Immune System–Tumor Crosstalk Under Microgravity: Mechanistic Insights, Challenges, and Translational Perspectives
Simple Summary
Abstract
1. Introduction
2. The Immunoediting Process in Cancer: Elimination, Equilibrium, and Escape
3. Microgravity and Immune System Dysregulation
3.1. The Effect of Microgravity on the Innate Immune System
3.1.1. Natural Killer Cells Under Microgravity
3.1.2. Macrophages Under Microgravity
3.1.3. Dendritic Cells Under Microgravity
3.2. The Effect of Microgravity on the Adaptive Immune System
3.2.1. CD8+ Cytotoxic T Cells Under Microgravity
3.2.2. CD4+ T Cells and Treg Under Microgravity
3.2.3. B Lymphocytes Under Microgravity
3.2.4. Transcriptomic and Pathway Reprogramming: Implications for Cancer
3.3. Indirect Drivers of Immune Dysregulation Under Microgravity
3.3.1. Neuroendocrine Stress and Immune Suppression
3.3.2. Stromal and Metabolic Reprogramming
3.3.3. The Effect of Microgravity on Human Endogenous Retroviruses (HERVs)
4. Microgravity-Induced Tumor Cell Alterations
4.1. Disturbance in Cytoskeletal Structure, Mechanobiology, and Cellular Tensegrity in Microgravity
4.2. Microgravity Induced Changes in Cell Proliferation and Cell Cycle Regulation
4.3. Regulation of Apoptosis Under Microgravity
4.4. Tumor Migration, Invasion, and Metastasis Under Microgravity
5. Therapeutic Implications of Microgravity: Drug Resistance and Immunotherapy Perspectives
6. Translational Considerations and Future Directions
6.1. Translational Relevance and Clinical Implications
6.2. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Kawata, K.; Chapman, O.S.; Narumi, S.; Kawauchi, D. Epigenetic Modifications and Their Roles in Pediatric Brain Tumor Formation: Emerging Insights from Chromatin Dysregulation. Front. Oncol. 2025, 15, 1569548. [Google Scholar] [CrossRef] [PubMed]
- Takeshima, H.; Ushijima, T. Accumulation of Genetic and Epigenetic Alterations in Normal Cells and Cancer Risk. NPJ Precis. Oncol. 2019, 3, 7. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Polivka, J.; Janku, F. Molecular Targets for Cancer Therapy in the PI3K/AKT/MTOR Pathway. Pharmacol. Ther. 2014, 142, 164–175. [Google Scholar] [CrossRef]
- Porta, C.; Paglino, C.; Mosca, A. Targeting PI3K/Akt/MTOR Signaling in Cancer. Front. Oncol. 2014, 4, 64. [Google Scholar] [CrossRef]
- Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, Inflammation, and Cancer. Cell 2010, 140, 883–899. [Google Scholar] [CrossRef] [PubMed]
- Zamarron, B.F.; Chen, W. Dual Roles of Immune Cells and Their Factors in Cancer Development and Progression. Int. J. Biol. Sci. 2011, 7, 651–658. [Google Scholar] [CrossRef]
- Dunn, G.P.; Old, L.J.; Schreiber, R.D. The Immunobiology of Cancer Immunosurveillance and Immunoediting. Immunity 2004, 21, 137–148. [Google Scholar] [CrossRef]
- Ribas, A.; Wolchok, J.D. Cancer Immunotherapy Using Checkpoint Blockade. Science 2018, 359, 1350–1355. [Google Scholar] [CrossRef]
- June, C.H.; O’Connor, R.S.; Kawalekar, O.U.; Ghassemi, S.; Milone, M.C. CAR T Cell Immunotherapy for Human Cancer. Science 2018, 359, 1361–1365. [Google Scholar] [CrossRef]
- Sahu, M.; Suryawanshi, H. Immunotherapy. J. Oral Maxillofac. Pathol. 2021, 25, 371. [Google Scholar] [CrossRef]
- Grimm, D.; Corydon, T.J.; Sahana, J.; González-Torres, L.F.; Kraus, A.; Marchal, S.; Wise, P.M.; Simonsen, U.; Krüger, M. Recent Studies of the Effects of Microgravity on Cancer Cells and the Development of 3D Multicellular Cancer Spheroids. Stem Cells Transl. Med. 2025, 14, szaf008. [Google Scholar] [CrossRef]
- Pecaut, M.J.; Mao, X.W.; Bellinger, D.L.; Jonscher, K.R.; Stodieck, L.S.; Ferguson, V.L.; Bateman, T.A.; Mohney, R.P.; Gridley, D.S. Is Spaceflight-Induced Immune Dysfunction Linked to Systemic Changes in Metabolism? PLoS ONE 2017, 12, e0174174. [Google Scholar] [CrossRef]
- Herranz, R.; Anken, R.; Boonstra, J.; Braun, M.; Christianen, P.C.M.; de Geest, M.; Hauslage, J.; Hilbig, R.; Hill, R.J.A.; Lebert, M.; et al. Ground-Based Facilities for Simulation of Microgravity: Organism-Specific Recommendations for Their Use, and Recommended Terminology. Astrobiology 2013, 13, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Ferranti, F.; Del Bianco, M.; Pacelli, C. Advantages and Limitations of Current Microgravity Platforms for Space Biology Research. Appl. Sci. 2020, 11, 68. [Google Scholar] [CrossRef]
- Kim, J.; Tierney, B.T.; Overbey, E.G.; Dantas, E.; Fuentealba, M.; Park, J.; Narayanan, S.A.; Wu, F.; Najjar, D.; Chin, C.R.; et al. Single-Cell Multi-Ome and Immune Profiles of the Inspiration4 Crew Reveal Conserved, Cell-Type, and Sex-Specific Responses to Spaceflight. Nat. Commun. 2024, 15, 4954. [Google Scholar] [CrossRef]
- Abdelfattah, F.; Schulz, H.; Wehland, M.; Corydon, T.J.; Sahana, J.; Kraus, A.; Krüger, M.; González-Torres, L.F.; Cortés-Sánchez, J.L.; Wise, P.M.; et al. Omics Studies of Specialized Cells and Stem Cells under Microgravity Conditions. Int. J. Mol. Sci. 2024, 25, 10014. [Google Scholar] [CrossRef]
- Jasemi, S.; Simula, E.R.; Pantaleo, A.; Sechi, L.A. Transcriptional Upregulation of HERV-Env Genes Under Simulated Microgravity. Viruses 2025, 17, 306. [Google Scholar] [CrossRef] [PubMed]
- Demontis, G.C.; Germani, M.M.; Caiani, E.G.; Barravecchia, I.; Passino, C.; Angeloni, D. Human Pathophysiological Adaptations to the Space Environment. Front. Physiol. 2017, 8, 547. [Google Scholar] [CrossRef] [PubMed]
- Fitts, R.H.; Riley, D.R.; Widrick, J.J. Physiology of a Microgravity Environment Invited Review: Microgravity and Skeletal Muscle. J. Appl. Physiol. 2000, 89, 823–839. [Google Scholar] [CrossRef] [PubMed]
- Hughson, R.L.; Helm, A.; Durante, M. Heart in Space: Effect of the Extraterrestrial Environment on the Cardiovascular System. Nat. Rev. Cardiol. 2018, 15, 167–180. [Google Scholar] [CrossRef]
- Lv, H.; Yang, H.; Jiang, C.; Shi, J.; Chen, R.; Huang, Q.; Shao, D. Microgravity and Immune Cells. J. R. Soc. Interface 2023, 20, 20220869. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liang, Q.; Ren, Y.; Guo, C.; Ge, X.; Wang, L.; Cheng, Q.; Luo, P.; Zhang, Y.; Han, X. Immunosenescence: Molecular Mechanisms and Diseases. Signal Transduct. Target. Ther. 2023, 8, 200. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Sánchez, J.L.; Callant, J.; Krüger, M.; Sahana, J.; Kraus, A.; Baselet, B.; Infanger, M.; Baatout, S.; Grimm, D. Cancer Studies under Space Conditions: Finding Answers Abroad. Biomedicines 2021, 10, 25. [Google Scholar] [CrossRef]
- López Garzón, N.A.; Pinzón-Fernández, M.V.; Saavedra, T.J.S.; Nati-Castillo, H.A.; Arias-Intriago, M.; Salazar-Santoliva, C.; Izquierdo-Condoy, J.S. Microgravity and Cellular Biology: Insights into Cellular Responses and Implications for Human Health. Int. J. Mol. Sci. 2025, 26, 3058. [Google Scholar] [CrossRef]
- Wu, F.; Du, H.; Overbey, E.; Kim, J.; Makhijani, P.; Martin, N.; Lerner, C.A.; Nguyen, K.; Baechle, J.; Valentino, T.R.; et al. Single-Cell Analysis Identifies Conserved Features of Immune Dysfunction in Simulated Microgravity and Spaceflight. Nat. Commun. 2024, 15, 4795. [Google Scholar] [CrossRef]
- Jasemi, S.; Simula, E.R.; Yasushi, K.; Sechi, L.A. Unveiling the Impact of Simulated Microgravity on HSV-1 Infection, Neuroinflammation, and Endogenous Retroviral Activation in SH-SY5Y Cells. J. Neurovirol 2025, 31, 154–162. [Google Scholar] [CrossRef]
- Poon, M.M.L.; Farber, D.L. The Whole Body as the System in Systems Immunology. iScience 2020, 23, 101509. [Google Scholar] [CrossRef]
- Kim, R.; Emi, M.; Tanabe, K. Cancer Immunoediting from Immune Surveillance to Immune Escape. Immunology 2007, 121, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Gubin, M.M.; Vesely, M.D. Cancer Immunoediting in the Era of Immuno-Oncology. Clin. Cancer Res. 2022, 28, 3917–3928. [Google Scholar] [CrossRef] [PubMed]
- Vesely, M.D.; Kershaw, M.H.; Schreiber, R.D.; Smyth, M.J. Natural Innate and Adaptive Immunity to Cancer. Annu. Rev. Immunol. 2011, 29, 235–271. [Google Scholar] [CrossRef] [PubMed]
- Gajewski, T.F.; Schreiber, H.; Fu, Y.-X. Innate and Adaptive Immune Cells in the Tumor Microenvironment. Nat. Immunol. 2013, 14, 1014–1022. [Google Scholar] [CrossRef] [PubMed]
- Dunn, G.P.; Old, L.J.; Schreiber, R.D. The Three Es of Cancer Immunoediting. Annu. Rev. Immunol. 2004, 22, 329–360. [Google Scholar] [CrossRef]
- Gabrilovich, D.I.; Nagaraj, S. Myeloid-Derived Suppressor Cells as Regulators of the Immune System. Nat. Rev. Immunol. 2009, 9, 162–174. [Google Scholar] [CrossRef]
- Sharma, P.; Allison, J.P. The Future of Immune Checkpoint Therapy. Science 2015, 348, 56–61. [Google Scholar] [CrossRef]
- Marcus, A.; Mao, A.J.; Lensink-Vasan, M.; Wang, L.; Vance, R.E.; Raulet, D.H. Tumor-Derived CGAMP Triggers a STING-Mediated Interferon Response in Non-Tumor Cells to Activate the NK Cell Response. Immunity 2018, 49, 754–763.e4. [Google Scholar] [CrossRef]
- Huber, V.; Fais, S.; Iero, M.; Lugini, L.; Canese, P.; Squarcina, P.; Zaccheddu, A.; Colone, M.; Arancia, G.; Gentile, M.; et al. Human Colorectal Cancer Cells Induce T-Cell Death Through Release of Proapoptotic Microvesicles: Role in Immune Escape. Gastroenterology 2005, 128, 1796–1804. [Google Scholar] [CrossRef]
- Cogoli, A. Hematological and Immunological Changes during Space Flight. Acta Astronaut. 1981, 8, 995–1002. [Google Scholar] [CrossRef]
- Crucian, B.E.; Choukèr, A.; Simpson, R.J.; Mehta, S.; Marshall, G.; Smith, S.M.; Zwart, S.R.; Heer, M.; Ponomarev, S.; Whitmire, A.; et al. Immune System Dysregulation During Spaceflight: Potential Countermeasures for Deep Space Exploration Missions. Front. Immunol. 2018, 9, 1437. [Google Scholar] [CrossRef] [PubMed]
- Klos, B.; Kaul, A.; Straube, E.; Steinhauser, V.; Gödel, C.; Schäfer, F.; Lambert, C.; Enck, P.; Mack, I. Effects of Isolated, Confined and Extreme Environments on Parameters of the Immune System—A Systematic Review. Front. Immunol. 2025, 16, 1532103. [Google Scholar] [CrossRef]
- Iwase, S.; Nishimura, N.; Tanaka, K.; Mano, T. Effects of Microgravity on Human Physiology. In Beyond LEO—Human Health Issues for Deep Space Exploration; IntechOpen: London, UK, 2020. [Google Scholar]
- Paulsen, K.; Thiel, C.; Timm, J.; Schmidt, P.M.; Huber, K.; Tauber, S.; Hemmersbach, R.; Seibt, D.; Kroll, H.; Grote, K.-H.; et al. Microgravity-Induced Alterations in Signal Transduction in Cells of the Immune System. Acta Astronaut. 2010, 67, 1116–1125. [Google Scholar] [CrossRef]
- Ludtka, C.; Moore, E.; Allen, J.B. The Effects of Simulated Microgravity on Macrophage Phenotype. Biomedicines 2021, 9, 1205. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, H.; Zhang, J. Oxidative Stress on the Ground and in the Microgravity Environment: Pathophysiological Effects and Treatment. Antioxidants 2025, 14, 231. [Google Scholar] [CrossRef]
- da Silveira, W.A.; Fazelinia, H.; Rosenthal, S.B.; Laiakis, E.C.; Kim, M.S.; Meydan, C.; Kidane, Y.; Rathi, K.S.; Smith, S.M.; Stear, B.; et al. Comprehensive Multi-Omics Analysis Reveals Mitochondrial Stress as a Central Biological Hub for Spaceflight Impact. Cell 2020, 183, 1185–1201.e20. [Google Scholar] [CrossRef]
- Akiyama, T.; Horie, K.; Hinoi, E.; Hiraiwa, M.; Kato, A.; Maekawa, Y.; Takahashi, A.; Furukawa, S. How Does Spaceflight Affect the Acquired Immune System? NPJ Microgravity 2020, 6, 14. [Google Scholar] [CrossRef]
- Park, J.; Overbey, E.G.; Narayanan, S.A.; Kim, J.; Tierney, B.T.; Damle, N.; Najjar, D.; Ryon, K.A.; Proszynski, J.; Kleinman, A.; et al. Spatial Multi-Omics of Human Skin Reveals KRAS and Inflammatory Responses to Spaceflight. Nat. Commun. 2024, 15, 4773. [Google Scholar] [CrossRef] [PubMed]
- Godard, B. Allergy and Hypersensitivity Diseases in Space: Physiological Changes, Clinical Aspects, and Mechanisms with Countermeasures. J. Allergy Hypersensitivity Dis. 2024, 2, 100007. [Google Scholar] [CrossRef]
- Mehta, S.K.; Crucian, B.E.; Stowe, R.P.; Simpson, R.J.; Ott, C.M.; Sams, C.F.; Pierson, D.L. Reactivation of Latent Viruses Is Associated with Increased Plasma Cytokines in Astronauts. Cytokine 2013, 61, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Overbey, E.G.; Kim, J.; Tierney, B.T.; Park, J.; Houerbi, N.; Lucaci, A.G.; Garcia Medina, S.; Damle, N.; Najjar, D.; Grigorev, K.; et al. The Space Omics and Medical Atlas (SOMA) and International Astronaut Biobank. Nature 2024, 632, 1145–1154. [Google Scholar] [CrossRef]
- Garrett-Bakelman, F.E.; Darshi, M.; Green, S.J.; Gur, R.C.; Lin, L.; Macias, B.R.; McKenna, M.J.; Meydan, C.; Mishra, T.; Nasrini, J.; et al. The NASA Twins Study: A Multidimensional Analysis of a Year-Long Human Spaceflight. Science 2019, 364, eaau8650. [Google Scholar] [CrossRef]
- Li, Q.; Mei, Q.; Huyan, T.; Xie, L.; Che, S.; Yang, H.; Zhang, M.; Huang, Q. Effects of Simulated Microgravity on Primary Human NK Cells. Astrobiology 2013, 13, 703–714. [Google Scholar] [CrossRef]
- Kuhlman, B.M.; Diaz, J.H.; Simon, T.; Reeves, K.D.; Walker, S.J.; Atala, A.; Almeida-Porada, G.; Porada, C.D. Simulated Microgravity Impairs Human NK Cell Cytotoxic Activity against Space Radiation-Relevant Leukemic Cells. NPJ Microgravity 2024, 10, 85. [Google Scholar] [CrossRef]
- Spatz, J.M.; Fulford, M.H.; Tsai, A.; Gaudilliere, D.; Hedou, J.; Ganio, E.; Angst, M.; Aghaeepour, N.; Gaudilliere, B. Human Immune System Adaptations to Simulated Microgravity Revealed by Single-Cell Mass Cytometry. Sci. Rep. 2021, 11, 11872. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.; Song, J.; Ling, S.; Niu, S.; Lu, L.; Cui, Z.; Li, Y.; Hao, S.; Zhong, G.; Qi, Z.; et al. Hematopoietic Stem Cells and Lineage Cells Undergo Dynamic Alterations under Microgravity and Recovery Conditions. FASEB J. 2019, 33, 6904–6918. [Google Scholar] [CrossRef]
- Rykova, M.P.; Sonnenfeld, G.; Lesnyak, A.T.; Taylor, G.R.; Meshkov, D.O.; Mandel, A.D.; Medvedev, A.E.; Berry, W.D.; Fuchs, B.B.; Konstantinova, I.V. Effect of Spaceflight on Natural Killer Cell Activity. J. Appl. Physiol. 1992, 73, S196–S200. [Google Scholar] [CrossRef] [PubMed]
- Bigley, A.B.; Agha, N.H.; Baker, F.L.; Spielmann, G.; Kunz, H.E.; Mylabathula, P.L.; Rooney, B.V.; Laughlin, M.S.; Mehta, S.K.; Pierson, D.L.; et al. NK Cell Function Is Impaired during Long-Duration Spaceflight. J. Appl. Physiol. 2019, 126, 842–853. [Google Scholar] [CrossRef] [PubMed]
- Paulsen, K.; Tauber, S.; Dumrese, C.; Bradacs, G.; Simmet, D.M.; Gölz, N.; Hauschild, S.; Raig, C.; Engeli, S.; Gutewort, A.; et al. Regulation of ICAM-1 in Cells of the Monocyte/Macrophage System in Microgravity. BioMed Res. Int. 2015, 2015, 538786. [Google Scholar] [CrossRef]
- Tauber, S.; Lauber, B.A.; Paulsen, K.; Layer, L.E.; Lehmann, M.; Hauschild, S.; Shepherd, N.R.; Polzer, J.; Segerer, J.; Thiel, C.S.; et al. Cytoskeletal Stability and Metabolic Alterations in Primary Human Macrophages in Long-Term Microgravity. PLoS ONE 2017, 12, e0175599. [Google Scholar] [CrossRef]
- NASH, P. Effect of Hindlimb Suspension Simulation of Microgravity on in Vitro Immunological Responses*1. Exp. Cell Res. 1991, 195, 353–360. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, N.; Di, J.; Zhao, W.; Shi, G.; Xie, R.; Hu, B.; Yang, H. Analysis of the Effects of Magnetic Levitation to Simulate Microgravity Environment on the Arp2/3 Complex Pathway in Macrophage. J. Biol. Phys. 2021, 47, 323–335. [Google Scholar] [CrossRef]
- Shi, L.; Tian, H.; Wang, P.; Li, L.; Zhang, Z.; Zhang, J.; Zhao, Y. Spaceflight and Simulated Microgravity Suppresses Macrophage Development via Altered RAS/ERK/NFκB and Metabolic Pathways. Cell Mol. Immunol. 2021, 18, 1489–1502. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Kuang, Y.; Zuo, Z. The Emerging Role of Macrophages in Immune System Dysfunction under Real and Simulated Microgravity Conditions. Int. J. Mol. Sci. 2021, 22, 2333. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, S.; Saha, R.; Palanisamy, A.; Ghosh, M.; Biswas, A.; Roy, S.; Pal, A.; Sarkar, K.; Bagh, S. A Systems Biology Pipeline Identifies New Immune and Disease Related Molecular Signatures and Networks in Human Cells during Microgravity Exposure. Sci. Rep. 2016, 6, 25975. [Google Scholar] [CrossRef] [PubMed]
- Hicks, J.; Olson, M.; Mitchell, C.; Juran, C.M.; Paul, A.M. The Impact of Microgravity on Immunological States. Immunohorizons 2023, 7, 670–682. [Google Scholar] [CrossRef]
- Wang, C.; Chen, H.; Luo, H.; Zhu, L.; Zhao, Y.; Tian, H.; Wang, R.; Shang, P.; Zhao, Y. Microgravity Activates P38 MAPK-C/EBPβ Pathway to Regulate the Expression of Arginase and Inflammatory Cytokines in Macrophages. Inflamm. Res. 2015, 64, 303–311. [Google Scholar] [CrossRef]
- Maier, J.A.M. Impact of Simulated Microgravity on Cell Cycle Control and Cytokine Release by U937 Cells. Int. J. Immunopathol. Pharmacol. 2006, 19, 279–286. [Google Scholar] [CrossRef]
- Wang, C.; Luo, H.; Zhu, L.; Yang, F.; Chu, Z.; Tian, H.; Feng, M.; Zhao, Y.; Shang, P. Microgravity Inhibition of Lipopolysaccharide-Induced Tumor Necrosis Factor-α Expression in Macrophage Cells. Inflamm. Res. 2014, 63, 91–98. [Google Scholar] [CrossRef]
- Tackett, N.; Bradley, J.H.; Moore, E.K.; Baker, S.H.; Minter, S.L.; DiGiacinto, B.; Arnold, J.P.; Gregg, R.K. Prolonged Exposure to Simulated Microgravity Diminishes Dendritic Cell Immunogenicity. Sci. Rep. 2019, 9, 13825. [Google Scholar] [CrossRef]
- Calcagno, G.; Jeandel, J.; Frippiat, J.-P.; Kaminski, S. Simulated Microgravity Disrupts Nuclear Factor ΚB Signaling and Impairs Murine Dendritic Cell Phenotype and Function. Int. J. Mol. Sci. 2023, 24, 1720. [Google Scholar] [CrossRef]
- Kaiko, G.E.; Horvat, J.C.; Beagley, K.W.; Hansbro, P.M. Immunological Decision-making: How Does the Immune System Decide to Mount a Helper T-cell Response? Immunology 2008, 123, 326–338. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Nie, L.; Xie, S.; Li, M.; Zhu, C.; Qiu, X.; Kuang, J.; Liu, C.; Lu, C.; Li, W.; et al. Attenuation of Antiviral Immune Response Caused by Perturbation of TRIM25-Mediated RIG-I Activation under Simulated Microgravity. Cell Rep. 2021, 34, 108600. [Google Scholar] [CrossRef]
- Walther, I.; Cogoli, A.; Pippia, P.; Meloni, M.A.; Cossu, G.; Cogoli, M.; Schwarzenberg, M.; Turrini, F.; Mannu, F. Human Immune Cells as Space Travelers. Eur. J. Med. Res. 1999, 4, 361–363. [Google Scholar]
- Hashemi, B.B.; Penkala, J.E.; Vens, C.; Huls, H.; Cubbage, M.; Sams, C.F. T Cell Activation Responses Are Differentially Regulated during Clinorotation and in Spaceflight. FASEB J. 1999, 13, 2071–2082. [Google Scholar] [CrossRef] [PubMed]
- Crucian, B.; Stowe, R.P.; Mehta, S.; Quiriarte, H.; Pierson, D.; Sams, C. Alterations in Adaptive Immunity Persist during Long-Duration Spaceflight. NPJ Microgravity 2015, 1, 15013. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, W.; Li, Z.; Lin, S.; Zheng, T.; Hao, B.; Hou, Y.; Zhang, Y.; Wang, K.; Qin, C.; et al. Mitochondria Dysfunction in CD8+ T Cells as an Important Contributing Factor for Cancer Development and a Potential Target for Cancer Treatment: A Review. J. Exp. Clin. Cancer Res. 2022, 41, 227. [Google Scholar] [CrossRef]
- Moreno-Villanueva, M.; Jimenez-Chavez, L.E.; Krieger, S.; Ding, L.-H.; Zhang, Y.; Babiak-Vazquez, A.; Berres, M.; Splinter, S.; Pauken, K.E.; Schaefer, B.C.; et al. Transcriptomics Analysis Reveals Potential Mechanisms Underlying Mitochondrial Dysfunction and T Cell Exhaustion in Astronauts’ Blood Cells in Space. Front. Immunol. 2025, 15, 1512578. [Google Scholar] [CrossRef]
- Dai, S.; Kong, F.; Liu, C.; