KRAS G12C Inhibition in Solid Tumors: Biological Breakthroughs, Clinical Evidence, and Open Challenges
Simple Summary
Abstract
1. Introduction
2. Biology and Pharmacology of KRAS G12C
2.1. Biological Features of KRAS G12C-Mutant Cancers
2.2. Pharmacology of KRAS G12C Inhibitors
3. Clinical Development of KRAS G12C Inhibitors
3.1. KRAS G12C Inhibitors in NSCLC
3.2. KRAS G12C Inhibitors in CRC
3.3. Overall Efficacy Data in Solid Tumors
3.4. Toxicity Data and Quality of Life
4. Resistance to KRAS G12C Inhibitors
5. Open Questions and Future Challenges
5.1. Novel Inhibitors and Combinations
5.2. Novel Biomarkers and Patient Selection for KRAS G12C-Mutant Tumors
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parikh, K.; Banna, G.; Liu, S.V.; Friedlaender, A.; Desai, A.; Subbiah, V.; Addeo, A. Drugging KRAS: Current Perspectives and State-of-Art Review. J. Hematol. Oncol. 2022, 15, 152. [Google Scholar] [CrossRef] [PubMed]
- Ostrem, J.M.L.; Shokat, K.M. Direct Small-Molecule Inhibitors of KRAS: From Structural Insights to Mechanism-Based Design. Nat. Rev. Drug Discov. 2016, 15, 771–785. [Google Scholar] [CrossRef]
- Khan, I.; Rhett, J.M.; O’Bryan, J.P. Therapeutic Targeting of RAS: New Hope for Drugging the “Undruggable”. Biochim. Biophys. Acta (BBA)—Mol. Cell Res. 2020, 1867, 118570. [Google Scholar] [CrossRef]
- Araujo, L.H.; Souza, B.M.; Leite, L.R.; Parma, S.A.F.; Lopes, N.P.; Malta, F.S.V.; Freire, M.C.M. Molecular Profile of KRAS G12C-Mutant Colorectal and Non-Small-Cell Lung Cancer. BMC Cancer 2021, 21, 193. [Google Scholar] [CrossRef] [PubMed]
- Palma, G.; Khurshid, F.; Lu, K.; Woodward, B.; Husain, H. Selective KRAS G12C Inhibitors in Non-Small Cell Lung Cancer: Chemistry, Concurrent Pathway Alterations, and Clinical Outcomes. NPJ Precis. Oncol. 2021, 5, 98. [Google Scholar] [CrossRef] [PubMed]
- Kris, M.G.; Johnson, B.E.; Kwiatkowski, D.J.; Iafrate, A.J.; Wistuba, I.I.; Aronson, S.L.; Engelman, J.A.; Shyr, Y.; Khuri, F.R.; Rudin, C.M.; et al. Identification of Driver Mutations in Tumor Specimens from 1,000 Patients with Lung Adenocarcinoma: The NCI’s Lung Cancer Mutation Consortium (LCMC). JCO 2011, 29, CRA7506. [Google Scholar] [CrossRef]
- Garcia, B.N.C.; van Kempen, L.C.; Kuijpers, C.C.H.J.; Schuuring, E.; Willems, S.M.; van der Wekken, A.J. Prevalence of KRAS p.(G12C) in Stage IV NSCLC Patients in the Netherlands; a Nation-Wide Retrospective Cohort Study. Lung Cancer 2022, 167, 1–7. [Google Scholar] [CrossRef]
- Salem, M.E.; El-Refai, S.M.; Sha, W.; Puccini, A.; Grothey, A.; George, T.J.; Hwang, J.J.; O’Neil, B.; Barrett, A.S.; Kadakia, K.C.; et al. Landscape of KRASG12C, Associated Genomic Alterations, and Interrelation with Immuno-Oncology Biomarkers in KRAS-Mutated Cancers. JCO Precis. Oncol. 2022, 6, e2100245. [Google Scholar] [CrossRef]
- Jing, Y.; Cheng, R.; Zeng, H.; Huang, Q.; He, D.; Sun, J.; Tian, P.; Li, Y. Dissecting the Clinical Characteristics and Treatment Outcomes Correlates of KRAS G12C-Mutated Non-Small Cell Lung Cancer. Int. J. Gen. Med. 2024, 17, 4507–4517. [Google Scholar] [CrossRef]
- Strickler, J.H.; Yoshino, T.; Stevinson, K.; Eichinger, C.S.; Giannopoulou, C.; Rehn, M.; Modest, D.P. Prevalence of KRAS G12C Mutation and Co-Mutations and Associated Clinical Outcomes in Patients with Colorectal Cancer: A Systematic Literature Review. Oncologist 2023, 28, e981–e994. [Google Scholar] [CrossRef]
- Sunagua Aruquipa, M.; D’Alpino Peixoto, R.; Jacome, A.; Cesar, F.; Lorandi, V.; Dienstmann, R. Association of KRAS G12C Status with Age at Onset of Metastatic Colorectal Cancer. Curr. Issues Mol. Biol. 2024, 46, 1374–1382. [Google Scholar] [CrossRef]
- Li, M.; Keshavarz-Rahaghi, F.; Ladua, G.; Swanson, L.; Speers, C.; Renouf, D.J.; Lim, H.J.; Davies, J.M.; Gill, S.; Stuart, H.C.; et al. Characterizing the KRAS G12C Mutation in Metastatic Colorectal Cancer: A Population-Based Cohort and Assessment of Expression Differences in The Cancer Genome Atlas. Ther. Adv. Med. Oncol. 2022, 14, 17588359221097940. [Google Scholar] [CrossRef]
- STICKLER, S.; RATH, B.; HAMILTON, G. Targeting KRAS in Pancreatic Cancer. Oncol. Res. 2024, 32, 799–805. [Google Scholar] [CrossRef]
- Pant, S.; Kar, S.; Lin, K.K.; Ahler, E. Frequency and Incidence of Oncogenic RAS Mutations in Patients with Metastatic Pancreatic Ductal Adenocarcinoma: Derived from the Real-World Evidence Database Foundation Medicine Insights. JCO 2025, 43, 777. [Google Scholar] [CrossRef]
- Saxena, N.; Lahiri, S.S.; Hambarde, S.; Tripathi, R.P. RAS: Target for Cancer Therapy. Cancer Investig. 2008, 26, 948–955. [Google Scholar] [CrossRef] [PubMed]
- Ostrem, J.M.; Peters, U.; Sos, M.L.; Wells, J.A.; Shokat, K.M. K-Ras(G12C) Inhibitors Allosterically Control GTP Affinity and Effector Interactions. Nature 2013, 503, 548–551. [Google Scholar] [CrossRef] [PubMed]
- McCormick, F. KRAS as a Therapeutic Target. Clin. Cancer Res. 2015, 21, 1797–1801. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Guo, Z.; Wang, F.; Fu, L. KRAS Mutation: From Undruggable to Druggable in Cancer. Signal Transduct. Target. Ther. 2021, 6, 386. [Google Scholar] [CrossRef]
- Singhal, A.; Li, B.T.; O’Reilly, E.M. Targeting KRAS in Cancer. Nat. Med. 2024, 30, 969–983. [Google Scholar] [CrossRef]
- Simanshu, D.K.; Nissley, D.V.; McCormick, F. RAS Proteins and Their Regulators in Human Disease. Cell 2017, 170, 17–33. [Google Scholar] [CrossRef]
- Karnoub, A.E.; Weinberg, R.A. Ras Oncogenes: Split Personalities. Nat. Rev. Mol. Cell Biol. 2008, 9, 517–531. [Google Scholar] [CrossRef] [PubMed]
- Schubbert, S.; Shannon, K.; Bollag, G. Hyperactive Ras in Developmental Disorders and Cancer. Nat. Rev. Cancer 2007, 7, 295–308. [Google Scholar] [CrossRef]
- Hunter, J.C.; Manandhar, A.; Carrasco, M.A.; Gurbani, D.; Gondi, S.; Westover, K.D. Biochemical and Structural Analysis of Common Cancer-Associated KRAS Mutations. Mol. Cancer Res. 2015, 13, 1325–1335. [Google Scholar] [CrossRef]
- Haigis, K.M. KRAS Alleles: The Devil Is in the Detail. Trends Cancer 2017, 3, 686–697. [Google Scholar] [CrossRef]
- Marasco, M.; Kumar, D.; Garcia Borrego, S.; Seale, T.; Maddalena, G.; Mezzadra, R.; Belanger, K.; Cole, S.; Perez, B.; Luan, W.; et al. Direct Inhibition of RAS Reveals the Features of Oncogenic Signaling Driven by RAS G12 and Q61 Mutations. Cancer Discov. 2025, 15, 1392–1409. [Google Scholar] [CrossRef] [PubMed]
- Yuan, T.L.; Amzallag, A.; Bagni, R.; Yi, M.; Afghani, S.; Burgan, W.; Fer, N.; Strathern, L.A.; Powell, K.; Smith, B.; et al. Differential Effector Engagement by Oncogenic KRAS. Cell Rep. 2018, 22, 1889–1902. [Google Scholar] [CrossRef]
- Ihle, N.T.; Byers, L.A.; Kim, E.S.; Saintigny, P.; Lee, J.J.; Blumenschein, G.R.; Tsao, A.; Liu, S.; Larsen, J.E.; Wang, J.; et al. Effect of KRAS Oncogene Substitutions on Protein Behavior: Implications for Signaling and Clinical Outcome. J. Natl. Cancer Inst. 2012, 104, 228–239. [Google Scholar] [CrossRef]
- Patricelli, M.P.; Janes, M.R.; Li, L.-S.; Hansen, R.; Peters, U.; Kessler, L.V.; Chen, Y.; Kucharski, J.M.; Feng, J.; Ely, T.; et al. Selective Inhibition of Oncogenic KRAS Output with Small Molecules Targeting the Inactive State. Cancer Discov. 2016, 6, 316–329. [Google Scholar] [CrossRef] [PubMed]
- Skoulidis, F.; Byers, L.A.; Diao, L.; Papadimitrakopoulou, V.A.; Tong, P.; Izzo, J.; Behrens, C.; Kadara, H.; Parra, E.R.; Canales, J.R.; et al. Co-Occurring Genomic Alterations Define Major Subsets of KRAS-Mutant Lung Adenocarcinoma with Distinct Biology, Immune Profiles, and Therapeutic Vulnerabilities. Cancer Discov. 2015, 5, 860–877. [Google Scholar] [CrossRef] [PubMed]
- Adderley, H.; Blackhall, F.H.; Lindsay, C.R. KRAS-Mutant Non-Small Cell Lung Cancer: Converging Small Molecules and Immune Checkpoint Inhibition. eBioMedicine 2019, 41, 711–716. [Google Scholar] [CrossRef]
- Giampieri, R.; Lupi, A.; Ziranu, P.; Bittoni, A.; Pretta, A.; Pecci, F.; Persano, M.; Giglio, E.; Copparoni, C.; Crocetti, S.; et al. Retrospective Comparative Analysis of KRAS G12C vs. Other KRAS Mutations in mCRC Patients Treated With First-Line Chemotherapy Doublet + Bevacizumab. Front. Oncol. 2021, 11, 736104. [Google Scholar] [CrossRef] [PubMed]
- Zdanov, S.; Mandapathil, M.; Abu Eid, R.; Adamson-Fadeyi, S.; Wilson, W.; Qian, J.; Carnie, A.; Tarasova, N.; Mkrtichyan, M.; Berzofsky, J.A.; et al. Mutant KRAS Conversion of Conventional T Cells into Regulatory T Cells. Cancer Immunol. Res. 2016, 4, 354–365. [Google Scholar] [CrossRef] [PubMed]
- Granville, C.A.; Memmott, R.M.; Balogh, A.; Mariotti, J.; Kawabata, S.; Han, W.; Lopiccolo, J.; Foley, J.; Liewehr, D.J.; Steinberg, S.M.; et al. A Central Role for Foxp3+ Regulatory T Cells in K-Ras-Driven Lung Tumorigenesis. PLoS ONE 2009, 4, e5061. [Google Scholar] [CrossRef]
- Coelho, M.A.; de Carné Trécesson, S.; Rana, S.; Zecchin, D.; Moore, C.; Molina-Arcas, M.; East, P.; Spencer-Dene, B.; Nye, E.; Barnouin, K.; et al. Oncogenic RAS Signaling Promotes Tumor Immunoresistance by Stabilizing PD-L1 mRNA. Immunity 2017, 47, 1083–1099.e6. [Google Scholar] [CrossRef]
- Liu, H.; Liang, Z.; Cheng, S.; Huang, L.; Li, W.; Zhou, C.; Zheng, X.; Li, S.; Zeng, Z.; Kang, L. Mutant KRAS Drives Immune Evasion by Sensitizing Cytotoxic T-Cells to Activation-Induced Cell Death in Colorectal Cancer. Adv. Sci. 2023, 10, 2203757. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Overman, M.J.; Boutin, A.T.; Shang, X.; Zhao, D.; Dey, P.; Li, J.; Wang, G.; Lan, Z.; Li, J.; et al. KRAS-IRF2 Axis Drives Immune Suppression and Immune Therapy Resistance in Colorectal Cancer. Cancer Cell 2019, 35, 559–572.e7. [Google Scholar] [CrossRef]
- Muthalagu, N.; Monteverde, T.; Raffo-Iraolagoitia, X.; Wiesheu, R.; Whyte, D.; Hedley, A.; Laing, S.; Kruspig, B.; Upstill-Goddard, R.; Shaw, R.; et al. Repression of the Type I Interferon Pathway Underlies MYC- and KRAS-Dependent Evasion of NK and B Cells in Pancreatic Ductal Adenocarcinoma. Cancer Discov. 2020, 10, 872–887. [Google Scholar] [CrossRef]
- Canon, J.; Rex, K.; Saiki, A.Y.; Mohr, C.; Cooke, K.; Bagal, D.; Gaida, K.; Holt, T.; Knutson, C.G.; Koppada, N.; et al. The Clinical KRAS(G12C) Inhibitor AMG 510 Drives Anti-Tumour Immunity. Nature 2019, 575, 217–223. [Google Scholar] [CrossRef]
- Mugarza, E.; van Maldegem, F.; Boumelha, J.; Moore, C.; Rana, S.; Llorian Sopena, M.; East, P.; Ambler, R.; Anastasiou, P.; Romero-Clavijo, P.; et al. Therapeutic KRASG12C Inhibition Drives Effective Interferon-Mediated Antitumor Immunity in Immunogenic Lung Cancers. Sci. Adv. 2022, 8, eabm8780. [Google Scholar] [CrossRef]
- Zhao, D.; Li, H.; Mambetsariev, I.; Mirzapoiazova, T.; Chen, C.; Fricke, J.; Kulkarni, P.; Villaflor, V.; Arvanitis, L.; Hamilton, S.; et al. Clinical and Molecular Features of KRAS-Mutated Lung Cancer Patients Treated with Immune Checkpoint Inhibitors. Cancers 2022, 14, 4933. [Google Scholar] [CrossRef]
- Proulx-Rocray, F.; Routy, B.; Nassabein, R.; Belkaid, W.; Tran-Thanh, D.; Malo, J.; Tonneau, M.; Ouarzadi, O.E.; Florescu, M.; Tehfe, M.; et al. The Prognostic Impact of KRAS, TP53, STK11 and KEAP1 Mutations and Their Influence on the NLR in NSCLC Patients Treated with Immunotherapy. Cancer Treat. Res. Commun. 2023, 37, 100767. [Google Scholar] [CrossRef]
- Varshavi, D.; Varshavi, D.; McCarthy, N.; Veselkov, K.; Keun, H.C.; Everett, J.R. Metabolic Characterization of Colorectal Cancer Cells Harbouring Different KRAS Mutations in Codon 12, 13, 61 and 146 Using Human SW48 Isogenic Cell Lines. Metabolomics 2020, 16, 51. [Google Scholar] [CrossRef]
- Brunelli, L.; Caiola, E.; Marabese, M.; Broggini, M.; Pastorelli, R. Capturing the Metabolomic Diversity of KRAS Mutants in Non-Small-Cell Lung Cancer Cells. Oncotarget 2014, 5, 4722–4731. [Google Scholar] [CrossRef]
- Saliakoura, M.; Konstantinidou, G. Lipid Metabolic Alterations in KRAS Mutant Tumors: Unmasking New Vulnerabilities for Cancer Therapy. Int. J. Mol. Sci. 2023, 24, 1793. [Google Scholar] [CrossRef]
- Shi, Y.; Zheng, H.; Wang, T.; Zhou, S.; Zhao, S.; Li, M.; Cao, B. Targeting KRAS: From Metabolic Regulation to Cancer Treatment. Mol. Cancer 2025, 24, 9. [Google Scholar] [CrossRef] [PubMed]
- Molina-Arcas, M.; Samani, A.; Downward, J. Drugging the Undruggable: Advances on RAS Targeting in Cancer. Genes 2021, 12, 899. [Google Scholar] [CrossRef] [PubMed]
- Dy, G.K.; Govindan, R.; Velcheti, V.; Falchook, G.S.; Italiano, A.; Wolf, J.; Sacher, A.G.; Takahashi, T.; Ramalingam, S.S.; Dooms, C.; et al. Long-Term Outcomes and Molecular Correlates of Sotorasib Efficacy in Patients with Pretreated KRAS G12C-Mutated Non–Small-Cell Lung Cancer: 2-Year Analysis of CodeBreaK 100. JCO 2023, 41, 3311–3317. [Google Scholar] [CrossRef] [PubMed]
- Ou, S.-H.I.; Jänne, P.A.; Leal, T.A.; Rybkin, I.I.; Sabari, J.K.; Barve, M.A.; Bazhenova, L.; Johnson, M.L.; Velastegui, K.L.; Cilliers, C.; et al. First-in-Human Phase I/IB Dose-Finding Study of Adagrasib (MRTX849) in Patients With Advanced KRASG12C Solid Tumors (KRYSTAL-1). J. Clin. Oncol. 2022, 40, 2530–2538. [Google Scholar] [CrossRef]
- Sabari, J.K.; Velcheti, V.; Shimizu, K.; Strickland, M.R.; Heist, R.S.; Singh, M.; Nayyar, N.; Giobbie-Hurder, A.; Digumarthy, S.R.; Gainor, J.F.; et al. Activity of Adagrasib (MRTX849) in Brain Metastases: Preclinical Models and Clinical Data from Patients with KRASG12C-Mutant Non–Small Cell Lung Cancer. Clin. Cancer Res. 2022, 28, 3318–3328. [Google Scholar] [CrossRef]
- Sacher, A.; LoRusso, P.; Patel, M.R.; Miller, W.H.; Garralda, E.; Forster, M.D.; Santoro, A.; Falcon, A.; Kim, T.W.; Paz-Ares, L.; et al. Single-Agent Divarasib (GDC-6036) in Solid Tumors with a KRAS G12C Mutation. N. Engl. J. Med. 2023, 389, 710–721. [Google Scholar] [CrossRef]
- Desai, J.; Alonso, G.; Kim, S.H.; Cervantes, A.; Karasic, T.; Medina, L.; Shacham-Shmueli, E.; Cosman, R.; Falcon, A.; Gort, E.; et al. Divarasib plus Cetuximab in KRAS G12C-Positive Colorectal Cancer: A Phase 1b Trial. Nat. Med. 2024, 30, 271–278. [Google Scholar] [CrossRef]
- Molina-Arcas, M.; Downward, J. Exploiting the Therapeutic Implications of KRAS Inhibition on Tumor Immunity. Cancer Cell 2024, 42, 338–357. [Google Scholar] [CrossRef] [PubMed]
- de Langen, A.J.; Johnson, M.L.; Mazieres, J.; Dingemans, A.-M.C.; Mountzios, G.; Pless, M.; Wolf, J.; Schuler, M.; Lena, H.; Skoulidis, F.; et al. Sotorasib versus Docetaxel for Previously Treated Non-Small-Cell Lung Cancer with KRASG12C Mutation: A Randomised, Open-Label, Phase 3 Trial. Lancet 2023, 401, 733–746. [Google Scholar] [CrossRef]
- Amgen Provides Regulatory Update on Status of Lumakras® (Sotorasib). Available online: https://www.amgen.com/newsroom/press-releases/2023/12/amgen-provides-regulatory-update-on-status-of-lumakras-sotorasib (accessed on 17 June 2025).
