Quantitative Ultrasound-Based Precision Diagnosis of Papillary, Follicular, and Medullary Thyroid Carcinomas Using Morphological, Structural, and Textural Features
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Cohort
2.2. Image Acquisition and Preprocessing
2.3. Quantitative Feature Extraction
2.3.1. Morphological Features
- Aspect Ratio (Height-to-Width Ratio)
- Shape Complexity (Perimeter-to-Area Ratio)
2.3.2. Echogenicity and Internal Echotexture Features
- Echogenicity
- Internal Echotexture Features
2.3.3. Boundary Characteristics
- Assessment of Lesion Boundary Sharpness
- Boundary Blurring—Kullback–Leibler Divergence Relative to Normal Parenchyma
2.3.4. Structural Features
- Micro- and Macrocalcifications
- Anechoic Areas (Cystic Components and Necrosis)
2.4. Statistical Analysis
2.5. Multiparametric Classification Based on Quantitative Imaging Features
2.6. Software and Data Availability
3. Results
3.1. Quantitative Evaluation of Single Ultrasound Features
3.1.1. Morphological Feature Assessment: Shape and Complexity
3.1.2. Echogenicity and Intratumoral Texture Characteristics
3.1.3. Assessment of Tumor Margins
3.1.4. Internal Composition and Calcification Patterns
3.2. Comparative Evaluation of Individual Quantitative Ultrasound Features
3.3. Classification Model Based on Full Feature Set
3.4. Feature Importance and Reduced Feature Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Didkowska, J.; Wojciechowska, U.; Olasek, P.; Michałek, I.; Ciuba, A. Nowotwory Złośliwe w Polsce w 2021 Roku; Krajowy Rejestr Nowotworów, Narodowy Instytut Onkologii: Warszawa, Poland, 2023. (In Polish) [Google Scholar]
- Cabanillas, M.E.; McFadden, D.G.; Durante, C. Thyroid cancer. Lancet 2016, 388, 2783–2795. [Google Scholar] [CrossRef]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef]
- Nikiforov, Y.E.; Biddinger, P.W.; Thompson, L.D.; Lester, D.R. Diagnostic Pathology and Molecular Genetics of the Thyroid, 2nd ed.; Wolters Kluwer: Philadelphia, PA, USA, 2012. [Google Scholar]
- Wells, S.A., Jr.; Asa, S.L.; Dralle, H.; Elisei, R.; Evans, D.B.; Gagel, R.F.; Lee, N.; Machens, A.; Moley, J.F.; Pacini, F.; et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 2015, 25, 567–610. [Google Scholar] [CrossRef]
- Roman, S.; Lin, R.; Sosa, J.A. Prognosis of medullary thyroid carcinoma: Demographic, clinical, and pathologic predictors of survival. Arch. Surg. 2005, 140, 891–897. [Google Scholar]
- Pacini, F.; Castagna, M.G.; Brilli, L.; Pentheroudakis, G. Medullary thyroid cancer: ESMO Clinical Practice Guidelines. Ann. Oncol. 2010, 21 (Suppl. S5), v219–v225. [Google Scholar] [CrossRef] [PubMed]
- Tessler, F.N.; Middleton, W.D.; Grant, E.G.; Hoang, J.K.; Berland, L.L.; Teefey, S.A.; Cronan, J.J.; Beland, M.D.; Desser, T.S.; Frates, M.C.; et al. ACR Thyroid Imaging Reporting and Data System (TI-RADS): White paper of the ACR TI-RADS committee. J. Am. Coll. Radiol. 2017, 14, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Russ, G.; Bonnema, S.J.; Erdogan, M.F.; Durante, C.; Ngu, R.; Leenhardt, L. European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS. Eur. Thyroid J. 2017, 6, 225–237. [Google Scholar] [CrossRef]
- Migda, B.; Migda, M.; Migda, M.; Dobruch-Sobczak, K.; Słowińska-Klencka, D.; Woliński, K. EU-TIRADS-PL—Polskie wytyczne ultrasonograficznej stratyfikacji ryzyka złośliwości zmian ogniskowych tarczycy. Endokrynol. Pol. 2022, 73, 18–37. (In Polish) [Google Scholar]
- Zhao, J.; Zheng, X.; Gao, M.; Zhang, S.; Yun, X.; Chi, J.; Xu, G. Ultrasound features of medullary thyroid carcinoma as predictors of biological behavior. Cancer Imaging 2021, 21, 33. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Yang, F.; Wang, Y.; Mu, J.; Wei, X.; Wei, X. Ultrasonographic features of thyroid carcinoma of different sizes: Comparison between medullary thyroid carcinomas and papillary thyroid carcinomas. Zhonghua Zhong Liu Za Zhi 2024, 46, 133–139. [Google Scholar] [PubMed]
- Lei, R.; Wang, Z.-D.; Qian, L. Ultrasonic Characteristics of Medullary Thyroid Carcinoma. Ultrasound Q. 2021, 37, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Hughes, N.M.; Nae, A.; Barry, J.; Fitzgerald, B.; Feeley, L.; Sheahan, P. Sonographic differences between conventional and follicular variant papillary thyroid carcinoma. Eur. Arch. Otorhinolaryngol. 2017, 274, 2021–2028. [Google Scholar] [CrossRef] [PubMed]
- Hekimsoy, İ.; Ertan, Y.; Serin, G.; Karabulut, A.K.; Özbek, S. Comparison of ultrasound findings of papillary thyroid carcinoma subtypes based on the 2022 WHO classification of thyroid neoplasms. Front. Endocrinol. 2024, 14, 1434787. [Google Scholar] [CrossRef]
- Chen, X.; Gao, X.; Ma, X.; Wei, B.; Bai, M. Efficacy of color Doppler ultrasound signs combined with serum tumor-specific growth factor in the diagnosis of differentiated thyroid cancer. Am. J. Transl. Res. 2024, 16, 3654–3666. [Google Scholar] [CrossRef]
- Jiang, S.; Xie, Q.; Li, N.; Chen, H.; Chen, X. Modified models for predicting malignancy using ultrasound characters have high accuracy in thyroid nodules with small size. Front. Mol. Biosci. 2021, 8, 752417. [Google Scholar] [CrossRef]
- Liu, M.; Liu, Z.; Hou, Y.; Men, Y.; Zhang, Y.; Gao, L.; Liu, H. Ultrasonographic characteristics of medullary thyroid carcinoma: A comparison with papillary thyroid carcinoma. Oncotarget 2017, 8, 27520–27528. [Google Scholar] [CrossRef]
- Xu, Y.; Pi, J.; Jinghu, Y.; Wang, X.; Xu, D.; Liu, J. Diagnostic Efficiency of ACR-TIRADS Score for Differentiating Benign and Malignant Thyroid Nodules of Various Pathological Types. Med. Sci. Monit. 2024, 30, e943228. [Google Scholar] [CrossRef]
- Solymosi, T.; Hegedüs, L.; Bodor, M.; Nagy, E. EU-TIRADS-Based omission of fine-needle aspiration and cytology from thyroid nodules overlooks a substantial number of follicular thyroid cancers. Int. J. Endocrinol. 2021, 185, 193–200. [Google Scholar] [CrossRef]
- Ni, X.; Xu, S.Y.; Zhang, B.Y.; Zhan, W.; Zhou, W. Clinical and sonographic features of noninvasive follicular thyroid neoplasm with papillary-like nuclear features. Ultrasound Q. 2022, 38, 44–50. [Google Scholar] [CrossRef]
- Dobruch-Sobczak, K.; Gumińska, A.; Bakuła-Zalewska, E.; Mlosek, K.; Słapa, R.Z.; Wareluk, P.; Krauze, A.; Ziemiecka, A.; Migda, B.; Jakubowski, W.; et al. Shear wave elastography in medullary thyroid carcinoma diagnostics. J. Ultrason. 2015, 15, 358–367. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, F.; Hou, W.; Wang, Y.; Mu, J.; Wang, H.; Wei, X. Ultrasonic radiomics in predicting pathologic type for thyroid cancer: A preliminary study. Front. Endocrinol. 2025, 16, 1428888. [Google Scholar]
- Kim, S.-H.; Kim, B.; Jung, S.; Lee, J.-W.; Yang, P.-S.; Kang, B.; Lim, H.; Kim, J.-Y.; Whang, I.; Kwon, H.; et al. Ultrasonographic findings of medullary thyroid carcinoma: A comparison with papillary thyroid carcinoma. Korean J. Radiol. 2009, 10, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Fried, K.; Scognamiglio, T. Sonographic and cytologic differences of NIFTP from infiltrative or invasive encapsulated follicular variant papillary thyroid carcinoma. Diagn. Cytopathol. 2017, 45, 533–541. [Google Scholar] [CrossRef]
- Ng, S.; Kuo, S.; Hua, C.; Huang, B.; Chiang, K.; Chu, Y.Y.; Hsueh, C.; Lin, J.D. Differentiation of the follicular variant of papillary thyroid carcinoma from classic papillary thyroid carcinoma: An ultrasound analysis and complement to fine-needle aspiration cytology. J. Ultrasound Med. 2018, 37, 667–674. [Google Scholar] [CrossRef]
- Slabaugh, G.; Beltran, L.; Rizvi, H.; Deloukas, P.; Marouli, E. Applications of machine and deep learning to thyroid cytology and histopathology: A review. Front. Oncol. 2023, 13, 958310. [Google Scholar] [CrossRef]
- Cao, C.-L.; Li, Q.; Tong, J.; Shi, L.; Li, W.-X.; Xu, Y.; Cheng, J.; Du, T.T.; Li, J.; Cui, X.W. Artificial intelligence in thyroid ultrasound. Front. Oncol. 2023, 13, 1060702. [Google Scholar]
