Predictors and Outcomes of Non-Small Cell Lung Carcinoma Patients Following Severe Immune Checkpoint Inhibitor Toxicity: A Real-World UK Multi-Centre Study
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Statistical Considerations
3. Results
3.1. Patient Characteristics
3.2. Treatment Response and Survival Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, S.C.; Duffy, C.R.; Allison, J.P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 2018, 8, 1069–1086. [Google Scholar] [CrossRef]
- Twyman-Saint Victor, C.; Rech, A.J.; Maity, A.; Rengan, R.; Pauken, K.E.; Stelekati, E.; Benci, J.L.; Xu, B.; Dada, H.; Odorizzi, P.M.; et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 2015, 520, 373–377. [Google Scholar] [CrossRef]
- Liu, S.Z.; Jin, S.Z.; Liu, X.D.; Sun, Y.M. Role of CD28/B7 costimulation and IL-12/IL-10 interaction in the radiation-induced immune changes. BMC Immunol. 2001, 2, 8. [Google Scholar] [CrossRef] [PubMed]
- Hoos, A. Development of immuno-oncology drugs—From CTLA4 to PD1 to the next generations. Nat. Rev. Drug Discov. 2016, 15, 235–247. [Google Scholar] [CrossRef]
- Doroshow, D.B.; Sanmamed, M.F.; Hastings, K.; Politi, K.; Rimm, D.L.; Chen, L.; Melero, I.; Schalper, K.A.; Herbst, R.S. Immunotherapy in Non-Small Cell Lung Cancer: Facts and Hopes. Clin. Cancer Res. 2019, 25, 4592–4602. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.-D.; Cui, J.-J.; Fu, J.; Su, Y.-J.; Chen, X.-Y.; Gu, Z.-C.; Lin, H.-W. A Network Comparison on Safety Profiling of Immune Checkpoint Inhibitors in Advanced Lung Cancer. Front. Immunol. 2021, 12, 760737. [Google Scholar] [CrossRef]
- Haanen, J.; Obeid, M.; Spain, L.; Carbonnel, F.; Wang, Y.; Robert, C.; Lyon, A.R.; Wick, W.; Kostine, M.; Peters, S.; et al. Management of toxicities from immunotherapy: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2022, 33, 1217–1238. [Google Scholar] [CrossRef]
- Tang, L.-B.; Peng, Y.-L.; Chen, J.; Li, J.-T.; Zheng, M.-M.; Wu, L.; Lu, C.; Wei, X.-W.; Cai, D.-X.; Guo, Z.; et al. Rechallenge with immune-checkpoint inhibitors in patients with advanced-stage lung cancer. Nat. Rev. Clin. Oncol. 2025, 22, 546–565. [Google Scholar] [CrossRef]
- Suazo-Zepeda, E.; Bokern, M.; Vinke, P.C.; Hiltermann, T.J.N.; de Bock, G.H.; Sidorenkov, G. Risk factors for adverse events induced by immune checkpoint inhibitors in patients with non-small-cell lung cancer: A systematic review and meta-analysis. Cancer Immunol. Immunother. 2021, 70, 3069–3080. [Google Scholar] [CrossRef]
- Russano, M.; Cortellini, A.; Giusti, R.; Russo, A.; Zoratto, F.; Rastelli, F.; Gelibter, A.; Chiari, R.; Nigro, O.; De Tursi, M.; et al. Clinical outcomes of NSCLC patients experiencing early immune-related adverse events to PD-1/PD-L1 checkpoint inhibitors leading to treatment discontinuation. Cancer Immunol. Immunother. 2021, 71, 865–874. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Huang, X.; Li, J.; Ma, H.; Zeng, R. Impact of corticosteroid use on outcomes of non-small-cell lung cancer patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis. J. Clin. Pharm. Ther. 2021, 46, 927–935. [Google Scholar] [CrossRef]