- Ratain, M.J.; Kesselheim, A.S. Sotorasib’s Accelerated Approval: Wrong Dose and Indication. JAMA Oncol. 2025, 11, 479–480. [Google Scholar] [CrossRef] [PubMed]
- Pant, S.; Yaeger, R.; Spira, A.; Pelster, M.; Sabari, J.; Hafez, N.; Barve, M.; Velastegui, K.; Yan, X.; Der-Torossian, H.; et al. KRYSTAL-1: Activity and Safety of Adagrasib (MRTX849) in Patients with Advanced Solid Tumors Harboring a KRAS G12C Mutation. J. Clin. Oncol. 2023, 41, 425082. [Google Scholar] [CrossRef]
- Sabari, J.K.; Spira, A.I.; Heist, R.S.; Janne, P.A.; Pacheco, J.M.; Weiss, J.; Gadgeel, S.M.; Der-Torossian, H.; Velastegui, K.; Kheoh, T.; et al. Activity of Adagrasib (MRTX849) in Patients with KRASG12C-Mutated NSCLC and Active, Untreated CNS Metastases in the KRYSTAL-1 Trial. JCO 2022, 40, LBA9009. [Google Scholar] [CrossRef]
- Mok, T.S.K.; Yao, W.; Duruisseaux, M.; Doucet, L.; Azkárate Martínez, A.; Gregorc, V.; Juan-Vidal, O.; Lu, S.; De Bondt, C.; de Marinis, F.; et al. KRYSTAL-12: Phase 3 Study of Adagrasib versus Docetaxel in Patients with Previously Treated Advanced/Metastatic Non-Small Cell Lung Cancer (NSCLC) Harboring a KRASG12C Mutation. JCO 2024, 42, LBA8509. [Google Scholar] [CrossRef]
- Chen, Q.-A.; Lin, W.-H.; Zhou, X.-X.; Cao, Z.; Feng, X.-L.; Gao, Y.-B.; He, J. Outcomes Following KRASG12C Inhibitor Treatment in Patients with KRASG12C-Mutated Solid Tumors: A Systematic Review and Meta-Analysis. Pharmacol. Res. 2024, 200, 107060. [Google Scholar] [CrossRef]
- Prahallad, A.; Sun, C.; Huang, S.; Di Nicolantonio, F.; Salazar, R.; Zecchin, D.; Beijersbergen, R.L.; Bardelli, A.; Bernards, R. Unresponsiveness of Colon Cancer to BRAF(V600E) Inhibition through Feedback Activation of EGFR. Nature 2012, 483, 100–103. [Google Scholar] [CrossRef]
- Di Nicolantonio, F.; Vitiello, P.P.; Marsoni, S.; Siena, S.; Tabernero, J.; Trusolino, L.; Bernards, R.; Bardelli, A. Precision Oncology in Metastatic Colorectal Cancer—From Biology to Medicine. Nat. Rev. Clin. Oncol. 2021, 18, 506–525. [Google Scholar] [CrossRef]
- Amodio, V.; Yaeger, R.; Arcella, P.; Cancelliere, C.; Lamba, S.; Lorenzato, A.; Arena, S.; Montone, M.; Mussolin, B.; Bian, Y.; et al. EGFR Blockade Reverts Resistance to KRASG12C Inhibition in Colorectal Cancer. Cancer Discov. 2020, 10, 1129–1139. [Google Scholar] [CrossRef]
- Li, B.T.; Clarke, J.M.; Felip, E.; Ruffinelli, J.C.; Garrido, P.; Zugazagoitia, J.; Goldberg, S.B.; Ramalingam, S.S.; Victoria, I.; Puri, S.; et al. Sotorasib plus Carboplatin and Pemetrexed in KRAS G12C Advanced NSCLC: Updated Analysis from the International CodeBreaK 101 Trial. JCO 2024, 42, 8512. [Google Scholar] [CrossRef]
- Fakih, M.G.; Salvatore, L.; Esaki, T.; Modest, D.P.; Lopez-Bravo, D.P.; Taieb, J.; Karamouzis, M.V.; Ruiz-Garcia, E.; Kim, T.-W.; Kuboki, Y.; et al. Sotorasib plus Panitumumab in Refractory Colorectal Cancer with Mutated KRAS G12C. N. Engl. J. Med. 2023, 389, 2125–2139. [Google Scholar] [CrossRef]
- Yaeger, R.; Uboha, N.V.; Pelster, M.S.; Bekaii-Saab, T.S.; Barve, M.; Saltzman, J.; Sabari, J.K.; Peguero, J.A.; Paulson, A.S.; Jänne, P.A.; et al. Efficacy and Safety of Adagrasib plus Cetuximab in Patients with KRASG12C-Mutated Metastatic Colorectal Cancer. Cancer Discov. 2024, 14, 982–993. [Google Scholar] [CrossRef]
- Tabernero, J.; Bendell, J.; Corcoran, R.; Kopetz, S.; Lee, J.; Davis, M.; Christensen, J.; Chi, A.; Kheoh, T.; Yaeger, R. P-71 KRYSTAL-10: A Randomized Phase 3 Study of Adagrasib (MRTX849) in Combination with Cetuximab vs Chemotherapy in Patients with Previously Treated Advanced Colorectal Cancer with KRASG12C Mutation. Ann. Oncol. 2021, 32, S121. [Google Scholar] [CrossRef]
- Khalid, M.F.; Khan, S.; Zahid, M.; Noor, J.; Warraich, S.Z.; Amin, M.K.; Anwar, I.; Mushtaq, M.U.; Jaglal, M.V.; Shahzad, M. Outcomes with KRAS G12C Inhibitors in Metastatic Colorectal Cancer: A Systematic Review and Meta-Analysis. JCO 2025, 43, e15544. [Google Scholar] [CrossRef]
- Dang, S.; Zhang, S.; Zhao, J.; Li, W. Efficacy and Toxicity of KRASG12C Inhibitors in Advanced Solid Tumors: A Meta-Analysis. World J. Surg. Oncol. 2024, 22, 182. [Google Scholar] [CrossRef]
- Sayed, M.S.; Alami Idrissi, Y.; Ahmed, O.; Samir, S.H.; Pandita, S.; Saeed, F.; Elraggal, D.; Abdulazeem, H.; Saeed, A. Efficacy and Safety of KRAS -G12C Inhibitors in Colorectal Cancer: A Systematic Review of Clinical Trials. Med. Oncol. 2025, 42, 127. [Google Scholar] [CrossRef]
- Aung, W.Y.; Neumann, M.F.; Wang, K.; Chukkalore, D.; Morales, J.; Seetharamu, N. Impact of Standard vs Reduced Dosing of Sotorasib on Efficacy and Toxicity in KRAS G12C–Mutated Advanced Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. JCO 2025, 43, 8593. [Google Scholar] [CrossRef]
- Spira, A.I.; Wilson, F.H.; Shapiro, G.; Dooms, C.; Curioni-Fontecedro, A.; Esaki, T.; Barlesi, F.; Cocks, K.; Trigg, A.; Stevinson, K.; et al. Patient-Reported Outcomes (PRO) from the Phase 2 CodeBreaK 100 Trial Evaluating Sotorasib in KRAS p.G12C Mutated Non-Small Cell Lung Cancer (NSCLC). JCO 2021, 39, 9057. [Google Scholar] [CrossRef]
- Waterhouse, D.M.; Rothschild, S.; Dooms, C.; Mennecier, B.; Bozorgmehr, F.; Majem, M.; van den Heuvel, M.H.; Linardou, H.; Chul Cho, B.; Roberts-Thomson, R.; et al. Patient-Reported Outcomes in CodeBreaK 200: Sotorasib versus Docetaxel for Previously Treated Advanced NSCLC with KRAS G12C Mutation. Lung Cancer 2024, 196, 107921. [Google Scholar] [CrossRef]