- Miranda-Filho, A.; Lortet-Tieulent, J.; Bray, F.; Cao, B.; Franceschi, S.; Vaccarella, S.; Dal Maso, L. Thyroid cancer incidence trends by histology in 25 countries: A population-based study. Lancet Diabetes Endocrinol. 2021, 9, 225–234. [Google Scholar] [CrossRef]
- Locati, L.; Cavalieri, S.; Dal Maso, L.; Busco, S.; Anderson, L.; Botta, L.; Bento, M.J.; Carulla, M.; Chirlaque López, M.D.; Fusco, M.; et al. Rare thyroid malignancies in Europe: Data from the RARECAREnet project. Oral Oncol. 2020, 104, 104637. [Google Scholar]
- Bikas, A.; Burman, K. Epidemiology of thyroid cancer. In The Thyroid and Its Diseases; Springer: Cham, Switzerland, 2019; pp. 1–12. [Google Scholar]
- Rybakov, S. Medullary thyroid cancer: Epidemiology. Int. J. Endocrinol. 2023, 19, 306–311. [Google Scholar] [CrossRef]
- Mattingly, A.S.; Noel, J.E.; Orloff, L. A closer look at “taller-than-wide” thyroid nodules: Examining dimension ratio to predict malignancy. Otolaryngol. Head Neck Surg. 2021, 165, 563–570. [Google Scholar] [CrossRef]
- Remonti, L.R.; Kramer, C.K.; Leitão, C.B.; Pinto, L.C.; Gross, J.L. Thyroid ultrasound features and risk of carcinoma: A systematic review and meta-analysis of observational studies. Thyroid 2015, 25, 538–550. [Google Scholar] [CrossRef]
- Fukushima, M.; Fukunari, N.; Murakami, T.; Kunii, Y.; Suzuki, S.; Kitaoka, M. Reconfirmation of the accuracy of the taller-than-wide sign in multicenter collaborative research in Japan. Endocr. J. 2021, 68, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.; Kwak, J.; Kim, E.K.; Kim, M.J. A taller-than-wide shape in thyroid nodules in transverse and longitudinal planes and the prediction of malignancy. Thyroid 2011, 21, 1249–1253. [Google Scholar] [CrossRef] [PubMed]
- Papapostolou, K.; Evangelopoulou, C.; Ioannidis, I.; Kassi, G.N.; Morfas, K.S.; Karaminas, N.I.; Karga, H.J. Taller-than-wide thyroid nodules with microcalcifications are at high risk of malignancy. Vivo 2020, 34, 2021–2027. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, W. Sonographic features of follicular variant of papillary thyroid carcinoma and performance of the 2017 ACR TI-RADS. Endocrine 2020, 67, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.S.; Kim, J.H.; Na, D.G.; Park, S.H.; Kim, E.; Chang, K.; Sohn, C.H.; Choi, Y.H. Sonographic features of follicular variant papillary thyroid carcinomas vs conventional papillary carcinomas. J. Ultrasound Med. 2009, 28, 1685–1692. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, H.; Liang, Z.; Chen, L.; Sun, X.-M.; Shao, Y.; Chen, L. Comparison of the diagnostic performance and clinical role of different ultrasound-based thyroid malignancy risk stratification systems for medullary thyroid carcinoma. Quant. Imaging Med. Surg. 2023, 13, 3776. [Google Scholar]
- Ye, B.B.; Liu, Y.Y.; Zhang, Y.; Liu, B.J.; Guo, L.H.; Wei, Q.; Zhang, Y.F.; Xu, H.X. Predicting tall-cell subtype of papillary thyroid carcinomas independently with preoperative multimodal ultrasound. Br. J. Radiol. 2024, 97, 1311–1319. [Google Scholar] [CrossRef]
- Borowczyk, M.; Woliński, K.; Więckowska, B.; Jodłowska-Siewert, E.; Szczepanek-Parulska, E.; Verburg, F.; Ruchała, M. Sonographic features differentiating follicular thyroid cancer from adenoma—A meta-analysis. Cancers 2021, 13, 938. [Google Scholar] [CrossRef]
- Oh, H.; Kwon, H.; Song, E.; Jeon, M.; Song, D.; Kim, T.; Shong, Y.K.; Baek, J.H.; Kim, W.G. Preoperative predictors for lateral cervical lymph node metastases in sporadic medullary thyroid carcinoma. Thyroid 2018, 28, 362–368. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, W.; Li, X.; Gu, Y.; Jiao, Y.; Dong, F.; Cui, Y. Ultrasound fuzzy entropy imaging based on time-series signal for tissue characterization. Appl. Acoust. 2024, 224, 110158. [Google Scholar] [CrossRef]
- Sollini, M.; Cozzi, L.; Chiti, A.; Kirienko, M. Texture analysis and machine learning to characterize thyroid nodules and differentiated cancer. Eur. J. Radiol. 2018, 99, 1–8. [Google Scholar] [CrossRef]
- Meyer, H.; Schob, S.; Höhn, A.; Surov, A. MRI texture analysis reflects histopathology parameters in thyroid cancer—A preliminary study. Transl. Oncol. 2017, 10, 911–916. [Google Scholar] [CrossRef]
