Colorectal Cancer Detection Through Sweat Volatilome Using an Electronic Nose System and GC-MS Analysis
Simple Summary
Abstract
1. Introduction
- The E-nose achieved a classification accuracy of up to 97.1%, outperforming GC-MS in sensitivity, specificity, and overall predictive performance.
- GC-MS analysis identified 13 statistically significant volatile compounds that distinguished CRC patients from controls, indicating metabolomic alterations in sweat.
- Sweat, a biological matrix rarely explored in CRC diagnostics, contained relevant volatile biomarkers, underscoring its potential for non-invasive screening.
- The integration of multivariate analysis with machine learning algorithms enabled robust group discrimination and predictive modeling.
2. Materials and Methods
2.1. Patient Selection
2.2. Sample Collection
Sweat Sample Collection
2.3. GC-MS Chemical Analysis
Volatilomic Data Analysis
- (a)
- The removal of retention times without relevant signal peaks.
- (b)
- Rounding of retention times to one decimal place to group redundant peaks and eliminate duplicates.
2.4. Electronic Nose
2.4.1. Data Acquisition
2.4.2. E-Nose
2.5. Data Analysis Methods
3. Results
3.1. GC-MS Dataset
3.2. E-Nose Dataset
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CRC | Colorectal Cancer |
VOCs | Volatile Organic Compounds |
COs | Controls |
E-nose | Electronic Nose |
GC-MS | Chromatography–Mass Spectrometry |
OSC | Orthogonal Signal Correction |
PCA | Principal Component Analysis |
PLS-DA | Partial Least Squares Discriminant Analysis |
LDA | Linear Discriminant Analysis |
LR | Logistic Regression |
k-NN | k-Nearest Neighbors |
SVM | Support Vector Machine |
MEMS | Microelectromechanical Systems |
AUC | Area Under the Curve |
ROC | Receiver Operating Characteristic |
VIP | Variable Importance in Projection |
TD | Thermal Desorption |
RT | Retention Time |
References
- International Agency for Research on Cancer. Global Cancer Observatory: Cancer Today. Available online: https://gco.iarc.fr/today/en (accessed on 20 July 2025).
- Roshandel, G.; Ghasemi-Kebria, F.; Malekzadeh, R. Colorectal cancer: Epidemiology, risk factors, and prevention. Cancers 2024, 16, 1530. [Google Scholar] [CrossRef]
- Conti, L.; Del Cornò, M.; Gessani, S. Revisiting the impact of lifestyle on colorectal cancer risk in a gender perspective. Crit. Rev. Oncol. Hematol. 2020, 145, 102834. [Google Scholar] [CrossRef] [PubMed]
- Xi, Y.; Xu, P. Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol. 2021, 14, 101174. [Google Scholar] [CrossRef] [PubMed]
- Nierengarten, M.B. Colonoscopy remains the gold standard for screening despite recent tarnish. Cancer 2023, 129, 330–331. [Google Scholar] [CrossRef]
- Meklin, J.; Syrjänen, K.; Eskelinen, M. Fecal occult blood tests in colorectal cancer screening: Systematic review and meta-analysis of traditional and new-generation fecal immunochemical tests. Anticancer Res. 2020, 40, 3591–3604. [Google Scholar] [CrossRef] [PubMed]
- Grobbee, E.J.; Wisse, P.H.A.; Schreuders, E.H.; van Roon, A.; van Dam, L.; Zauber, A.G.; Lansdorp-Vogelaar, I.; Bramer, W.; Berhane, S.; Deeks, J.J.; et al. Guaiac-based faecal occult blood tests versus faecal immunochemical tests for colorectal cancer screening in average-risk individuals. Cochrane Database Syst. Rev. 2022, 6, CD009276. [Google Scholar] [CrossRef]
- Meklin, J.; Syrjänen, K.; Eskelinen, M. Colorectal cancer screening with traditional and new-generation fecal immunochemical tests: A critical review of fecal occult blood tests. Anticancer Res. 2020, 40, 575–581. [Google Scholar] [CrossRef]
- Tinmouth, J.; Lansdorp-Vogelaar, I.; Allison, J.E. Faecal immunochemical tests versus guaiac faecal occult blood tests: What clinicians and colorectal cancer screening programme organisers need to know. Gut 2015, 64, 1327–1337. [Google Scholar] [CrossRef]
- Amann, A.; de Lacy Costello, B.; Miekisch, W.; Schubert, J.; Buszewski, B.; Pleil, J.; Ratcliffe, N.; Risby, T. The human volatilome: Volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J. Breath. Res. 2014, 8, 034001. [Google Scholar] [CrossRef]