- Awad, M.M.; Liu, S.; Rybkin, I.I.; Arbour, K.C.; Dilly, J.; Zhu, V.W.; Johnson, M.L.; Heist, R.S.; Patil, T.; Riely, G.J.; et al. Acquired Resistance to KRASG12C Inhibition in Cancer. N. Engl. J. Med. 2021, 384, 2382–2393. [Google Scholar] [CrossRef]
- Di Federico, A.; Ricciotti, I.; Favorito, V.; Michelina, S.V.; Scaparone, P.; Metro, G.; De Giglio, A.; Pecci, F.; Lamberti, G.; Ambrogio, C.; et al. Resistance to KRAS G12C Inhibition in Non-Small Cell Lung Cancer. Curr. Oncol. Rep. 2023, 25, 1017–1029. [Google Scholar] [CrossRef]
- Suzuki, S.; Yonesaka, K.; Teramura, T.; Takehara, T.; Kato, R.; Sakai, H.; Haratani, K.; Tanizaki, J.; Kawakami, H.; Hayashi, H.; et al. KRAS Inhibitor Resistance in MET-Amplified KRAS G12C Non-Small Cell Lung Cancer Induced By RAS- and Non-RAS-Mediated Cell Signaling Mechanisms. Clin. Cancer Res. 2021, 27, 5697–5707. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Murciano-Goroff, Y.R.; Xue, J.Y.; Ang, A.; Lucas, J.; Mai, T.T.; Da Cruz Paula, A.F.; Saiki, A.Y.; Mohn, D.; Achanta, P.; et al. Diverse Alterations Associated with Resistance to KRAS(G12C) Inhibition. Nature 2021, 599, 679–683. [Google Scholar] [CrossRef] [PubMed]
- Russo, M.; Chen, M.; Mariella, E.; Peng, H.; Rehman, S.K.; Sancho, E.; Sogari, A.; Toh, T.S.; Balaban, N.Q.; Batlle, E.; et al. Cancer Drug-Tolerant Persister Cells: From Biological Questions to Clinical Opportunities. Nat. Rev. Cancer 2024, 24, 694–717. [Google Scholar] [CrossRef]
- Russo, M.; Sogari, A.; Bardelli, A. Adaptive Evolution: How Bacteria and Cancer Cells Survive Stressful Conditions and Drug Treatment. Cancer Discov. 2021, 11, 1886–1895. [Google Scholar] [CrossRef]
- Liu, J.; Kang, R.; Tang, D. The KRAS-G12C Inhibitor: Activity and Resistance. Cancer Gene Ther. 2022, 29, 875–878. [Google Scholar] [CrossRef]
- Tanaka, N.; Lin, J.J.; Li, C.; Ryan, M.B.; Zhang, J.; Kiedrowski, L.A.; Michel, A.G.; Syed, M.U.; Fella, K.A.; Sakhi, M.; et al. Clinical Acquired Resistance to KRASG12C Inhibition Through a Novel KRAS Switch-II Pocket Mutation and Polyclonal Alterations Converging on RAS-MAPK Reactivation. Cancer Discov. 2021, 11, 1913–1922. [Google Scholar] [CrossRef]
- Mainardi, S.; Mulero-Sánchez, A.; Prahallad, A.; Germano, G.; Bosma, A.; Krimpenfort, P.; Lieftink, C.; Steinberg, J.D.; de Wit, N.; Gonçalves-Ribeiro, S.; et al. SHP2 Is Required for Growth of KRAS-Mutant Non-Small-Cell Lung Cancer In Vivo. Nat. Med. 2018, 24, 961–967. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.B.; Fece de la Cruz, F.; Phat, S.; Myers, D.T.; Wong, E.; Shahzade, H.A.; Hong, C.B.; Corcoran, R.B. Vertical Pathway Inhibition Overcomes Adaptive Feedback Resistance to KRASG12C Inhibition. Clin. Cancer Res. 2020, 26, 1633–1643. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.L.; Langdon, R.; Ellison, D.; Spira, A.; Amin, H.; Castine, M.; Daniel, D.; Larson, T.; Sohoni, S.; Chen, Y.-C.; et al. EP08.02-111 RMC-4630, a SHP2 Inhibitor, in Combination with Sotorasib for Advanced KRASG12C NSCLC After Failure of Prior Standard Therapies: A Phase 2 Trial. J. Thorac. Oncol. 2022, 17, S454–S455. [Google Scholar] [CrossRef]
- Negrao, M.V.; Cassier, P.A.; Solomon, B.; Schuler, M.; Rohrberg, K.; Cresta, S.; Dooms, C.; Tan, D.S.W.; Loong, H.H.-f.; Amatu, A.; et al. MA06.03 KontRASt-01: Preliminary Safety and Efficacy of JDQ443 + TNO155 in Patients with Advanced, KRAS G12C-Mutated Solid Tumors. J. Thorac. Oncol. 2023, 18, S117–S118. [Google Scholar] [CrossRef]
- Lou, K.; Steri, V.; Ge, A.Y.; Hwang, Y.C.; Yogodzinski, C.H.; Shkedi, A.R.; Choi, A.L.M.; Mitchell, D.C.; Swaney, D.L.; Hann, B.; et al. KRASG12C Inhibition Produces a Driver-Limited State Revealing Collateral Dependencies. Sci. Signal 2019, 12, eaaw9450. [Google Scholar] [CrossRef]
- Santana-Codina, N.; Chandhoke, A.S.; Yu, Q.; Małachowska, B.; Kuljanin, M.; Gikandi, A.; Stańczak, M.; Gableske, S.; Jedrychowski, M.P.; Scott, D.A.; et al. Defining and Targeting Adaptations to Oncogenic KRASG12C Inhibition Using Quantitative Temporal Proteomics. Cell Rep. 2020, 30, 4584–4599.e4. [Google Scholar] [CrossRef]
- Solanki, H.S.; Welsh, E.A.; Fang, B.; Izumi, V.; Darville, L.; Stone, B.; Franzese, R.; Chavan, S.; Kinose, F.; Imbody, D.; et al. Cell Type–Specific Adaptive Signaling Responses to KRASG12C Inhibition. Clin. Cancer Res. 2021, 27, 2533–2548. [Google Scholar] [CrossRef]
- Adachi, Y.; Ito, K.; Hayashi, Y.; Kimura, R.; Tan, T.Z.; Yamaguchi, R.; Ebi, H. Epithelial-to-Mesenchymal Transition Is a Cause of Both Intrinsic and Acquired Resistance to KRAS G12C Inhibitor in KRAS G12C-Mutant Non-Small Cell Lung Cancer. Clin. Cancer Res. 2020, 26, 5962–5973. [Google Scholar] [CrossRef]
- Tong, X.; Patel, A.S.; Kim, E.; Li, H.; Chen, Y.; Li, S.; Liu, S.; Dilly, J.; Kapner, K.S.; Zhang, N.; et al. Adeno-to-Squamous Transition Drives Resistance to KRAS Inhibition in LKB1 Mutant Lung Cancer. Cancer Cell 2024, 42, 413–428.e7. [Google Scholar] [CrossRef]
- Yaeger, R.; Mezzadra, R.; Sinopoli, J.; Bian, Y.; Marasco, M.; Kaplun, E.; Gao, Y.; Zhao, H.; Paula, A.D.C.; Zhu, Y.; et al. Molecular Characterization of Acquired Resistance to KRASG12C–EGFR Inhibition in Colorectal Cancer. Cancer Discov. 2023, 13, 41–55. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, L.; Katlinskaya, Y.; Anderson, A.; Hindoyan, A.; Pati, A.; Fakih, M.; Reddy, A.; Chan, E.; Mukundan, L. Biomarkers of Emergent Resistance to Sotorasib plus Panitumumab in KRAS G12C-Mutated Metastatic Colorectal Cancer (mCRC) from the Randomized, Phase 3 CodeBreaK 300 Study. JCO 2025, 43, 3540. [Google Scholar] [CrossRef]
- Miyashita, H.; Kato, S.; Hong, D.S. KRAS G12C Inhibitor Combination Therapies: Current Evidence and Challenge. Front. Oncol. 2024, 14, 1380584. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, B.; Wu, M.; Zhang, L.; Ji, M. Current Status of KRAS G12C Inhibitors in NSCLC and the Potential for Combination with Anti-PD-(L)1 Therapy: A Systematic Review. Front. Immunol. 2025, 16, 1509173. [Google Scholar] [CrossRef]
- Brazel, D.; Nagasaka, M. Divarasib in the Evolving Landscape of KRAS G12C Inhibitors for NSCLC. Target. Oncol. 2024, 19, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Weng, J.; Niu, H.; Yang, H.; Liu, R.; Weng, Y.; Zhu, Q.; Zhang, Y.; Tao, L.; Wang, Z.; et al. D-1553: A Novel KRASG12C Inhibitor with Potent and Selective Cellular and in Vivo Antitumor Activity. Cancer Sci. 2023, 114, 2951–2960. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Sloman, D.L.; Duggal, R.; Anderson, K.D.; Ballard, J.E.; Bharathan, I.; Brynczka, C.; Gathiaka, S.; Henderson, T.J.; Lyons, T.W.; et al. Discovery of MK-1084: An Orally Bioavailable and Low-Dose KRASG12C Inhibitor. J. Med. Chem. 2024, 67, 11024–11052. [Google Scholar] [CrossRef]
- Heist, R.S.; Koyama, T.; Murciano-Goroff, Y.R.; Hollebecque, A.; Cassier, P.A.; Han, J.-Y.; Tosi, D.; Sacher, A.G.; Burns, T.F.; Spira, A.I.; et al. Pan-Tumor Activity of Olomorasib (LY3537982), a Second-Generation KRAS G12C Inhibitor (G12Ci), in Patients with KRAS G12C-Mutant Advanced Solid Tumors. JCO 2024, 42, 3007. [Google Scholar] [CrossRef]
- Li, Z.; Dang, X.; Huang, D.; Jin, S.; Li, W.; Shi, J.; Wang, X.; Zhang, Y.; Song, Z.; Zhang, J.; et al. Garsorasib in Patients with KRASG12C-Mutated Non-Small-Cell Lung Cancer in China: An Open-Label, Multicentre, Single-Arm, Phase 2 Trial. Lancet Respir. Med. 2024, 12, 589–598. [Google Scholar] [CrossRef] [PubMed]
- Ruan, D.-Y.; Wu, H.-X.; Xu, Y.; Munster, P.N.; Deng, Y.; Richardson, G.; Yan, D.; Lee, M.-A.; Lee, K.-W.; Pan, H.; et al. Garsorasib, a KRAS G12C Inhibitor, with or without Cetuximab, an EGFR Antibody, in Colorectal Cancer Cohorts of a Phase II Trial in Advanced Solid Tumors with KRAS G12C Mutation. Sig Transduct. Target. Ther. 2025, 10, 189. [Google Scholar] [CrossRef] [PubMed]
- Sacher, A.G.; Sendur, M.A.N.; Stathis, A.; Gottfried, M.; Lu, S.; Juergens, R.A.; Liu, L.; Rojas, C.; Bar, J.; Moreno, V.; et al. MK-1084 for KRAS G12C-Mutated (Mut) Metastatic Non–Small-Cell Lung Cancer (mNSCLC): Results from KANDLELIT-001. JCO 2025, 43, 8605. [Google Scholar] [CrossRef]
- Lugowska, I.A.; Simonelli, M.; Xue, J.; Sacher, A.G.; Stathis, A.; Dziadziuszko, R.; Park, J.O.; Moreno, V.; Yeh, Y.-M.; Sendur, M.A.N.; et al. The KRAS G12C Inhibitor MK-1084 for KRAS G12C–Mutated Advanced Colorectal Cancer (CRC): Results from KANDLELIT-001. JCO 2025, 43, 3508. [Google Scholar] [CrossRef]
- Hollebecque, A.; Koyama, T.; Fujiwara, Y.; Murciano-Goroff, Y.R.; Cassier, P.A.; Ammakkanavar, N.R.; Deming, D.A.; Gomez-Roca, C.A.; Han, S.-W.; Tejani, M.A.; et al. Efficacy and Safety of Olomorasib, a Second-Generation KRAS G12C Inhibitor, plus Cetuximab in KRAS G12C-Mutant Advanced Colorectal Cancer. JCO 2025, 43, 3507. [Google Scholar] [CrossRef]
- Xue, J.Y.; Zhao, Y.; Aronowitz, J.; Mai, T.T.; Vides, A.; Qeriqi, B.; Kim, D.; Li, C.; de Stanchina, E.; Mazutis, L.; et al. Rapid Non-Uniform Adaptation to Conformation-Specific KRAS(G12C) Inhibition. Nature 2020, 577, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Nokin, M.-J.; Mira, A.; Patrucco, E.; Ricciuti, B.; Cousin, S.; Soubeyran, I.; San José, S.; Peirone, S.; Caizzi, L.; Vietti Michelina, S.; et al. RAS-ON Inhibition Overcomes Clinical Resistance to KRAS G12C-OFF Covalent Blockade. Nat. Commun. 2024, 15, 7554. [Google Scholar] [CrossRef]
- Siena, S.; Yamaguchi, K.; Rodriguez, J.C.R.; de la Fuente, E.C.; Kuboki, Y.; Cremolini, C.; Ruiz, I.V.; Fernandez, M.E.E.; Strickler, J.H.; Furqan, M.; et al. 505O Sotorasib (Soto), Panitumumab (Pani) and FOLFIRI in the First-Line (1L) Setting for KRAS G12C–Mutated Metastatic Colorectal Cancer (mCRC): Safety and Efficacy Analysis from the Phase Ib CodeBreaK 101 Study. Ann. Oncol. 2024, 35, S429–S430. [Google Scholar] [CrossRef]
- Strickler, J.H.; Kuboki, Y.; Hong, D.S.; Galot, R.; Greil, R.; Nolte-Hippenmeyer, J.; Chan, E.; Xia, C.; Masuishi, T. Long-Term Safety and Efficacy of Sotorasib plus Panitumumab and FOLFIRI for Previously Treated KRAS G12C-Mutated Metastatic Colorectal Cancer (mCRC): CodeBreaK 101 (Phase 1b). JCO 2025, 43, 3506. [Google Scholar] [CrossRef]
- Kim, T.W.; Price, T.; Grasselli, J.; Strickler, J.H.; Masuishi, T.; Kwok, G.W.; Yalcin, S.; Obiozor, C.C.; Chan, E.; Gokani, P.; et al. A Phase 3 Study of First-Line Sotorasib, Panitumumab, and FOLFIRI versus FOLFIRI with or without Bevacizumab-Awwb for Patients with KRAS G12C–Mutated Metastatic Colorectal Cancer (CodeBreaK 301). JCO 2025, 43, TPS326. [Google Scholar] [CrossRef]
- Jänne, P.A.; Theelen, W.S.M.E.; Garassino, M.C.; Spira, A.I.; Laskin, J.J.; De Marinis, F.; Badin, F.B.; Boom, L.; Aguado De La Rosa, C.; Chmielewska, I.; et al. First-Line Adagrasib (ADA) with Pembrolizumab (PEMBRO) in Patients (Pts) with Advanced/Metastatic KRASG12C—Mutated Non-Small Cell Lung Cancer (NSCLC) from the Phase 2 Portion of the KRYSTAL-7 Study. JCO 2025, 43, 8500. [Google Scholar] [CrossRef]
- Li, B.T.; Falchook, G.S.; Durm, G.A.; Burns, T.F.; Skoulidis, F.; Ramalingam, S.S.; Spira, A.; Bestvina, C.M.; Goldberg, S.B.; Veluswamy, R.; et al. OA03.06 CodeBreaK 100/101: First Report of Safety/Efficacy of Sotorasib in Combination with Pembrolizumab or Atezolizumab in Advanced KRAS p.G12C NSCLC. J. Thorac. Oncol. 2022, 17, S10–S11. [Google Scholar] [CrossRef]
- Skoulidis, F.; Solomon, B.J.; Frost, N.S.W.; Heist, R.; Zhou, C.; Zarak Crnkovic, M.; Antic, V.; Prizant, H.; Mayo, M.C.; Meyenberg, C.; et al. Krascendo 2: A Phase III Study of Divarasib and Pembrolizumab vs Pembrolizumab and Chemotherapy in Patients with Previously Untreated, Advanced or Metastatic, KRAS G12C-Mutated Non-Small Cell Lung Cancer (NSCLC). JCO 2025, 43, TPS8656. [Google Scholar] [CrossRef]
- Dragnev, K.H.; Murciano-Goroff, Y.R.; Ammakkanavar, N.; Takeuchi, S.; Fujiwara, Y.; Burns, T.; Spira, A.I.; Johnson, M.L.; Sacher, A.G.; Lundy, J.; et al. Safety and Efficacy of Olomorasib + Immunotherapy in First-Line Treatment of Patients with KRAS G12C-Mutant Advanced NSCLC: Update from the LOXO-RAS-20001 Trial. JCO 2025, 43, 8519. [Google Scholar] [CrossRef]
- Goodwin, C.M.; Waters, A.M.; Klomp, J.E.; Javaid, S.; Bryant, K.L.; Stalnecker, C.A.; Drizyte-Miller, K.; Papke, B.; Yang, R.; Amparo, A.M.; et al. Combination Therapies with CDK4/6 Inhibitors to Treat KRAS-Mutant Pancreatic Cancer. Cancer Res. 2023, 83, 141–157. [Google Scholar] [CrossRef] [PubMed]
- Migliarese, C.; Sadeh, Y.; Torrini, C.; Turna Demir, F.; Nayyar, N.; Yamazawa, E.; Ishikawa, Y.; Ijad, N.; Summers, E.J.; Elliott, A.; et al. Combination Therapy of Adagrasib and Abemaciclib in Non-Small Cell Lung Cancer Brain Metastasis Models Genomically Characterized by KRAS-G12C and Homozygous Loss of CDKN2A. Acta Neuropathol. Commun. 2025, 13, 88. [Google Scholar] [CrossRef] [PubMed]
- Sommerhalder, D.; Thevathasan, J.; Ianopulos, X.; Volinn, W.; Hong, D. Abstract CT242: KRYSTAL-16: A Phase I/Ib Trial of Adagrasib (MRTX849) in Combination with Palbociclib in Patients with Advanced Solid Tumors with KRASG12C Mutation. Cancer Res. 2022, 82, CT242. [Google Scholar] [CrossRef]
- Lamba, S.; Russo, M.; Sun, C.; Lazzari, L.; Cancelliere, C.; Grernrum, W.; Lieftink, C.; Bernards, R.; Di Nicolantonio, F.; Bardelli, A. RAF Suppression Synergizes with MEK Inhibition in KRAS Mutant Cancer Cells. Cell Rep. 2014, 8, 1475–1483. [Google Scholar] [CrossRef]
- Salgia, R.; Pharaon, R.; Mambetsariev, I.; Nam, A.; Sattler, M. The Improbable Targeted Therapy: KRAS as an Emerging Target in Non-Small Cell Lung Cancer (NSCLC). Cell Rep. Med. 2021, 2, 100186. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, L.; Liu, C.; Zheng, S.; Shi, H.; Wei, F.; Jiang, W.; Dong, Y.; Xu, H.; Yin, E.; et al. Abstract 4722: Crucial Prognostic Biomarkers for Resistance to KRAS-G12C Inhibitors. Cancer Res. 2025, 85, 4722. [Google Scholar] [CrossRef]
- Thummalapalli, R.; Bernstein, E.; Herzberg, B.; Li, B.T.; Iqbal, A.; Preeshagul, I.; Santini, F.C.; Eng, J.; Ladanyi, M.; Yang, S.-R.; et al. Clinical and Genomic Features of Response and Toxicity to Sotorasib in a Real-World Cohort of Patients with Advanced KRAS G12C-Mutant Non–Small Cell Lung Cancer. JCO Precis. Oncol. 2023, 7, e2300030. [Google Scholar] [CrossRef]
- Tian, L.; Liu, C.; Zheng, S.; Shi, H.; Wei, F.; Jiang, W.; Dong, Y.; Xu, H.; Yin, E.; Sun, N.; et al. KEAP1 Mutations as Key Crucial Prognostic Biomarkers for Resistance to KRAS-G12C Inhibitors. J. Transl. Med. 2025, 23, 82. [Google Scholar] [CrossRef]
- Padda, S.K.; Redman, M.W.; Gerber, D.E.; Minichiello, K.; Mehta, D.R.; Mashru, S.H.; Hakim, H.; Brahmer, J.R.; Bradley, J.D.; Stinchcombe, T.; et al. S1900E: A Phase II Study Examining Impact of Co-Mutations on Sotorasib for Previously Treated Stage IV/Recurrent KRAS G12C Mutated (MUT) Non-Squamous (Non-Sq) Non-Small Cell Lung Cancer (NSCLC) (ECOG-ACRIN Led Lung-MAP Sub-Study). JCO 2025, 43, 8518. [Google Scholar] [CrossRef]
- Jazieh, K.; Tsai, J.; Solomon, S.; Zhu, M.; Sinicrope, F.A.; Pedersen, K.S.; Fernandez-Zapico, M.E.; Xie, H. Identification of Candidate Alterations Mediating KRASG12C Inhibitor Resistance in Advanced Colorectal and Pancreatic Cancers. Clin. Cancer Res. 2025, 31, 899–906. [Google Scholar] [CrossRef]
- Ros, J.; Vaghi, C.; Baraibar, I.; Saoudi González, N.; Rodríguez-Castells, M.; García, A.; Alcaraz, A.; Salva, F.; Tabernero, J.; Elez, E. Targeting KRAS G12C Mutation in Colorectal Cancer, A Review: New Arrows in the Quiver. Int. J. Mol. Sci. 2024, 25, 3304. [Google Scholar] [CrossRef]
- Choi, Y.; Dharia, N.V.; Jun, T.; Chang, J.; Royer-Joo, S.; Yau, K.K.; Assaf, Z.J.; Aimi, J.; Sivakumar, S.; Montesion, M.; et al. Circulating Tumor DNA Dynamics Reveal KRAS G12C Mutation Heterogeneity and Response to Treatment with the KRAS G12C Inhibitor Divarasib in Solid Tumors. Clin. Cancer Res. 2024, 30, 3788–3797. [Google Scholar] [CrossRef]
