (9.8) | 3 (6.0) | 0.702 † | 2 (6.1) | 3 (9.1) | >0.999 † |
≥65 | 37 (90.2) | 43 (94.0) | 31 (93.9) | 30 (90.9) | ||
Gender | ||||||
Male | 29 (70.7) | 34 (68.0) | 0.823 † | 22 (66.7) | 24 (72.7) | 0.789 † |
Female | 12 (29.3) | 16 (32.0) | 11 (33.3) | 9 (27.3) | ||
ECOG performance status | ||||||
0 | 36 (87.8) | 41 (82.0) | 0.564 † | 28 (84.8) | 32 (97.0) | 0.197 † |
1 | 5 (12.2) | 9 (18.0) | 5 (15.2) | 1 (3.0) | ||
BMI, kg/m2, median (IQR) | 25.1 (22.4–27.3) | 23.3 (20.8–25.6) | 0.063 * | 25.1 (22.4–27.2) | 23.0 (20.0–24.9) | 0.064 * |
Baseline PMI in men, cm2/m2, median (IQR) | 6.15 (5.49–7.09) | 5.98 (5.20–6.51) | 0.413 * | 6.15 (5.43–7.27) | 5.98 (5.22–6.40) | 0.450 * |
Baseline PMI in women, cm2/m2, median (IQR) | 4.52 (3.79–4.99) | 4.57 (1.96–3.94) | 0.828 * | 4.50 (3.79–5.08) | 4.05 (3.68–4.62) | 0.642 * |
Etiology | ||||||
HBV | 5 (12.2) | 2 (4.0) | 0.073 ‡ | 5 (15.2) | 2 (6.1) | 0.348 ‡ |
HCV | 9 (22.0) | 21 (42.0) | 8 (24.2) | 12 (36.4) | ||
NBNC | 27 (65.8) | 27 (54.0) | 20 (60.6) | 19 (57.6) | ||
Neutrophils, ×103/m3, median (IQR) | 2548 (1848–3203) | 2763 (1979–4071) | 0.243 * | 2459 (1825–3203) | 2582 (1544–4062) | 0.738 * |
Lymphocytes, ×103/m3, median (IQR) | 1231 (918–1760) | 1267 (879–1736) | 0.945 * | 1158 (900–1688) | 1243 (875–1742) | 0.709 * |
NLR, median (IQR) | 1.92 (1.45–2.84) | 2.34 (1.63–3.37) | 0.197 * | 2.19 (1.58–2.92) | 2.03 (1.53–2.94) | 0.801 * |
Choline-esterase, U/L, median (IQR) | 235 (158–282) | 188 (155–243) | 0.132 * | 223 (149–282) | 186 (154–243) | 0.306 * |
Total cholesterol, mg/dL, median (IQR) | 174 (151–195) | 155 (135–179) | 0.055 * | 174 (151–197) | 155 (136–172) | 0.061 * |
LDL-cholesterol, mg/dL, median (IQR) | 89 (72–106) | 83 (71–101) | 0.297 * | 89 (72–105) | 81 (72–100) | 0.245 * |
CRP, mg/dL, median (IQR) | 0.13 (0.07–0.36) | 0.14 (0.05–0.32) | 0.618 * | 0.13 (0.08–0.24) | 0.11 (0.05–0.24) | 0.405 * |
Hemoglobin A1c, %, median (IQR) | 5.9 (5.3–6.6) | 6.0 (5.5–6.8) | 0.386 * | 6.1 (5.2–6.6) | 6.1 (5.6–6.8) | 0.489 * |
Hyaluronic acid, ng/mL, median (IQR) | 159.5 (88.2–263.0) | 192.0 (125.0–256.0) | 0.380 * | 174 (110–275) | 191 (125–221) | 0.815 * |
Type IV collagen 7S, ng/mL, median (IQR) | 2.10 (1.26–3.81) | 2.56 (1.51–5.20) | 0.558 * | 6.40 (5.60–9.10) | 2.62 (1.74–4.86) | 0.898 * |
M2BPGi, C.O.I, median (IQR) | 6.20 (5.35–7.80) | 6.55 (5.10–8.98) | 0.825 * | 2.29 (1.28–5.67) | 6.6 (5.2–9.0) | 0.947 * |
AFP, ng/Ml # | 4.2 (1.1–13099) | 8.1 (0.5–1922.9) | 0.156 * | 3.9 (1.1–457.7) | 7.9 (1.4–149.6) | 0.257 * |
<13.4 | 30 (73.2) | 33 (66.0) | 0.501 † | 24 (72.7) | 25 (75.8) | >0.999 † |
≥13.4 | 11 (26.8) | 17 (34.0) | 9 (27.3) | 8 (24.2) | ||
DCP, mAU/mL # | 36 (8–22694) | 38 (7–50929) | 0.926 * | 29 (8–535) | 43 (7–50929) | 0.227 * |
<100 | 29 (70.7) | 36 (72.0) | >0.999 † | 25 (80.6) | 23 (69.7) | 0.392 † |
≥100 | 12 (29.3) | 14 (28.0) | 6 (19.4) | 10 (30.3) | ||
Child-Pugh score | ||||||
5 | 19 (46.3) | 30 (60.0) | 0.212 † | 16 (48.5) | 22 (66.7) | 0.213 † |
≥6 | 22 (53.7) | 20 (40.0) | 17 (51.5) | 11 (33.3) | ||
mALBI grade | ||||||
1, 2a | 27 (65.9) | 35 (70.0) | 0.822 † | 20 (60.6) | 23 (69.7) | 0.606 † |
2b, 3 | 14 (34.1) | 15 (30.0) | 13 (39.4) | 10 (30.3) | ||
Tumor size, cm # | 2.6 (1.2–9.3) | 2.6 (1.3–7.0) | 0.957 * | 2.3 (1.2–7.1) | 2.6 (1.3–7.0) | 0.603 * |
<3 | 23 (56.1) | 34 (68.0) | 0.281 † | 20 (60.6) | 21 (63.6) | >0.999 † |
≥3 | 18 (43.9) | 16 (32.0) | 13 (39.4) | 12 (36.4) | ||
Number of treated lesion(s) | ||||||
1 | 35 (85.4) | 37 (74.0) | 0.335 ‡ | 27 (81.8) | 26 (78.8) | 0.582 ‡ |
2 | 6 (14.6) | 12 (24.0) | 6 (18.2) | 7 (21.2) | ||
3 | 0 (0.0) | 1 (2.0) | 0 (0.0) | 0 (0.0) | ||
Vascular invasion | ||||||
absent | 36 (87.8) | 49 (98.0) | 0.087 † | 33 (100.0) | 32 (97.0) | >0.999 † |
present | 5 (12.2) | 1 (2.0) | 0 (0.0) | 1 (3.0) | ||
BCLC stage | ||||||
0 | 6 (14.6) | 4 (12.0) | 0.579 † | 5 (15.2) | 4 (12.1) | 0.792 † |
A | 30 (73.2) | 36 (72.0) | 23 (69.7) | 22 (66.7) | ||
B | 5 (12.2) | 8 (16.0) | 5 (15.2) | 7 (21.2) | ||
CT follow-up periods, months, median (IQR) | 11.9 (8.3–14.6) | 12.1 (10.9–14.3) | 0.528 * | 11.9 (10.0–14.9) | 12.1 (11.2–15.1) | 0.581 * |
Follow-up time, months, median (IQR) | 26.1 (11.1–52.4) | 38.2 (20.1–49.7) | 0.143 * | 24.9 (10.6–35.3) | 37.5 (20.0–49.9) | 0.110 * |
Characteristics | Total Cohort | PSM Cohort | ||||
---|---|---|---|---|---|---|
PBT (n = 41) | TACE+RFA (n = 50) | p Value | PBT (n = 33) | TACE+RFA (n = 33) | p Value | |
Post treatment to target lesion(s) | ||||||
No | 37 (90.2) | 37 (74.0) | 0.061 † | 30 (90.9) | 20 (60.6) | 0.061 † |
Yes | 4 (9.8) | 13 (26.0) | 3 (9.1) | 10 (30.3) | ||
RFA | 0 (0.0) | 1 (2.0) | 0 (0.0) | 1 (3.0) | ||
RFA, TACE | 0 (0.0) | 3 (6.0) | 0 (0.0) | 2 (6.1) | ||
RFA (PEIT), TACE, TKI, ICI | 0 (0.0) | 2 (4.0) | 0 (0.0) | 1 (3.0) | ||
TACE | 2 (4.8) | 3 (6.0) | 2 (6.1) | 2 (6.1) | ||
TACE, TKI, ICI | 1 (2.4) | 1 (2.0) | 0 (0.0) | 1 (3.0) | ||
TACE, ICI | 0 (0.0) | 1 (2.0) | 0 (0.0) | 1 (3.0) | ||
TKI | 0 (0.0) | 1 (2.0) | 0 (0.0) | 1 (3.0) | ||
TKI, HAIC | 1 (2.4) | 1 (2.0) | 1 (3.0) | 1 (3.0) |
Multivariate Analysis | ||||
---|---|---|---|---|
Variables | Patients (n = 66) | Odds Ratio | 95% CI | p Value |
Age, y, (≤70/>70) | 17/49 | 0.122 | −1.326–0.906 | 0.727 |
Gender, (Male/Female) | 46/20 | 1.460 | −0.493–2.041 | 0.227 |
ECOG-PS, (0/1) | 60/6 | 0.132 | −3.481–1.641 | 0.716 |
Etiology, (HBV, HCV/NBNC) | 27/39 | 2.423 | −0.240–2.184 | 0.120 |
Muscle atrophy (atrophy−/atrophy+) | 28/38 | 3.312 | −0.084–2.483 | 0.069 |
AFP, (<13.4/≥13.4) | 49/17 | 0.792 | −0.883–2.062 | 0.374 |
mALBI grade, (1, 2a/2b,3) | 44/22 | 4.545 | 0.119–2.825 | 0.033 |
Tumor size, mm, (<30/≥30) | 41/25 | 0.089 | −1.296–0.959 | 0.766 |
Number of treated lesion(s) (1/2) | 53/13 | 1.196 | −0.677–2.305 | 0.274 |
Vascular invasion (absent/present) | 65/1 | 0.891 | −1.926–4.478 | 0.345 |
Treatment (PBT/TACE+RFA) | 33/33 | 6.297 | 0.3017–3.040 | 0.012 |
TACE+RFA (n = 33), n (%) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PBT (n = 33), n (%) | TACE (n = 33), n (%) | PBT vs. TACE | RFA (n = 33), n (%) | PBT vs. RFA | ||||||||||
CTCAE Grade | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 1 | Grade 2 | Grade 3 | Grade 4 | p Value | Grade 1 | Grade 2 | Grade 3 | Grade 4 | p Value |
ALT/AST increase | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 13 (39.4) | 6 (18.2) | 6 (18.2) | 1 (3.0) | <0.001 ‡ | 16 (48.5) | 10 (30.3) | 6 (18.2) | 0 (0.0) | <0.001 ‡ |
Albumin decrease | 2 (6.1) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 6 (18.2) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0.258 † | 5 (15.2) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0.427 † |
Bilirubin increase | 7 (21.2) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 12 (36.4) | 2 (6.1) | 0 (0.0) | 0 (0.0) | 0.111 ‡ | 9 (27.3) | 3 (9.1) | 0 (0.0) | 0 (0.0) | 0.201 ‡ |
Fever | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 9 (27.3) | 8 (24.2) | 0 (0.0) | 0 (0.0) | <0.001 ‡ | 14 (42.4) | 4 (12.1) | 0 (0.0) | 0 (0.0) | <0.001 ‡ |
Pain | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 2 (6.1) | 1 (3.0) | 0 (0.0) | 0 (0.0) | 0.208 ‡ | 2 (6.1) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0.492 † |
Nausea | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 6 (18.2) | 5 (15.2) | 0 (0.0) | 0 (0.0) | <0.001 ‡ | 2 (6.1) | 3 (9.1) | 0 (0.0) | 0 (0.0) | 0.067 ‡ |
Dermatitis | 1 (3.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | >0.999 † | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | >0.999 † |
Radiation pneumonitis | 10 (30.3) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | <0.001 † | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | <0.001 † |
Pleural effusion | 2 (6.1) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0.492 † | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0.492 † |
Ascites | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 2 (6.1) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0.492 † | 5 (15.2) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0.053 † |
No. of patients with Grade 3 and 4 AEs | 0 (0.0) | 7 (21.2) | 0.011 † | 6 (18.2) | 0.024 † |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nosaka, T.; Sugata, R.; Murata, Y.; Akazawa, Y.; Tanaka, T.; Takahashi, K.; Naito, T.; Ohtani, M.; Takata, K.; Tsujikawa, T.; et al. Proton Beam Therapy Provides Longer Survival and Preserves Muscle Mass in Hepatocellular Carcinoma Compared to TACE+RFA. Cancers 2025, 17, 2849. https://doi.org/10.3390/cancers17172849
Nosaka T, Sugata R, Murata Y, Akazawa Y, Tanaka T, Takahashi K, Naito T, Ohtani M, Takata K, Tsujikawa T, et al. Proton Beam Therapy Provides Longer Survival and Preserves Muscle Mass in Hepatocellular Carcinoma Compared to TACE+RFA. Cancers. 2025; 17(17):2849. https://doi.org/10.3390/cancers17172849
Chicago/Turabian StyleNosaka, Takuto, Ryotaro Sugata, Yosuke Murata, Yu Akazawa, Tomoko Tanaka, Kazuto Takahashi, Tatsushi Naito, Masahiro Ohtani, Kenji Takata, Tetsuya Tsujikawa, and et al. 2025. "Proton Beam Therapy Provides Longer Survival and Preserves Muscle Mass in Hepatocellular Carcinoma Compared to TACE+RFA" Cancers 17, no. 17: 2849. https://doi.org/10.3390/cancers17172849
APA StyleNosaka, T., Sugata, R., Murata, Y., Akazawa, Y., Tanaka, T., Takahashi, K., Naito, T., Ohtani, M., Takata, K., Tsujikawa, T., Sato, Y., Maeda, Y., Tamamura, H., & Nakamoto, Y. (2025). Proton Beam Therapy Provides Longer Survival and Preserves Muscle Mass in Hepatocellular Carcinoma Compared to TACE+RFA. Cancers, 17(17), 2849. https://doi.org/10.3390/cancers17172849