- Bajo-Fernández, M.; Souza-Silva, É.A.; Barbas, C.; Rey-Stolle, M.F.; García, A. GC-MS-based metabolomics of volatile organic compounds in exhaled breath: Applications in health and disease. A review. Front. Mol. Biosci. 2023, 10, 1295955. [Google Scholar] [CrossRef]
- Drabińska, N.; Flynn, C.; Ratcliffe, N.; Belluomo, I.; Myridakis, A.; Gould, O.; Fois, M.; Smart, A.; Devine, T.; De Lacy Costello, B. A literature survey of all volatiles from healthy human breath and bodily fluids: The human volatilome. J. Breath. Res. 2021, 15, 034001. [Google Scholar] [CrossRef]
- Liu, Y.; Ji, Y.; Chen, J.; Zhang, Y.; Li, X.; Li, X. Pioneering noninvasive colorectal cancer detection with an AI-enhanced breath volatilomics platform. Theranostics 2024, 14, 4240–4255. [Google Scholar] [CrossRef]
- Śmiełowska, M.; Ligor, T.; Kupczyk, W.; Szeliga, J.; Jackowski, M.; Buszewski, B. Screening for volatile biomarkers of colorectal cancer by analyzing breath and fecal samples using thermal desorption combined with GC-MS (TD-GC-MS). J. Breath. Res. 2023, 17, 047102. [Google Scholar] [CrossRef]
- Kononova, E.; Mežmale, L.; Poļaka, I.; Veliks, V.; Anarkulova, L.; Vilkoite, I.; Tolmanis, I.; Ļeščinska, A.M.; Stonāns, I.; Pčolkins, A.; et al. Breath fingerprint of colorectal cancer patients based on the gas chromatography–mass spectrometry analysis. Int. J. Mol. Sci. 2024, 25, 1632. [Google Scholar] [CrossRef]
- Altomare, D.F.; Picciariello, A.; Rotelli, M.T.; De Fazio, M.; Aresta, A.; Zambonin, C.G.; Vincenti, L.; Trerotoli, P.; De Vietro, N. Chemical signature of colorectal cancer: Case–control study for profiling the breath print. BJS Open 2020, 4, 1189–1199. [Google Scholar] [CrossRef]
- Cheng, H.R.; van Vorstenbosch, R.W.R.; Pachen, D.M.; Meulen, L.W.T.; Straathof, J.W.A.; Dallinga, J.W.; Jonkers, D.M.A.E.; Masclee, A.A.M.; van Schooten, F.-J.; Mujagic, Z.; et al. Detecting colorectal adenomas and cancer using volatile organic compounds in exhaled breath: A proof-of-principle study to improve screening. Clin. Transl. Gastroenterol. 2022, 13, e00518. [Google Scholar] [CrossRef]
- Altomare, D.F.; Di Lena, M.; Porcelli, F.; Travaglio, E.; Longobardi, F.; Tutino, M.; Depalma, N.; Tedesco, G.; Sardaro, A.; Memeo, R.; et al. Effects of curative colorectal cancer surgery on exhaled volatile organic compounds and potential implications in clinical follow-up. Ann. Surg. 2015, 262, 862–867. [Google Scholar] [CrossRef] [PubMed]
- Altomare, D.F.; Di Lena, M.; Porcelli, F.; Trizio, L.; Travaglio, E.; Tutino, M.; Dragonieri, S.; Memeo, V.; de Gennaro, G. Exhaled volatile organic compounds identify patients with colorectal cancer. J. Br. Surg. 2013, 100, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.J.; Lim, H.; Oh, S.; Lee, S.; Kim, Y.; Song, J.E.; Kwak, J.-M.; Kim, J.; Kim, S.-H.; Sul, D.G. Development of a predictive model for colorectal cancer using exhaled volatile organic compounds. Dis. Colon. Rectum 2025, 68, 736–745. [Google Scholar] [CrossRef]
- Picciariello, A.; Dezi, A.; Vincenti, L.; Spampinato, M.G.; Zang, W.; Riahi, P.; Scott, J.; Sharma, R.; Fan, X.; Altomare, D.F. Colorectal cancer diagnosis through breath test using a portable breath analyzer: Preliminary data. Sensors 2024, 24, 2343. [Google Scholar] [CrossRef] [PubMed]
- Dugheri, S.; Rapi, I.; Cappelli, G.; Fanfani, N.; Squillaci, D.; De Sio, S.; Mallardi, B.; Mantellini, P.; Staderini, F.; Traversini, V.; et al. Breath fingerprint of colorectal cancer patients by gas chromatography-mass spectrometry analysis preparatory to e-nose analyses. Pract. Lab. Med. 2025, 45, e00475. [Google Scholar] [CrossRef]
- Wang, C.; Ke, C.; Wang, X.; Chi, C.; Guo, L.; Luo, S.; Guo, Z.; Xu, G.; Zhang, F.; Li, E. Noninvasive detection of colorectal cancer by analysis of exhaled breath. Anal. Bioanal. Chem. 2014, 406, 4757–4763. [Google Scholar] [CrossRef] [PubMed]
- De Vietro, N.; Aresta, A.; Rotelli, M.T.; Zambonin, C.; Lippolis, C.; Picciariello, A.; Altomare, D.F. Relationship between cancer tissue derived and exhaled volatile organic compound from colorectal cancer patients. Preliminary results. J. Pharm. Biomed. Anal. 2020, 180, 113055. [Google Scholar] [CrossRef]
- Amal, H.; Leja, M.; Funka, K.; Lasina, I.; Skapars, R.; Sivins, A.; Ancans, G.; Kikuste, I.; Vanags, A.; Tolmanis, I.; et al. Breath testing as potential colorectal cancer screening tool. Int. J. Cancer 2016, 138, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.; Hakim, M.; Broza, Y.Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Tisch, U.; Haick, H. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br. J. Cancer 2010, 103, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Steenhuis, E.G.M.; Schoenaker, I.J.H.; de Groot, J.W.B.; Fiebrich, H.B.; de Graaf, J.C.; Brohet, R.M.; van Dijk, J.D.; van Westreenen, H.L.; Siersema, P.D.; de Vos Tot Nederveen Cappel, W.H. Feasibility of volatile organic compound in breath analysis in the follow-up of colorectal cancer: A pilot study. Eur. J. Surg. Oncol. 2020, 46, 2068–2073. [Google Scholar] [CrossRef]
- Aresta, A.M.; De Vietro, N.; Picciariello, A.; Rotelli, M.T.; Altomare, D.F.; Dezi, A.; Martines, G.; Di Gilio, A.; Palmisani, J.; De Gennaro, G.; et al. Volatile organic compounds determination from intestinal polyps and in exhaled breath by gas chromatography–mass spectrometry. Appl. Sci. 2023, 13, 6083. [Google Scholar] [CrossRef]
- Boulind, C.E.; Gould, O.; de Lacy Costello, B.; Allison, J.; White, P.; Ewings, P.; Wicaksono, A.N.; Curtis, N.J.; Pullyblank, A.; Jayne, D.; et al. Urinary volatile organic compound testing in fast-track patients with suspected colorectal cancer. Cancers 2022, 14, 2127. [Google Scholar] [CrossRef]
- van Liere, E.L.S.A.; van Dijk, L.J.; Bosch, S.; Vermeulen, L.; Heymans, M.W.; Burchell, G.L.; de Meij, T.G.J.; Ramsoekh, D.; de Boer, N.K.H. Urinary volatile organic compounds for colorectal cancer screening: A systematic review and meta-analysis. Eur. J. Cancer 2023, 186, 69–82. [Google Scholar] [CrossRef]
- Mozdiak, E.; Wicaksono, A.N.; Covington, J.A.; Arasaradnam, R.P. Colorectal cancer and adenoma screening using urinary volatile organic compound (VOC) detection: Early results from a single-centre bowel screening population (UK BCSP). Tech. Coloproctol. 2019, 23, 343. [Google Scholar] [CrossRef]
- Silva, C.L.; Passos, M.; Câmara, J.S. Investigation of urinary volatile organic metabolites as potential cancer biomarkers by solid-phase microextraction in combination with gas chromatography-mass spectrometry. Br. J. Cancer 2011, 105, 1894–1904. [Google Scholar] [CrossRef]
- Batty, C.A.; Cauchi, M.; Lourenço, C.; Hunter, J.O.; Turner, C. Use of the analysis of the volatile faecal metabolome in screening for colorectal cancer. PLoS ONE 2015, 10, e0130301. [Google Scholar] [CrossRef]
- Bond, A.; Greenwood, R.; Lewis, S.; Corfe, B.; Sarkar, S.; O’Toole, P.; Rooney, P.; Burkitt, M.; Hold, G.; Probert, C. Volatile organic compounds emitted from faeces as a biomarker for colorectal cancer. Aliment. Pharmacol. Ther. 2019, 49, 1005–1012. [Google Scholar] [CrossRef]
- Monedeiro, F.; Monedeiro-Milanowski, M.; Ligor, T.; Buszewski, B. A review of GC-based analysis of non-invasive biomarkers of colorectal cancer and related pathways. J. Clin. Med. 2020, 9, 3191. [Google Scholar] [CrossRef] [PubMed]
- Baker, L.B. Physiology of sweat gland function: The roles of sweating and sweat composition in human health. Temperature 2019, 6, 211. [Google Scholar] [CrossRef] [PubMed]
- Baker, L.B.; Wolfe, A.S. Physiological mechanisms determining eccrine sweat composition. Eur. J. Appl. Physiol. 2020, 120, 719. [Google Scholar] [CrossRef] [PubMed]
- Mitra, A.; Choi, S.; Boshier, P.R.; Razumovskaya-Hough, A.; Belluomo, I.; Spanel, P.; Hanna, G.B. The human skin volatolome: A systematic review of untargeted mass spectrometry analysis. Metabolites 2022, 12, 824. [Google Scholar] [CrossRef]
- Duffy, E.; Morrin, A. Endogenous and microbial volatile organic compounds in cutaneous health and disease. TrAC Trends Anal. Chem. 2019, 111, 163–172. [Google Scholar] [CrossRef]