- Mountzios, G.; de Toma, A.; Economopoulou, P.; Friedlaender, A.; Banini, M.; Lo Russo, G.; Baxevanos, P.; Roila, F.; Banna, G.L.; Christopoulou, A.; et al. Steroid Use Independently Predicts for Poor Outcomes in Patients with Advanced NSCLC and High PD-L1 Expression Receiving First-Line Pembrolizumab Monotherapy. Clin. Lung Cancer 2021, 22, e180–e192. [Google Scholar] [CrossRef]
- Roboubi, A.; Wasielewski, E.; Bordier, S.; Turlotte, A.; Pavaut, G.; Scherpereel, A.; Cortot, A.; Gauvain, C. Impact of corticosteroids on the efficacy of first-line pembrolizumab plus chemotherapy in patients with advanced non-small-cell lung cancer. Ther. Adv. Med. Oncol. 2025, 17, 17588359251318160. [Google Scholar] [CrossRef]
- De Giglio, A.; Aprile, M.; Di Federico, A.; Sperandi, F.; Melotti, B.; Gelsomino, F.; Ardizzoni, A. Impact of Baseline Versus Intercurrent Steroids Administration on Upfront Chemo-Immunotherapy for Advanced Non-Small Cell Lung Cancer (NSCLC). Int. J. Mol. Sci. 2022, 23, 10292. [Google Scholar] [CrossRef]
- Bai, X.; Hu, J.; Betof Warner, A.; Quach, H.T.; Cann, C.G.; Zhang, M.Z.; Si, L.; Tang, B.; Cui, C.; Yang, X.; et al. Early Use of High-Dose Glucocorticoid for the Management of irAE Is Associated with Poorer Survival in Patients with Advanced Melanoma Treated with Anti-PD-1 Monotherapy. Clin. Cancer Res. 2021, 27, 5993–6000. [Google Scholar] [CrossRef]
- Toi, Y.; Sugawara, S.; Kawashima, Y.; Aiba, T.; Kawana, S.; Saito, R.; Tsurumi, K.; Suzuki, K.; Shimizu, H.; Sugisaka, J.; et al. Association of Immune-Related Adverse Events with Clinical Benefit in Patients with Advanced Non-Small-Cell Lung Cancer Treated with Nivolumab. Oncologist 2018, 23, 1358–1365. [Google Scholar] [CrossRef] [PubMed]
- Postow, M.A.; Sidlow, R.; Hellmann, M.D. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. N. Engl. J. Med. 2018, 378, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Su, Y.; Jiao, A.; Wang, X.; Zhang, B. T cells in health and disease. Signal Transduct. Target. Ther. 2023, 8, 235. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Park, S.; Han, K.-Y.; Lee, N.; Kim, H.; Jung, H.A.; Sun, J.-M.; Ahn, J.S.; Ahn, M.-J.; Lee, S.-H.; et al. Clonal expansion of resident memory T cells in peripheral blood of patients with non-small cell lung cancer during immune checkpoint inhibitor treatment. J. Immunother. Cancer 2023, 11, e005509. [Google Scholar] [CrossRef]
- Hsiehchen, D.; Naqash, A.R.; Espinoza, M.; Von Itzstein, M.S.; Cortellini, A.; Ricciuti, B.; Owen, D.H.; Laharwal, M.; Toi, Y.; Burke, M.; et al. Association between immune-related adverse event timing and treatment outcomes. Oncoimmunology 2022, 11, 2017162. [Google Scholar] [CrossRef]
- Kotsakis, A.; Koinis, F.; Katsarou, A.; Gioulbasani, M.; Aggouraki, D.; Kentepozidis, N.; Georgoulias, V.; Vetsika, E.-K. Prognostic value of circulating regulatory T cell subsets in untreated non-small cell lung cancer patients. Sci. Rep. 2016, 6, 39247. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.; Xu, Z.; Ma, T.; Wang, C.; Wei, P.; Xiao, B.; Zhang, H.; Che, N.; Liu, Z.; Han, Y. T-cell subsets and cytokines are indicative of neoadjuvant chemoimmunotherapy responses in NSCLC. Cancer Immunol. Immunother. 2024, 73, 99. [Google Scholar] [CrossRef]