- Paweletz, C.P.; Heavey, G.A.; Kuang, Y.; Durlacher, E.; Kheoh, T.; Chao, R.C.; Spira, A.I.; Leventakos, K.; Johnson, M.L.; Ou, S.-H.I.; et al. Early Changes in Circulating Cell-Free KRAS G12C Predict Response to Adagrasib in KRAS Mutant Non–Small Cell Lung Cancer Patients. Clin. Cancer Res. 2023, 29, 3074–3080. [Google Scholar] [CrossRef]
- Skoulidis, F.; Li, B.T.; de Langen, A.J.; Hong, D.S.; Lena, H.; Wolf, J.; Dy, G.K.; Curioni Fontecedro, A.; Tomasini, P.; Velcheti, V.; et al. Molecular Determinants of Sotorasib Clinical Efficacy in KRASG12C-Mutated Non-Small-Cell Lung Cancer. Nat. Med. 2025, 31, 2755–2767. [Google Scholar] [CrossRef] [PubMed]
- Ricciuti, B.; Lee, E.; Conneran, T.; King, J.C.; Harper, A.; Lamberti, G.; Brisbane, G.; Hoskova, K.; Clifford, S.; Murphy, J.-E.; et al. SPARK, Studying Pathways of Resistance in KRAS-Driven Cancers: A Remote Plasma ctDNA Participation Study to Identify Mechanisms of Resistance to KRAS Inhibitors. JCO 2023, 41, TPS3166. [Google Scholar] [CrossRef]
- Uhlik, M.; Žiberna, K.; Ausec, L.; Rosengarten, R.; Štajdohar, M.R.; Cohen, E.E.W.; Wheeler, J. Prediction of Sotorasib Response Duration and Identification of Clinically Actionable Resistance Mechanisms Using an RNA- and Machine Learning–Based Patient Classifier. JCO 2025, 43, e13614. [Google Scholar] [CrossRef]
Parameter | Sotorasib | Adagrasib | Divarasib |
---|---|---|---|
Target Residence | Irreversible covalent binding | Irreversible covalent binding | Irreversible covalent binding |
Half-Life | 5.4 h | 23 h | 18–24 h |
CNS Penetration | Limited | High (brain/plasma ratio 0.3–0.6) | N/A |
Potency (KRAS G12C IC50) | 21 nM | 2.5 nM | 0.6 nM |
KRAS G12C Inhibitors | Indication | Approved by | Clinical Trial (Phase 3) |
---|---|---|---|
Sotorasib | Treatment of adults with advanced NSCLC harboring a KRAS G12C mutation who have progressed after at least one prior line of systemic therapy | FDA, EMA | CodeBreaK 100 |
Adagrasib | Treatment of adult patients with advanced NSCLC who have experienced disease progression after at least one prior systemic therapy | FDA, EMA | KRYSTAL-12 |
Sotorasib + Panitumumab | Treatment of adult patients with KRAS G12C-mutated metastatic CRC who have previously undergone chemotherapy | FDA | CodeBreaK 300 |
Resistance Mechanism | NSCLC Prevalence (%) | CRC Prevalence (%) | Notes |
---|---|---|---|
Secondary KRAS mutations | 20–25 | 30–40 | Y96C/D/S, G13D, Q99, etc. |
KRAS amplification | 22 | Not well reported | More frequent in NSCLC than CRC |
RAS/MAPK pathway alterations | 26 | 69 | Includes NRAS, BRAF, MAP2K1, EGFR, MET, HER2, PI3KCA, etc. |
Multiple concurrent events | 23 | Higher | Often a combination of the above mutations |
EGFR pathway activation | 10–15 | Up to 30 | Key adaptive resistance driver, especially in CRC |
MET amplification | 1–6 | Rare | Notable in NSCLC, less frequent in CRC |
PI3K pathway activation | 8–10 | 15–20 | Includes PI3KCA, PTEN, mTOR alterations |
Divarasib (GDC-6036) | Garsorasib (D-1553) | MK-1084 | Olomorasib (LY3537982) | |
---|---|---|---|---|
Current clinical phase | Phase 3 (NSCLC) Phase 1/2 (CRC) | Phase 3 (NSCLC) Phase 2 (CRC) | Phase 3 (NSCLC and CRC) | Phase 2/3 (NSCLC) Phase 1/2 (CRC) |
Key trial results | NSCLC [50]: ORR: 53.4% mPFS 13.1 mo CRC [51]: ORR: 29% (monotherapy), 62.5% (+cetuximab) mPFS 5.6 mo (monotherapy), 8.1 mo (+cetuximab) | NSCLC [98]: ORR: 50% CRC [99]: ORR: 19.2% (monotherapy), 45.2% (+cetuximab) mPFS: 5.5 mo (monotherapy), 7.5 mo (+cetuximab) | NSCLC [100]: ORR: 38% mPFS: 8 mo CRC [101]: ORR: 36% (monotherapy), 50% (+cetuximab) | Non-CRC [97]: ORR: 39–40% mPFS: 4–9 mo CRC [102]: ORR: 38–44% (+cetuximab) mPFS: 6.6–7.5 mo |
Relevant features | High potency, high selectivity, long half-life [50,94] | High selectivity, high CNS penetration [95] Breakthrough designation in China | Macrocyclic structure for improved selectivity and PK [96] | >90% target occupancy [97] Active in G12Ci-pretreated NSCLC [97] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vitiello, P.P.; Valsecchi, A.A.; Duregon, E.; Di Celle, P.F.; Cassoni, P.; Papotti, M.; Bardelli, A.; Di Maio, M. KRAS G12C Inhibition in Solid Tumors: Biological Breakthroughs, Clinical Evidence, and Open Challenges. Cancers 2025, 17, 2803. https://doi.org/10.3390/cancers17172803
Vitiello PP, Valsecchi AA, Duregon E, Di Celle PF, Cassoni P, Papotti M, Bardelli A, Di Maio M. KRAS G12C Inhibition in Solid Tumors: Biological Breakthroughs, Clinical Evidence, and Open Challenges. Cancers. 2025; 17(17):2803. https://doi.org/10.3390/cancers17172803
Chicago/Turabian StyleVitiello, Pietro Paolo, Anna Amela Valsecchi, Eleonora Duregon, Paola Francia Di Celle, Paola Cassoni, Mauro Papotti, Alberto Bardelli, and Massimo Di Maio. 2025. "KRAS G12C Inhibition in Solid Tumors: Biological Breakthroughs, Clinical Evidence, and Open Challenges" Cancers 17, no. 17: 2803. https://doi.org/10.3390/cancers17172803
APA StyleVitiello, P. P., Valsecchi, A. A., Duregon, E., Di Celle, P. F., Cassoni, P., Papotti, M., Bardelli, A., & Di Maio, M. (2025). KRAS G12C Inhibition in Solid Tumors: Biological Breakthroughs, Clinical Evidence, and Open Challenges. Cancers, 17(17), 2803. https://doi.org/10.3390/cancers17172803