- Curran, A.M.; Rabin, S.I.; Prada, P.A.; Furton, K.G. Comparison of the volatile organic compounds present in human odor using SPME-GC/MS. J. Chem. Ecol. 2005, 31, 1607–1619. [Google Scholar] [CrossRef]
- Brasier, N.; Eckstein, J. Sweat as a source of next-generation digital biomarkers. Digit. Biomarkers 2019, 3, 155. [Google Scholar] [CrossRef]
- Yu, H.; Sun, J. Sweat detection theory and fluid driven methods: A review. Nanotechnol. Precis. Eng. 2020, 3, 126–140. [Google Scholar] [CrossRef]
- Le, T.; Priefer, R. Detection technologies of volatile organic compounds in the breath for cancer diagnoses. Talanta 2023, 265, 124767. [Google Scholar] [CrossRef]
- Farraia, M.V.; Rufo, J.C.; Paciência, I.; Mendes, F.; Delgado, L.; Moreira, A. The electronic nose technology in clinical diagnosis: A systematic review. Porto Biomed. J. 2019, 4, e42. [Google Scholar] [CrossRef]
- Poļaka, I.; Mežmale, L.; Anarkulova, L.; Kononova, E.; Vilkoite, I.; Veliks, V.; Ļeščinska, A.M.; Stonāns, I.; Pčolkins, A.; Tolmanis, I.; et al. The detection of colorectal cancer through machine learning-based breath sensor analysis. Diagnostics 2023, 13, 3355. [Google Scholar] [CrossRef]
- Chen, C.D.; Zheng, Y.X.; Lin, H.F.; Yang, H.Y. Development of electronic nose as a complementary screening tool for breath testing in colorectal cancer. Biosensors 2025, 15, 82. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.T.; Chang, Z.; Zhang, N.; Xu, H. Application of electronic nose technology in the diagnosis of gastrointestinal diseases: A review. J. Cancer Res. Clin. Oncol. 2024, 150, 401. [Google Scholar] [CrossRef] [PubMed]
- Duran, C.; Carrillo, J.; Pérez, O.; Quintero, M.; Bautista, G. Electronic nose based on MEMS sensors for non-invasive detection of colorectal cancer via breath profiling. IEEE Sensors Lett. 2025, 9, 5503204. [Google Scholar] [CrossRef]
- Tyagi, H.; Daulton, E.; Bannaga, A.S.; Arasaradnam, R.P.; Covington, J.A. Non-invasive detection and staging of colorectal cancer using a portable electronic nose. Sensors 2021, 21, 5440. [Google Scholar] [CrossRef]
- Westenbrink, E.; Arasaradnam, R.P.; O’Connell, N.; Bailey, C.; Nwokolo, C.; Bardhan, K.D.; Covington, J.A. Development and application of a new electronic nose instrument for the detection of colorectal cancer. Biosens. Bioelectron. 2015, 67, 733–738. [Google Scholar] [CrossRef]
- Electronic nose can sniff out colorectal cancer and advanced adenomas. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 564. [CrossRef]
- De Meij, T.G.; Ben Larbi, I.; van der Schee, M.P.; Lentferink, Y.E.; Paff, T.; Terhaar Sive Droste, J.S.; Mulder, C.J.; van Bodegraven, A.A.; de Boer, N.K. Electronic nose can discriminate colorectal carcinoma and advanced adenomas by fecal volatile biomarker analysis: Proof of principle study. Int. J. Cancer 2014, 134, 1132–1138. [Google Scholar] [CrossRef]
- Wang, Q.; Fang, Y.; Tan, S.; Li, Z.; Zheng, R.; Ren, Y.; Jiang, Y.; Huang, X. Diagnostic performance of volatile organic compounds analysis and electronic noses for detecting colorectal cancer: A systematic review and meta-analysis. Front. Oncol. 2024, 14, 1397259. [Google Scholar] [CrossRef]
- Greenacre, M.; Groenen, P.J.F.; Hastie, T.; D’Enza, A.I.; Markos, A.; Tuzhilina, E. Principal component analysis. Nat. Rev. Methods Prim. 2022, 2, 100. [Google Scholar] [CrossRef]
- Kafeenah, H.; Eze, M.O. Trends in volatile organic compound-based metabolomics for biomarker discovery. Microchem. J. 2025, 213, 113700. [Google Scholar] [CrossRef]
- Marukatat, S. Tutorial on PCA and approximate PCA and approximate kernel PCA. Artif. Intell. Rev. 2023, 56, 5445–5477. [Google Scholar] [CrossRef]
- Elhaik, E. Principal component analyses (PCA)-based findings in population genetic studies are highly biased and must be reevaluated. Sci. Rep. 2022, 12, 14683. [Google Scholar] [CrossRef]
- Lasalvia, M.; Capozzi, V.; Perna, G. A comparison of PCA-LDA and PLS-DA techniques for classification of vibrational spectra. Appl. Sci. 2022, 12, 5345. [Google Scholar] [CrossRef]
- Martín-Gómez, A.; Rodríguez-Hernández, P.; Cardador, M.J.; Vega-Márquez, B.; Rodríguez-Estévez, V.; Arce, L. Guidelines to build PLS-DA chemometric classification models using a GC-IMS method: Dry-cured ham as a case of study. Talanta Open 2023, 7, 100175. [Google Scholar] [CrossRef]
- Acharya, S.; Kar, T.; Samal, U.C.; Patra, P.K. Performance comparison between SVM and LS-SVM for rice leaf disease detection. EAI Endorsed Trans. Scalable Inf. Syst. 2023, 10, e3940. [Google Scholar] [CrossRef]
- Prayogo, R.; Anggraeni, D.; Hadi, A.F. Classification of cardiovascular disease gene data using discriminant analysis and support vector machine (SVM). Berk. SAINSTEK 2022, 10, 124–132. [Google Scholar] [CrossRef]
- Wei, W.; Li, Y.; Huang, T. Using machine learning methods to study colorectal cancer tumor micro-environment and its biomarkers. Int. J. Mol. Sci. 2023, 24, 11133. [Google Scholar] [CrossRef]
- Zhang, S.; Li, J. KNN classification with one-step computation. IEEE Trans. Knowl. Data Eng. 2023, 35, 2711–2723. [Google Scholar] [CrossRef]
- Connelly, L. Logistic regression. MEDSURG Nurs. 2020, 29, 353–354. [Google Scholar] [CrossRef]
- Ali, S.; Hassan, M.; Kim, J.Y.; Farid, M.I.; Sanaullah, M.; Mufti, H. FF-PCA-LDA: Intelligent feature fusion based PCA-LDA classification system for plant leaf diseases. Appl. Sci. 2022, 12, 3514. [Google Scholar] [CrossRef]
- Adebiyi, M.O.; Arowolo, M.O.; Mshelia, M.D.; Olugbara, O.O. A linear discriminant analysis and classification model for breast cancer diagnosis. Appl. Sci. 2022, 12, 11455. [Google Scholar] [CrossRef]
- Boudard, E.; Fisson, L.; Moumane, N.; Dugay, J.; Vial, J.; Thiébaut, D. Study of sampling phases for body odor sampling prior to analysis by TD-GC×GC/ToFMS. Anal. Bioanal. Chem. 2025, 417, 3177–3190. [Google Scholar] [CrossRef]
- Ripszam, M.; Bruderer, T.; Biagini, D.; Ghimenti, S.; Lomonaco, T.; Di Francesco, F. Biological studies with comprehensive 2D-GC-HRMS screening: Exploring the human sweat volatilome. Talanta 2023, 257, 124333. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, R.; Varadwaj, P. Smelling the disease: Diagnostic potential of breath analysis. Mol. Diagn. Ther. 2023, 27, 321. [Google Scholar] [CrossRef]
- Shestivska, V.; Rutter, A.V.; Sulé-Suso, J.; Smith, D.; Španěl, P. Evaluation of peroxidative stress of cancer cells in vitro by real-time quantification of volatile aldehydes in culture headspace. Rapid Commun. Mass. Spectrom. 2017, 31, 1344–1352. [Google Scholar] [CrossRef]
- Mochalski, P.; Leja, M.; Gasenko, E.; Skapars, R.; Santare, D.; Sivins, A.; Aronsson, D.E.; Ager, C.; Jaeschke, C.; Shani, G.; et al. Ex vivo emission of volatile organic compounds from gastric cancer and non-cancerous tissue. J. Breath. Res. 2018, 12, 046005. [Google Scholar] [CrossRef]
- Mezmale, L.; Leja, M.; Lescinska, A.M.; Pčolkins, A.; Kononova, E.; Bogdanova, I.; Polaka, I.; Stonans, I.; Kirsners, A.; Ager, C.; et al. Identification of volatile markers of colorectal cancer from tumor tissues using volatilomic approach. Molecules 2023, 28, 5990. [Google Scholar] [CrossRef]
- Sutaria, S.R.; Gori, S.S.; Morris, J.D.; Xie, Z.; Fu, X.-A.; Nantz, M.H. Lipid peroxidation produces a diverse mixture of saturated and unsaturated aldehydes in exhaled breath that can serve as biomarkers of lung cancer—A review. Metabolites 2022, 12, 561. [Google Scholar] [CrossRef]
- Furuhashi, T.; Toda, K.; Weckwerth, W. Review of cancer cell volatile organic compounds: Their metabolism and evolution. Front. Mol. Biosci. 2024, 11, 1499104. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, B.; Cheng, X.; Liu, S.; Li, Q.; Xi, M. Volatile organic compounds in exhaled breath: Applications in cancer diagnosis and predicting treatment efficacy. Cancer Pathog. Ther. 2025, in press. [Google Scholar] [CrossRef]
- Owlstone Medical. Exposomics: A New Approach to Breath Biopsy. Presented at the Exposomics Symposium. Available online: https://www.owlstonemedical.com/media/uploads/files/2019-05_Exposomics_symposium_poster_A0portrait_screen.pdf (accessed on 24 July 2025).
- Poli, D.; Carbognani, P.; Corradi, M.; Goldoni, M.; Acampa, O.; Balbi, B.; Bianchi, L.; Rusca, M.; Mutti, A. Exhaled volatile organic compounds in patients with non-small cell lung cancer: Cross-sectional and nested short-term follow-up study. Respir. Res. 2005, 6, 71. [Google Scholar] [CrossRef]
- Garner, C.E.; Smith, S.; de Lacy Costello, B.; White, P.; Spencer, R.; Probert, C.S.J.; Ratcliffe, N.M. Volatile organic compounds from feces and their potential for diagnosis of gastrointestinal disease. FASEB J. 2007, 21, 1675–1688. [Google Scholar] [CrossRef] [PubMed]
- Waidyanatha, S.; Rothman, N.; Li, G.; Smith, M.T.; Yin, S.; Rappaport, S.M. Rapid determination of six urinary benzene metabolites in occupationally exposed and unexposed subjects. Anal. Biochem. 2004, 327, 184–199. [Google Scholar] [CrossRef] [PubMed]
- Suthat Na Ayutaya, V.; Tantisatirapoon, C.; Aekgawong, S.; Anakkamatee, W.; Danjittrong, T.; Kreepala, C. Urinary cancer detection by the target urine volatile organic compounds biosensor platform. Sci. Rep. 2024, 14, 3551. [Google Scholar] [CrossRef]
- Yu, L.; Liu, W.; Zhou, M.; Yang, S.; Tan, Q.; Fan, L.; Wang, B.; Chen, W. Long-term effect of styrene and ethylbenzene exposure on fasting plasma glucose: A gene-environment interaction study. J. Hazard. Mater. 2023, 452, 131346. [Google Scholar] [CrossRef]
- Matanoski, G.M.; Tao, X. Case-Cohort Study of Styrene Exposure and Ischemic Heart Disease; Health Effects Institute: Boston, MA, USA, 2002; Volume 108, pp. 1–29. [Google Scholar]
- Moura, P.C.; Raposo, M.; Vassilenko, V. Breath volatile organic compounds (VOCs) as biomarkers for the diagnosis of pathological conditions: A review. Biomed. J. 2023, 46, 100623. [Google Scholar] [CrossRef]
- Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2022, 50, D622–D631. [Google Scholar] [CrossRef]
- Ghosh, A.; Karmakar, V.; Nair, A.B.; Jacob, S.; Shinu, P.; Aldhubiab, B.; Almuqbil, R.M.; Gorain, B. Volatile organic compounds in biological matrices as a sensitive weapon in cancer diagnosis. Pharmaceuticals 2025, 18, 638. [Google Scholar] [CrossRef]
- Wang, D.; Wang, C.; Pi, X.; Guo, L.; Wang, Y.; Li, M.; Feng, Y.; Lin, Z.; Hou, W.; Li, E. Urinary volatile organic compounds as potential biomarkers for renal cell carcinoma. Biomed. Rep. 2016, 5, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Thriumani, R.; Zakaria, A.; Hashim, Y.Z.H.Y.; Jeffree, A.I.; Helmy, K.M.; Kamarudin, L.M.; Omar, M.I.; Md Shakaff, A.Y.; Adom, A.H.; Persaud, K.C.A. A Study on volatile organic compounds emitted by in-vitro lung cancer cultured cells using gas sensor array and SPME-GCMS. BMC Cancer 2018, 18, 4235. [Google Scholar] [CrossRef] [PubMed]
- Selvamuthukumar, K.; Kulkarni, S.V.; Poojary, H.; Thiruvenkatakumar, M.; Naie, S.P.; Ghosh, C. Recent advances in breath-based volatile compounds analysis by various analytical techniques for screening of lung cancer disease. Microchem. J. 2025, 214, 114003. [Google Scholar] [CrossRef]
- Noriega Landa, E.; Quaye, G.E.; Su, X.; Badmos, S.; Holbrook, K.L.; Polascik, T.J.; Adams, E.S.; Deivasigamani, S.; Gao, Q.; Annabi, M.H.; et al. Urinary fatty acid biomarkers for prostate cancer detection. PLoS ONE 2024, 19, e0297615. [Google Scholar] [CrossRef]
- Yagin, F.H.; Al-Hashem, F.; Ahmad, I.; Ahmad, F.; Alkhateeb, A. Pilot-study to explore metabolic signature of type 2 diabetes: A pipeline of tree-based machine learning and bioinformatics techniques for biomarkers discovery. Nutrients 2024, 16, 1537. [Google Scholar] [CrossRef]
- Sethi, S.; Nanda, R.; Chakraborty, T. Clinical application of volatile organic compound analysis for detecting infectious diseases. Clin. Microbiol. Rev. 2013, 26, 462–475. [Google Scholar] [CrossRef]
- Cheng, Y.; Xie, G.; Chen, T.; Qiu, Y.; Zou, X.; Zheng, M.; Tan, B.; Feng, B.; Dong, T.; He, P.; et al. Distinct urinary metabolic profile of human colorectal cancer. J. Proteome Res. 2012, 11, 1354–1363. [Google Scholar] [CrossRef]
Volunteer ID | Gender | Age | Cluster | Smoker | Comorbidities | Number of Sweat Samples Collected | |||
---|---|---|---|---|---|---|---|---|---|
F | M | CRC | CO | Yes | No | ||||
CO001 | x | 64 | x | x | Arterial hypertension | 2 | |||
CO002 | x | 65 | x | x | Hypothyroidism | 2 | |||
CO003 | x | 76 | x | x | Not detected | 2 | |||
CO004 | x | 59 | x | x | Arterial hypertension | 2 | |||
CO005 | x | 58 | x | x | Not detected | 2 | |||
CO006 | x | 57 | x | x | Not detected | 2 | |||
CO007 | x | 51 | x | x | Fatty liver, Hypercholesterolemia | 2 | |||
CO008 | x | 65 | x | x | Diabetes | 2 | |||
CO009 | 53 | x | x | Not detected | 2 | ||||
CO010 | x | 56 | x | x | Not detected | 2 | |||
CO011 | x | 68 | x | x | Not detected | 2 | |||
CO012 | 81 | x | x | Diabetes, Arterial hypertension | 2 | ||||
CO013 | x | 52 | x | x | Not detected | 2 | |||
CO014 | x | 60 | x | x | Arterial hypertension | 2 | |||
CO015 | x | 59 | x | x | Not detected | 2 | |||
CO016 | x | 50 | x | x | Gastritis, Hypothyroidism, Quadriplegia, Arterial hypertension | 2 | |||
CO017 | x | 59 | x | x | Diabetes | 2 | |||
CO018 | x | 58 | x | x | Not detected | 2 | |||
CO019 | x | 51 | x | x | Not detected | 2 | |||
CO020 | x | 66 | x | x | Arterial hypertension | 2 | |||
CO021 | x | 52 | x | x | Diabetes | 2 | |||
CO022 | x | 51 | x | Not detected | 2 | ||||
CO023 | x | 66 | x | x | Not detected | 2 | |||
CO024 | x | 52 | x | Not detected | 2 | ||||
CO025 | x | 49 | x | Not detected | 2 | ||||
CO026 | 40 | x | Not detected | 2 | |||||
CO027 | x | 77 | x | x | Not detected | 2 | |||
CO028 | x | 45 | x | x | Not detected | 2 | |||
CO029 | x | 46 | x | x | Not detected | 2 | |||
CO030 | x | 51 | x | x | Not detected | 2 | |||
CO031 | x | 45 | x | x | Not detected | 2 | |||
CO032 | x | 56 | x | x | Not detected | 2 | |||
CO033 | x | 62 | x | x | Not detected | 2 | |||
CO034 | x | 58 | x | x | Not detected | 2 | |||
CO035 | x | 70 | x | x | Not detected | 2 | |||
CCR001 | x | 72 | x | x | Not detected | 2 | |||
CCR002 | x | 65 | x | x | Not detected | 2 | |||
CCR003 | x | 60 | x | x | Arterial hypertension | 2 | |||
CCR004 | x | 64 | x | x | Arterial hypertension, Deep vein thrombosis | 2 | |||
CCR005 | x | 60 | x | x | Not detected | 2 | |||
CCR006 | x | 76 | x | x | Diabetes, Arterial hypertension | 2 | |||
CCR007 | x | 67 | x | x | Arterial hypertension | 2 | |||
CCR008 | x | 48 | x | x | Not detected | 2 | |||
CCR009 | x | 48 | x | x | Not detected | 2 | |||
CCR010 | x | 70 | x | x | Arterial hypertension | 2 | |||
CCR011 | x | 65 | x | x | Not detected | 2 | |||
CCR012 | x | 49 | x | x | Diabetic, Cholesterol | 2 | |||
CCR013 | x | 55 | x | x | Not detected | 2 | |||
CCR014 | x | 40 | x | x | Diabetes | 2 | |||
CCR015 | x | 62 | x | x | Arterial hypertension | 2 | |||
CCR016 | x | 43 | x | X | Not detected | 2 | |||
CCR017 | x | 79 | x | x | Arterial hypertension | 2 | |||
CCR018 | x | 54 | x | x | Arterial hypertension | 2 | |||
CCR019 | x | 70 | x | x | Not detected | 2 | |||
CCR020 | x | 80 | x | x | Not detected | 2 | |||
CCR021 | x | 69 | x | x | Not detected | 2 | |||
CCR022 | x | 50 | x | x | Not detected | 2 | |||
CCR023 | x | 78 | x | x | Not detected | 2 | |||
CCR024 | x | 70 | x | x | Arterial hypertension | 2 | |||
CCR025 | x | 57 | x | x | Not detected | 2 | |||
CCR026 | x | 68 | x | x | Not detected | 2 | |||
CCR027 | x | 72 | x | x | Arterial hypertension, Dyslipidemia, Diabetes | 2 | |||
CCR028 | x | 58 | x | x | Not detected | 2 | |||
CCR029 | x | 47 | x | x | Arterial hypertension | 2 | |||
CCR030 | x | 78 | x | x | Arterial hypertension | 2 | |||
CCR031 | x | 49 | x | x | Not detected | 2 | |||
CCR032 | x | 43 | x | x | Arterial hypertension | 2 | |||
CCR033 | x | 59 | x | x | Arterial hypertension, Diabetes | 2 |
No | Retention Times (RTs) | Chemical Compounds (Biomarkers) | VIP Score | AUC-CO | AUC-CRC | p-Value | Group | ||
---|---|---|---|---|---|---|---|---|---|
1 | 10.7 | Benzene, 1,3-dimethyl | 0.77980 | 1.87 × 106 | 8.39 × 105 | 0.0096734 | CO | ||
2 | 20.7 | Tetradecanoic acid | 0.45952 | 1.83 × 106 | 3.80 × 105 | 0.0114531 | CO | ||
3 | 17.8 | 3,7-Dimethylnonane | 0.40707 | 9.22 × 105 | 7.48 × 105 | 0.0286190 | CO | ||
4 | 10.8 | Styrene | 0.40255 | 5.58 × 106 | 8.57 × 106 | 0.0288241 | CRC | ||
5 | 18.3 | Undecane, 4,6-dimethyl | 0.39271 | 4.55 × 105 | 2.17 × 105 | 0.0068522 | CO | ||
6 | 6.7 | Octane, 2,4,6-trimethyl | 0.37585 | 2.90 × 108 | 1.70 × 108 | 0.0333110 | CRC | ||
7 | 24.4 | n-Heneicosane | 0.33026 | 1.07 × 106 | 1.71 × 106 | 0.0086898 | CO | ||
8 | 16.7 | Octane, 5-ethyl-2-methyl | 0.31171 | 2.51 × 106 | 2.04 × 106 | 0.0211921 | CO | ||
9 | 17.9 | Pentadecane | 0.28676 | 3.65 × 105 | 2.30 × 105 | 0.0416222 | CO | ||
10 | 24.0 | Tridecane, 2-methyl | 0.28066 | 2.65 × 105 | 1.40 × 105 | 0.0296921 | CO | ||
11 | 24.6 | Tetradecane | 0.25827 | 1.34 × 105 | 2.04 × 105 | 0.0183680 | CO | ||
12 | 24.7 | n-Pentacosane | 0.25752 | 4.22 × 105 | 9.52 × 104 | 0.0142801 | CO | ||
13 | 8.4 | Octane, 4-methyl | 0.22711 | 5.27 × 105 | 2.40 × 106 | 0.0369431 | CRC |
Data | LDA (%) | LR (%) | SVM (%) | k-NN (%) |
---|---|---|---|---|
PCA (scores) | 70.8 | 72.3 | 72.3 | 72.3 |
PLS_DA (Latent variables) | 76.8 | 78.5 | 80.0 | 81.5 |
Metrics | CO (%) | CRC (%) |
---|---|---|
Accuracy | 81.5 | 81.6 |
Sensitivity | 88.2 | 74.2 |
Specificity | 74.2 | 88.2 |
Precision | 78.9 | 85.2 |
F1-score | 83.3 | 79.3 |
Data | LDA (%) | LR (%) | SVM (%) | KNN (%) |
---|---|---|---|---|
Normalization (OSC) | 70.9 | 69.1 | 69.0 | 69.1 |
PCA (scores) (OSC) | 97.1 | 94.2 | 94.1 | 94.2 |
Metrics | CO (%) | CRC (%) |
---|---|---|
Accuracy | 97.1 | 97.1 |
Sensitivity | 97.1 | 97.0 |
Specificity | 97.0 | 97.1 |
Precision | 97.1 | 97.0 |
F1-score | 97.1 | 97.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acevedo, C.M.D.; Gómez, J.K.C.; Bautista Gómez, G.A.; Carrero Carrero, J.L.; Ramírez, R.F. Colorectal Cancer Detection Through Sweat Volatilome Using an Electronic Nose System and GC-MS Analysis. Cancers 2025, 17, 2742. https://doi.org/10.3390/cancers17172742
Acevedo CMD, Gómez JKC, Bautista Gómez GA, Carrero Carrero JL, Ramírez RF. Colorectal Cancer Detection Through Sweat Volatilome Using an Electronic Nose System and GC-MS Analysis. Cancers. 2025; 17(17):2742. https://doi.org/10.3390/cancers17172742
Chicago/Turabian StyleAcevedo, Cristhian Manuel Durán, Jeniffer Katerine Carrillo Gómez, Gustavo Adolfo Bautista Gómez, José Luis Carrero Carrero, and Rogelio Flores Ramírez. 2025. "Colorectal Cancer Detection Through Sweat Volatilome Using an Electronic Nose System and GC-MS Analysis" Cancers 17, no. 17: 2742. https://doi.org/10.3390/cancers17172742
APA StyleAcevedo, C. M. D., Gómez, J. K. C., Bautista Gómez, G. A., Carrero Carrero, J. L., & Ramírez, R. F. (2025). Colorectal Cancer Detection Through Sweat Volatilome Using an Electronic Nose System and GC-MS Analysis. Cancers, 17(17), 2742. https://doi.org/10.3390/cancers17172742