- Gebhardt, C.; Sevko, A.; Jiang, H.; Lichtenberger, R.; Reith, M.; Tarnanidis, K.; Holland-Letz, T.; Umansky, L.; Beckhove, P.; Sucker, A.; et al. Myeloid Cells and Related Chronic Inflammatory Factors as Novel Predictive Markers in Melanoma Treatment with Ipilimumab. Clin. Cancer Res. 2015, 21, 5453–5459. [Google Scholar] [CrossRef]
- Sade-Feldman, M.; Kanterman, J.; Klieger, Y.; Ish-Shalom, E.; Olga, M.; Saragovi, A.; Shtainberg, H.; Lotem, M.; Baniyash, M. Clinical Significance of Circulating CD33+CD11b+HLA-DR- Myeloid Cells in Patients with Stage IV Melanoma Treated with Ipilimumab. Clin. Cancer Res. 2016, 22, 5661–5672. [Google Scholar] [CrossRef]
- Maslov, D.V.; Tawagi, K.; KC, M.; Simenson, V.; Yuan, H.; Parent, C.; Bamnolker, A.; Goel, R.; Blake, Z.; Matrana, M.R.; et al. Timing of steroid initiation and response rates to immune checkpoint inhibitors in metastatic cancer. J. Immunother. Cancer 2021, 9, e002261. [Google Scholar] [CrossRef]
- Albarrán, V.; Guerrero, P.; de Quevedo, C.G.; González, C.; Chamorro, J.; Rosero, D.I.; Moreno, J.; Calvo, J.C.; de Aguado, P.P.; Alía, V.; et al. Negative association of steroids with immunotherapy efficacy in a multi-tumor cohort: Time and dose-dependent. Cancer Immunol. Immunother. 2024, 73, 186. [Google Scholar] [CrossRef]
- Sun, D.; Liu, J.; Zhou, H.; Shi, M.; Sun, J.; Zhao, S.; Chen, G.; Zhang, Y.; Zhou, T.; Ma, Y.; et al. Classification of Tumor Immune Microenvironment According to Programmed Death-Ligand 1 Expression and Immune Infiltration Predicts Response to Immunotherapy Plus Chemotherapy in Advanced Patients with NSCLC. J. Thorac. Oncol. 2023, 18, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Yang, F.; Yin, J.-Y.; Liu, Y.-Z.; Zhang, W.; Zhou, H.-H. Influence of Tumor Immune Infiltration on Immune Checkpoint Inhibitor Therapeutic Efficacy: A Computational Retrospective Study. Front. Immunol. 2021, 12, 685370. [Google Scholar] [CrossRef] [PubMed]
- Suresh, K.; Psoter, K.J.; Voong, K.R.; Shankar, B.; Forde, P.M.; Ettinger, D.S.; Marrone, K.A.; Kelly, R.J.; Hann, C.L.; Levy, B.; et al. Impact of Checkpoint Inhibitor Pneumonitis on Survival in NSCLC Patients Receiving Immune Checkpoint Immunotherapy. J. Thorac. Oncol. 2019, 14, 494–502. [Google Scholar] [CrossRef]
- Maillet, D.; Corbaux, P.; Stelmes, J.-J.; Dalle, S.; Locatelli-Sanchez, M.; Perier-Muzet, M.; Duruisseaux, M.; Kiakouama-Maleka, L.; Freyer, G.; Boespflug, A.; et al. Association between immune-related adverse events and long-term survival outcomes in patients treated with immune checkpoint inhibitors. Eur. J. Cancer 2020, 132, 61–70. [Google Scholar] [CrossRef]
- Mouri, A.; Kaira, K.; Yamaguchi, O.; Shiono, A.; Miura, Y.; Hashimoto, K.; Nishihara, F.; Murayama, Y.; Kobayashi, K.; Kagamu, H. Clinical difference between discontinuation and retreatment with nivolumab after immune-related adverse events in patients with lung cancer. Cancer Chemother. Pharmacol. 2019, 84, 873–880. [Google Scholar] [CrossRef]
- Santini, F.C.; Rizvi, H.; Plodkowski, A.J.; Ni, A.; Lacouture, M.E.; Gambarin-Gelwan, M.; Wilkins, O.; Panora, E.; Halpenny, D.F.; Long, N.M.; et al. Safety and Efficacy of Re-treating with Immunotherapy after Immune-Related Adverse Events in Patients with NSCLC. Cancer Immunol. Res. 2018, 6, 1093–1099. [Google Scholar] [CrossRef]