- Nugroho, H.; Rahmawaty, M.; Triyani, Y.; Ardiyanto, I. Texture analysis for classification of thyroid ultrasound images. In Proceedings of the 2016 International Electronics Symposium (IES), Denpasar, Indonesia, 29–30 September 2016; pp. 476–480. [Google Scholar]
- Keutgen, X.; Li, H.; Memeh, K.; Busch, J.; Williams, J.; Lan, L.; Sarne, D.; Finnerty, B.; Angelos, P.; Fahey, T.; et al. A machine-learning algorithm for distinguishing malignant from benign indeterminate thyroid nodules using ultrasound radiomic features. J. Med. Imaging 2022, 9, 034501. [Google Scholar] [CrossRef] [PubMed]
- Chiu, L.; Chen, A. A variance-reduction approach to detection of the thyroid nodule boundary on ultrasound images. Ultrason. Imaging 2019, 41, 206–230. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, J. Multimodal image feature fusion for improving medical ultrasound image segmentation. Biomed. Signal Process. Control 2024, 89, 105705. [Google Scholar] [CrossRef]
- Ferreira, L.; Gimba, E.; Vinagre, J.; Sobrinho-Simões, M.; Soares, P. Molecular aspects of thyroid calcification. Int. J. Mol. Sci. 2020, 21, 7718. [Google Scholar] [CrossRef]
- Shi, C.; Li, S.; Shi, T.; Liu, B.; Ding, C.; Qin, H. Correlation between thyroid nodule calcification morphology on ultrasound and carcinoma. J. Int. Med. Res. 2012, 40, 350–357. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, W.; Bai, W.; He, W. Relationship between morphologic characteristics of ultrasonic calcification in thyroid nodules and carcinoma. Ultrasound Med. Biol. 2019, 45, 2652–2659. [Google Scholar]
- Lei, Z.; Li, M.; Luo, D.; Han, Z. The clinical significance of ultrasound grayscale ratio in differentiating markedly hypoechoic and anechoic thyroid nodules. J. Cancer Res. Ther. 2018, 14, 1567–1571. [Google Scholar]
- Nugroho, H.A.; Zulfanahri; Nugroho, A.; Frannita, E.L.; Ardiyanto, I.; Choridah, L. Feature extraction based on laws’ texture energy for lesion echogenicity classification of thyroid ultrasound images. In Proceedings of the 2017 International Conference on Computer, Control, Informatics and its Applications (IC3INA), Jakarta, Indonesia, 23–26 October 2017. [Google Scholar]
- Sharda, D.N.; Shah, D.A. A study of evaluation of focal thyroid nodule/nodules on ultrasound (grey scale), color doppler and elastography with histopathology correlation. Int. J. Radiol. Diagn. Imaging 2023, 6, 4–23. [Google Scholar] [CrossRef]
- Ghasemi, A.; Zahediasl, S. Normality tests for statistical analysis: A guide for non-statisticians. Int. J. Endocrinol. Metab. 2012, 10, 486–489. [Google Scholar] [CrossRef]
- Dunn, O.J. Multiple comparisons using rank sums. Technometrics 1964, 6, 241–252. [Google Scholar] [CrossRef]
- Šidák, Z. Rectangular confidence regions for the means of multivariate normal distributions. J. Am. Stat. Assoc. 1967, 62, 626–633. [Google Scholar] [CrossRef]
- Lange, T.M.; Gültas, M.; Schmitt, A.; Heinrich, F. optRF: Optimising random forest stability by determining the optimal number of trees. BMC Bioinform. 2025, 26, 95. [Google Scholar] [CrossRef]
- Probst, P.; Boulesteix, A. To tune or not to tune the number of trees in random forest? J. Mach. Learn. Res. 2018, 18, 1–18. [Google Scholar]
- Oshiro, T.M.; Perez, P.S.; Baranauskas, J.A. How many trees in a random forest? In International Workshop on Machine Learning and Data Mining in Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Liu, H.; Haig, E. Semi-random partitioning of data into training and test sets in granular computing. Granul. Comput. 2017, 2, 357–386. [Google Scholar] [CrossRef]
- Chen, R.; Dewi, C.; Huang, S.W.; Caraka, R. Selecting critical features for data classification based on machine learning methods. J. Big Data 2020, 7, 52. [Google Scholar] [CrossRef]
- Iranzad, R.; Liu, X. A review of random forest-based feature selection methods for data science education and applications. Int. J. Data Sci. Anal. 2024, 20, 197–211. [Google Scholar] [CrossRef]
- Zeng, G. On impurity functions in decision trees. Commun. Stat. Theory Methods 2024, 54, 701–719. [Google Scholar] [CrossRef]
- Jaworski, M.; Duda, P.; Rutkowski, L. New splitting criteria for decision trees in stationary data streams. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 2516–2529. [Google Scholar] [CrossRef]
- Schoultz, E.; Moccia, C.; Liang, S.; Johansson, E.; Nilsson, M. Tumor Cell Plasticity and Stromal Microenvironment Distinguish Papillary and Follicular Growth Patterns in a Mouse Model of BRAFV600E-induced Thyroid Cancer. Cancer Res. Commun. 2025, 5, 409–421. [Google Scholar] [CrossRef]
- Basolo, F.; Ugolini, C. Pathology of Thyroid Cancer. In Oxford Textbook of Endocrinology and Diabetes 3e; Oxford University Press: Oxford, UK, 2021. [Google Scholar]
- Williams, D. Thyroid Growth and Cancer. Eur. Thyroid J. 2015, 4, 164–173. [Google Scholar] [CrossRef]
- Suster, S. Thyroid tumors with a follicular growth pattern: Problems in differential diagnosis. Arch. Pathol. Lab. Med. 2006, 130, 984–988. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Prera, J.; Wenig, B.M. RAS-Mutant Follicular Thyroid Tumors: A Continuous Challenge for Pathologists. Endocr. Pathol. 2024, 35, 167–184. [Google Scholar] [CrossRef] [PubMed]
- Machens, A.; Lorenz, K.; Weber, F.; Dralle, H. Anatomic Patterns of Nodal Spread in Unilateral Papillary and Medullary Thyroid Cancer. Thyroid 2024, 34, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lian, S.; Luo, Z.; Wang, B.; Li, S. Contour-aware consistency for semi-supervised medical image segmentation. Biomed. Signal Process. Control 2024, 89, 105694. [Google Scholar] [CrossRef]
- Chen, S.; Luo, C.; Liu, S.; Li, H.; Liu, Y.; Zhou, H.; Liu, L.; Chen, H. LD-UNet: A long-distance perceptual model for segmentation of blurred boundaries in medical images. Comput. Biol. Med. 2024, 168, 107826. [Google Scholar] [CrossRef]
- Bi, L.; Fulham, M.; Kim, J. Hyper-fusion network for semi-automatic segmentation of skin lesions. Med. Image Anal. 2021, 72, 102126. [Google Scholar] [CrossRef]
- Cui, W.; Meng, D.; Lu, K.; Wu, Y.; Pan, Z.; Li, X.; Sun, S. Automatic segmentation of ultrasound images using SegNet and local Nakagami distribution fitting model. Biomed. Signal Process. Control 2023, 80, 104307. [Google Scholar] [CrossRef]
- Ma, S.; Li, X.; Tang, J.; Guo, F. Aggregate-aware model with bidirectional edge generation for medical image segmentation. Appl. Soft Comput. 2024, 150, 111856. [Google Scholar] [CrossRef]
- Malhi, H.; Velez, E.; Kazmierski, B.; Gulati, M.; Deurdulian, C.; Cen, S.; Grant, E. Peripheral Thyroid Nodule Calcifications on Sonography: Evaluation of Malignant Potential. AJR Am. J. Roentgenol. 2019, 213, 672–675. [Google Scholar] [CrossRef] [PubMed]
- Nabahati, M.; Ghaemian, N.; Moazezi, Z.; Mehraeen, R. Different sonographic features of peripheral thyroid nodule calcification and risk of malignancy: A prospective observational study. Pol. J. Radiol. 2021, 86, e366–e371. [Google Scholar] [CrossRef]
- Radu, I.; Gheorghe, A.; Sima, O.; Carsote, M.; Nistor, C. Eggshell Calcifications at Thyroid Ultrasound: A Sample-focused Analysis of Cytological Findings and Post-thyroidectomy Pathological Correlates. Rom. J. Mil. Med. 2024, 127, 428–440. [Google Scholar]
- Kim, B.; Choi, Y.; Kwon, H.; Lee, J.; Heo, J.; Han, Y.; Park, Y.; Kim, J. Relationship between patterns of calcification in thyroid nodules and histopathologic findings. Endocr. J. 2013, 60, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Taki, S.; Terahata, S.; Yamashita, R.; Kinuya, K.; Nobata, K.; Kakuda, K.; Kodama, Y.; Yamamoto, I. Thyroid calcifications: Sonographic patterns and incidence of cancer. Clin. Imaging 2004, 28, 368–371. [Google Scholar] [CrossRef]
- Shin, H.; Na, D.; Paik, W.; Yoon, S.; Gwon, H.; Noh, B.; Kim, W. Malignancy Risk Stratification of Thyroid Nodules with Macrocalcification and Rim Calcification Based on Ultrasound Patterns. Korean J. Radiol. 2021, 22, 663–671. [Google Scholar] [CrossRef]
- Ünal, F.; Canpolat, A.; Elhan, A.; Sevim, S.; Sak, S.; Emral, R.; Demir, Ö.; Güllü, S.; Erdoğan, M.; Çorapçıoğlu, D.; et al. Cancer rates and characteristics of thyroid nodules with macrocalcification. Endocrine 2024, 84, 1021–1029. [Google Scholar] [CrossRef]
- Kobaly, K.; Kim, C.; Langer, J.; Mandel, S. Macrocalcifications Do Not Alter Malignancy Risk Within the American Thyroid Association Sonographic Pattern System When Present in Non-High Suspicion Thyroid Nodules. Thyroid 2021, 31, 1542–1548. [Google Scholar] [CrossRef]
- Peng, W.; Qian, Y.; Shi, Y.; Chen, S.; Chen, K.; Xiao, H. Differential Diagnosis of Malignant Thyroid Calcification Nodule Based on Computed Tomography Image Texture. J. Med. Imaging Health Inform. 2021, 11, 767–772. [Google Scholar] [CrossRef]
- Januś, D.; Kujdowicz, M.; Kiszka-Wiłkojć, A.; Kaleta, K.; Taczanowska-Niemczuk, A.; Radliński, J.; Moźdżeń, K.; Nowak, Z.; Górecki, W.; Starzyk, J.B. Ultrasound and histopathological assessment of benign, borderline, and malignant thyroid tumors in pediatric patients: An illustrative review and literature overview. Front. Endocrinol. 2025, 15, 1481804. [Google Scholar] [CrossRef]
- Richman, D.M.; Benson, C.; Doubilet, P.; Peters, H.; Huang, S.A.; Asch, E.; Wassner, A.J.; Smith, J.R.; Cherella, C.E.; Frates, M. Thyroid nodules in pediatric patients: Sonographic characteristics and likelihood of cancer. Radiology 2018, 288, 591–599. [Google Scholar] [CrossRef]
- Cappelli, C.; Castellano, M.; Pirola, I.; Gandossi, E.; De Martino, E.; Cumetti, D.; Agosti, B.; Rosei, E. Thyroid nodule shape suggests malignancy. Eur. J. Endocrinol. 2006, 155, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, F.; AlZoubi, A.; Du, H.; Jassim, S. Machine learning assessment of border irregularity of thyroid nodules from ultrasound images. In Multimodal Image Exploitation and Learning 2022; SPIE: Bellingham, WA, USA, 2022. [Google Scholar]
- Batawil, N.; Alkordy, T. Ultrasonographic features associated with malignancy in cytologically indeterminate thyroid nodules. Eur. J. Surg. Oncol. 2014, 40, 182–186. [Google Scholar] [CrossRef]
- Chen, D.; Hu, J.; Zhu, M.; Tang, N.; Yang, Y.; Feng, Y. Diagnosis of thyroid nodules for ultrasonographic characteristics indicative of malignancy using random forest. BioData Min. 2020, 13, 16. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.E.; Gweon, H.M.; Park, A.Y.; Yoo, M.R.; Kim, J.-A.; Youk, J.H.; Park, Y.M.; Son, E.J. Ultrasonographic features of medullary thyroid carcinoma: Do they correlate with pre- and post-operative calcitonin levels. Asian Pac. J. Cancer Prev. 2016, 17, 3357–3362. [Google Scholar]
- Yoon, J.; Kim, E.; Hong, S.; Kwak, J.; Kim, M. Sonographic Features of the Follicular Variant of Papillary Thyroid Carcinoma. J. Ultrasound Med. 2008, 27, 1431–1437. [Google Scholar] [CrossRef]
- Sillery, J.C.; Reading, C.C.; Charboneau, J.W.; Henrichsen, T.L.; Hay, I.D.; Mandrekar, J.N. Thyroid follicular carcinoma: Sonographic features of 50 cases. AJR Am. J. Roentgenol. 2009, 192, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-H.; Chen, C.-N.; Chen, K.Y.; Ho, M.; Tai, H.; Wang, Y.-H.; Chen, A.; Chang, K.J. Quantitative analysis of echogenicity for patients with thyroid. Sci. Rep. 2016, 6, 35632. [Google Scholar] [CrossRef]
- Zheng, Z.; Liang, E.; Zhang, Y.; Weng, Z.; Chai, J.; Bu, W.; Xu, J.; Su, T. A segmentation-based algorithm for classification of benign and malignancy thyroid nodules with multi-feature information. Biomed. Eng. Lett. 2024, 14, 785–800. [Google Scholar] [CrossRef] [PubMed]
- Aboudi, N.; Guetari, R.; Khlifa, N. Multi-objectives optimisation of features selection for the classification of thyroid nodules in ultrasound images. IET Image Process. 2020, 14, 1901–1908. [Google Scholar] [CrossRef]
- Acharya, U.; Vinitha Sree, S.; Krishnan, M.M.R.; Molinari, F.; Garberoglio, R.; Suri, J.S. Non-invasive automated 3D thyroid lesion classification in ultrasound: A class of ThyroScan™ systems. Ultrasonics 2012, 52, 508–520. [Google Scholar] [CrossRef]
- Mugasa, H.; Dua, S.; Koh, J.E.W.; Hagiwara, Y.; Oh, S.L.; Madla, C.; Kongmebhol, P.; Ng, K.; Acharya, U.R. An adaptive feature extraction model for classification of thyroid lesions in ultrasound images. Pattern Recognit. Lett. 2020, 131, 463–473. [Google Scholar] [CrossRef]
- Song, R.; Zhang, L.; Zhu, C.; Liu, J.; Yang, J.; Zhang, T. Thyroid Nodule Ultrasound Image Classification Through Hybrid Feature Cropping Network. IEEE Access 2020, 8, 64064–64074. [Google Scholar]
- Xing, G.; Miao, Z.; Zheng, Y.; Zhao, M. A multi-task model for reliable classification of thyroid nodules in ultrasound images. Biomed. Eng. Lett. 2023, 14, 187–197. [Google Scholar] [CrossRef]
- Li, P.; Tao, H.; Zhou, H.; Zhao, M. Enhanced Multiview attention network with random interpolation resize for few-shot surface defect detection. Multimed. Syst. 2025, 31, 36. [Google Scholar] [CrossRef]
- Wang, Z.; Tao, H.; Zhou, H.; Deng, Y.; Zhou, P. A content-style control network with style contrastive learning for underwater image enhancement. Multimed. Syst. 2025, 31, 60. [Google Scholar]
- Apedo, Y.; Tao, H. A weakly supervised pavement crack segmentation based on adversarial learning and transformers. Multimed. Syst. 2025, 31, 266. [Google Scholar]
- Chi, J.; Walia, E.; Babyn, P.; Wang, J.; Groot, G.; Eramian, M. Thyroid Nodule Classification in Ultrasound Images by Fine-Tuning Deep Convolutional Neural Network. J. Digil. Imaging 2017, 30, 477–486. [Google Scholar]
- Wang, Y.; Yue, W.; Li, X.; Liu, S.; Guo, L.; Xu, H.; Zhang, H.; Yang, G. Comparison Study of Radiomics and Deep Learning-Based Methods for Thyroid Nodules Classification Using Ultrasound Images. IEEE Access 2020, 8, 52010–52017. [Google Scholar]
- Horvath, E.; Silva, C.; Majlis, S.; Rodriguez, I.; Skoknic, V.; Castro, A.; Rojas, H.; Niedmann, J.; Madrid, A.; Capdeville, F.; et al. Prospective validation of the ultrasound based TIRADS (Thyroid Imaging Reporting and Data System) classification: Results in surgically resected thyroid nodules. Eur. Radiol. 2017, 27, 2619–2628. [Google Scholar] [PubMed]
Ultrasound Feature | Papillary Thyroid Carcinoma (PTC) | Follicular Thyroid Carcinoma (FTC) | Medullary Thyroid Carcinoma (MTC) |
---|---|---|---|
Echogenicity | Hypoechoic, sometimes heterogeneous [19,20,21,22] | Iso- or hypoechoic [18,20,21,22] | Hypoechoic [13,19,23] |
Margins | Irregular, ill-defined [19,20,21,22] | Regular or irregular if invasive [18,20,21,22] | Smooth, well-defined (sometimes ill-defined) [13,19,23] |
Calcifications | Microcalcifications (psammoma bodies) [19,20,21] | Micro- and macrocalcifications, often peripheral (“eggshell”) [18,20,21] | Micro- and macrocalcifications (amyloid deposits, shadowing) [13,19,23] |
Internal structure | Solid, possibly heterogeneous [19,20,21,22] | Solid, heterogeneous [18,20,21] | Solid, possibly homogeneous [13,19] |
Shape (aspect ratio) | “Taller-than-wide” (common) [18,19,20,21] | Oval or irregular [18,20,21] | Variable, round or oval [13,19] |
Vascularity (Doppler) | Often increased, chaotic internal pattern [18,19] | Moderate, mixed pattern [17,18] | Increased, central and peripheral [13,17,19] |
Elastography | High stiffness [19] | Variable, often intermediate [18] | High stiffness [18,23] |
Presence of capsule | Absent or interrupted capsule [18,21] | Often infiltrated, extracapsular extension [18,21] | Absent [18] |
Cystic component | Rare, usually <10% of volume [18,19] | Rare [18] | Often present, especially in larger lesions [13] |
Lymph node metastases | Common at diagnosis [18,19] | Less common [13,19] | Common [13,19] |
Parameter Group | Parameter | Kruskal–Wallis (p) | Post Hoc Dunn–Šidák Comparisons (p) | ||
---|---|---|---|---|---|
PTC vs. FTC | PTC vs. MTC | MTC vs. FTC | |||
Morphological Features | Aspect ratio | 0.297 | – | – | – |
Perimeter-to-area ratio | <0.0001 | <0.0001 | 0.0674 | 0.0002 | |
Internal Architecture | Echogenicity (mean) | 0.0003 | 0.0234 | 0.0141 | 0.0002 |
Echogenicity (median) | 0.0002 | 0.0352 | 0.0162 | 0.0019 | |
Echogenicity (std) | 0.1121 | – | – | – | |
Local entropy (mean) | 0.0360 | 0.2147 | 0.1863 | 0.0486 | |
Local entropy (std) | 0.0673 | – | – | – | |
Contrast (mean) | 0.0565 | – | – | – | |
Correlation (mean) | 0.1569 | – | – | – | |
Homogeneity (mean) | 0.9859 | – | – | – | |
Energy (mean) | 0.7586 | – | – | – | |
Margin Assessment | Gradient (mean) | 0.0400 | 0.0339 | 0.9464 | 0.2416 |
Gradient (std) | 0.0021 | 0.0014 | 0.8999 | 0.0163 | |
Profile (mean) | 0.0014 | 0.0430 | 0.8193 | 0.3867 | |
Profile (std) | 0.0443 | 0.0009 | 0.9909 | 0.0180 | |
KL divergence | 0.0049 | 0.1268 | 0.0165 | 0.6894 | |
Structural Features | Microcalcification density | 0.7264 | – | – | – |
Macrocalcification density | 0.0112 | 0.0081 | 0.9811 | 0.0834 | |
Calcified area % | 0.0435 | 0.0399 | 0.9989 | 0.1074 | |
Peripheral calcification | <0.0001 | <0.0001 | 0.0127 | <0.0001 | |
Cystic area % | 0.7902 | – | – | – |
Parameter Group | Parameter | Kruskal–Wallis (p) | Post Hoc Dunn–Šidák Comparisons (p) | ||
---|---|---|---|---|---|
PTC vs. FTC | PTC vs. MTC | MTC vs. FTC | |||
Morphological Features | Aspect ratio | 0.297 | – | – | – |
Perimeter-to-area ratio | <0.0001 | <0.0001 | 0.0674 | 0.0002 | |
Internal Architecture | Echogenicity (mean) | 0.0003 | 0.0234 | 0.0141 | 0.0002 |
Echogenicity (std) | 0.1121 | – | – | – | |
Local entropy (mean) | 0.0360 | 0.2147 | 0.1863 | 0.0486 | |
Contrast (mean) | 0.0565 | – | – | – | |
Margin Assessment | Gradient (std) | 0.0021 | 0.0014 | 0.8999 | 0.0163 |
Profile (mean) | 0.0014 | 0.0430 | 0.8193 | 0.3867 | |
KL divergence | 0.0049 | 0.1268 | 0.0165 | 0.6894 | |
Structural Features | Microcalcification density | 0.7264 | – | – | – |
Macrocalcification density | 0.0112 | 0.0081 | 0.9811 | 0.0834 | |
Calcified area % | 0.0435 | 0.0399 | 0.9989 | 0.1074 | |
Peripheral calcification | <0.0001 | <0.0001 | 0.0127 | <0.0001 | |
Cystic area % | 0.7902 | – | – | – |
Class | Precision (%) | Recall (%) | F1-Score (%) |
---|---|---|---|
FTC | 75.0 | 64.3 | 69.1 |
MTC | 88.2 | 83.3 | 85.7 |
PTC | 92.4 | 94.4 | 93.4 |
True Class/ Predicted Class | FTC (pred) | MTC (pred) | PTC (pred) |
---|---|---|---|
FTC (true) | 64.3 | 0.0 | 35.7 |
MTC (true) | 0.0 | 83.3 | 16.7 |
PTC (true) | 3.3 | 2.2 | 94.4 |
Class | Precision (%) | Recall (%) | F1-Score (%) |
---|---|---|---|
FTC | 66.7 | 85.7 | 75.0 |
MTC | 70.0 | 77.8 | 73.6 |
PTC | 96.6 | 95.6 | 96.1 |
True Class/ Predicted Class | FTC (pred) | MTC (pred) | PTC (pred) |
---|---|---|---|
FTC (true) | 85.7 | 0.0 | 14.3 |
MTC (true) | 0.0 | 77.8 | 22.2 |
PTC (true) | 1.1 | 3.3 | 95.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piotrzkowska Wróblewska, H.; Karwat, P.; Żyłka, A.; Dobruch Sobczak, K.; Dedecjus, M.; Litniewski, J. Quantitative Ultrasound-Based Precision Diagnosis of Papillary, Follicular, and Medullary Thyroid Carcinomas Using Morphological, Structural, and Textural Features. Cancers 2025, 17, 2761. https://doi.org/10.3390/cancers17172761
Piotrzkowska Wróblewska H, Karwat P, Żyłka A, Dobruch Sobczak K, Dedecjus M, Litniewski J. Quantitative Ultrasound-Based Precision Diagnosis of Papillary, Follicular, and Medullary Thyroid Carcinomas Using Morphological, Structural, and Textural Features. Cancers. 2025; 17(17):2761. https://doi.org/10.3390/cancers17172761
Chicago/Turabian StylePiotrzkowska Wróblewska, Hanna, Piotr Karwat, Agnieszka Żyłka, Katarzyna Dobruch Sobczak, Marek Dedecjus, and Jerzy Litniewski. 2025. "Quantitative Ultrasound-Based Precision Diagnosis of Papillary, Follicular, and Medullary Thyroid Carcinomas Using Morphological, Structural, and Textural Features" Cancers 17, no. 17: 2761. https://doi.org/10.3390/cancers17172761
APA StylePiotrzkowska Wróblewska, H., Karwat, P., Żyłka, A., Dobruch Sobczak, K., Dedecjus, M., & Litniewski, J. (2025). Quantitative Ultrasound-Based Precision Diagnosis of Papillary, Follicular, and Medullary Thyroid Carcinomas Using Morphological, Structural, and Textural Features. Cancers, 17(17), 2761. https://doi.org/10.3390/cancers17172761