- Fujisaki, T.; Watanabe, S.; Ota, T.; Kushiro, K.; Sato, Y.; Takahashi, M.; Ohtsubo, A.; Shoji, S.; Nozaki, K.; Ichikawa, K.; et al. The Prognostic Significance of the Continuous Administration of Anti-PD-1 Antibody via Continuation or Rechallenge After the Occurrence of Immune-Related Adverse Events. Front. Oncol. 2021, 11, 704475. [Google Scholar] [CrossRef] [PubMed]
- Dodi, A.; Pecci, F.; Mazzaschi, G.; Tamarozzi, P.; Manini, M.; Peroni, M.; D’Agnelli, S.; Pluchino, M.; Verzè, M.; Minari, R.; et al. 358P: Baseline circulating immunophenotype may predict irAEs onset in NSCLC patients treated with ICIs. J. Thorac. Oncol. 2025, 20, S213. [Google Scholar] [CrossRef]
- Fu, X.; Li, F.; You, H.; Xu, B.; Wang, T.; Qin, P.; Han, L.; Zhang, Y.; Zhang, F.; Zhao, L.; et al. The baseline circulating immunophenotype characteristics associate with PD(L)-1 targeted treatment response, irae onset, and prognosis. Sci. Rep. 2025, 15, 17450. [Google Scholar] [CrossRef] [PubMed]
Total Number of Subjects | ||
---|---|---|
n | % | |
Age at onset of 1st irAE | ||
Median (years) | 69 | |
Range (years) | 38–81 | |
Interquartile range (years) | 62–74 | |
Gender | ||
Male | 41 | 51 |
Female | 39 | 49 |
Smoking Status | ||
Non-smoker | 7 | 9 |
Current Smoker | 34 | 43 |
Former Smoker | 38 | 48 |
Unknown | 1 | 1 |
Stage at onset of 1st irAE | ||
Localized disease | 30 | 38 |
Metastatic disease | 50 | 63 |
Anatomic sites of metastatic disease | ||
Bone | 20 | 40 |
Lymph node | 13 | 26 |
Brain | 10 | 20 |
Other a | 10 | 20 |
Liver | 8 | 16 |
Adrenal gland | 7 | 14 |
Pleural membrane | 7 | 14 |
PFS | OS | |||||||
---|---|---|---|---|---|---|---|---|
Univariate HR (95% CI) | p-Value | Multivariate HR (95% CI) * | p-Value | Univariate HR (95% CI) | p-Value | Multivariate HR (95% CI) * | p-Value | |
Age at onset of 1st irAE (<69 years vs. ≥69 years) | 0.69 (0.39–1.21) | 0.20 | N/A | N/A | 0.57 (0.32–1.01) | 0.06 | N/A | N/A |
Gender (Male vs. Female) | 1.27 (0.73–2.22) | 0.40 | N/A | N/A | 1.36 (0.77–2.38) | 0.29 | N/A | N/A |
Stage at time of onset of 1st irAE (Localized vs. metastatic disease) | 0.77 (0.43–1.36) | 0.37 | N/A | N/A | 0.63 (0.34–1.14) | 0.13 | N/A | N/A |
KRAS (Mutant vs. wild type) | 1.59 (0.81–3.14) | 0.18 | 1.82 (0.86–3.86) | 0.12 | 1.10 (0.57–2.09) | 0.78 | 1.18 (0.57–2.43) | 0.66 |
PD-L1 TPS status | ||||||||
<1% | - | - | - | - | - | - | - | - |
>1%–<50% | 0.81 (0.34–1.93) | 0.64 | 0.78 (0.31–1.92) | 0.58 | 0.75 (0.34–1.65) | 0.47 | 0.64 (0.27–1.49) | 0.30 |
≥50% | 0.84 (0.41–1.73) | 0.63 | 0.86 (0.38–1.93) | 0.71 | 0.61 (0.30–1.22) | 0.16 | 0.80 (0.36–1.79) | 0.59 |
Baseline NLR (≤6.50 vs. >6.50) | 0.88 (0.46–1.69) | 0.70 | 0.66 (0.31–1.40) | 0.28 | 0.53 (0.28–0.99) | 0.048 | 0.42 (0.20–0.87) | 0.02 |
ICI immediately preceding 1st irAE (anti-PD-1 + chemotherapy vs. anti-PD-1 monotherapy) | 0.97 (0.52–1.80) | 0.91 | 0.85 (0.41–1.74) | 0.65 | 1.50 (0.82–2.75) | 0.19 | 1.31 (0.67–2.57) | 0.43 |
Number ICI cycles completed before 1st irAE (>4 vs. ≤4 cycles) | 0.37 (0.21–0.65) | <0.001 | 0.34 (0.18–0.62) | <0.001 | 0.32 (0.18–0.60) | <0.001 | 0.35 (0.18–0.67) | 0.002 |
Duration of last ICI treatment before 1st irAE (>2.76 months vs. ≤2.76 months) | 0.51 (0.29–0.89) | 0.02 | 0.44 (0.24–0.81) | 0.008 | 0.37 (0.20–0.69) | 0.002 | 0.39 (0.20–0.74) | 0.004 |
PFS | OS | |||||||
---|---|---|---|---|---|---|---|---|
Univariate HR (95% CI) | p-Value | Multivariate HR (95% CI) * | p-Value | Univariate HR (95% CI) | p- Value | Multivariate HR (95% CI) * | p-Value | |
Total number of irAEs (>1 vs. 1) | 0.97 (0.47–2.00) | 0.94 | 1.06 (0.49–2.26) | 0.89 | 0.93 (0.44–1.99) | 0.86 | 1.05 (0.48–2.33) | 0.90 |
Cumulative duration of all irAEs (>1.64 months vs. ≤1.64 months) | 0.72 (0.40–1.29) | 0.27 | 0.65 (0.35–1.22) | 0.18 | 0.75 (0.42–1.36) | 0.35 | 0.74 (0.39–1.41) | 0.36 |
Type of 1st irAE | ||||||||
Colitis vs. other irAEs | 0.77 (0.41–1.46) | 0.43 | 0.67 (0.34–1.33) | 0.26 | 1.08 (0.59–1.96) | 0.81 | 1.23 (0.64–2.34) | 0.54 |
Hepatitis vs. other irAEs | 1.06 (0.53–2.12) | 0.87 | 1.29 (0.60–2.75) | 0.51 | 0.74 (0.34–1.58) | 0.43 | 0.96 (0.43–2.12) | 0.92 |
Pneumonitis vs. other irAEs | 2.92 (1.49–5.75) | 0.002 | 3.21 (1.51–6.82) | 0.002 | 3.39 (1.74–6.60) | <0.001 | 4.63 (2.17–9.90) | <0.001 |
Starting corticosteroid dose (≤60 mg vs. >60 mg) | 0.67 (0.36–1.22) | 0.19 | 0.71 (0.38–1.33) | 0.29 | 0.56 (0.31–1.03) | 0.06 | 0.52 (0.27–0.97) | 0.04 |
Additional immunosuppressive agents used to treat 1st irAE (Yes vs. No) | 0.94 (0.42–2.08) | 0.87 | 0.96 (0.41–2.26) | 0.93 | 0.53 (0.19–1.47) | 0.22 | 0.54 (0.18–1.61) | 0.27 |
Patterns of treatment change after 1st irAE (Resumed same ICI regimen vs. discontinued systemic therapy) | 0.62 (0.30–1.29) | 0.20 | 0.76 (0.36–1.60) | 0.47 | 0.42 (0.19–0.96) | 0.04 | 0.47 (0.21–1.09) | 0.08 |
Best overall response after 1st irAE (Responders vs. Non-Responders) | 0.23 (0.12–0.45) | <0.001 | 0.19 (0.09–0.40) | <0.001 | 0.38 (0.19–0.77) | 0.007 | 0.32 (0.15–0.65) | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmood, U.; Josephides, E.; Chitnis, M.; Skwarski, M.; Gennatas, S.; Ghosh, S.; Spicer, J.; Karapanagiotou, E.; Ahmad, T.; Forster, M.; et al. Predictors and Outcomes of Non-Small Cell Lung Carcinoma Patients Following Severe Immune Checkpoint Inhibitor Toxicity: A Real-World UK Multi-Centre Study. Cancers 2025, 17, 2819. https://doi.org/10.3390/cancers17172819
Mahmood U, Josephides E, Chitnis M, Skwarski M, Gennatas S, Ghosh S, Spicer J, Karapanagiotou E, Ahmad T, Forster M, et al. Predictors and Outcomes of Non-Small Cell Lung Carcinoma Patients Following Severe Immune Checkpoint Inhibitor Toxicity: A Real-World UK Multi-Centre Study. Cancers. 2025; 17(17):2819. https://doi.org/10.3390/cancers17172819
Chicago/Turabian StyleMahmood, Umair, Eleni Josephides, Meenali Chitnis, Michael Skwarski, Spyridon Gennatas, Sharmistha Ghosh, James Spicer, Eleni Karapanagiotou, Tanya Ahmad, Martin Forster, and et al. 2025. "Predictors and Outcomes of Non-Small Cell Lung Carcinoma Patients Following Severe Immune Checkpoint Inhibitor Toxicity: A Real-World UK Multi-Centre Study" Cancers 17, no. 17: 2819. https://doi.org/10.3390/cancers17172819
APA StyleMahmood, U., Josephides, E., Chitnis, M., Skwarski, M., Gennatas, S., Ghosh, S., Spicer, J., Karapanagiotou, E., Ahmad, T., Forster, M., Jamal-Hanjani, M., Benafif, S., Swanton, C., Lee, S.-M., Papadatos-Pastos, D., Georgiou, A., & Coupe, N. (2025). Predictors and Outcomes of Non-Small Cell Lung Carcinoma Patients Following Severe Immune Checkpoint Inhibitor Toxicity: A Real-World UK Multi-Centre Study. Cancers, 17(17), 2819. https://doi.org/10.3390/cancers17172819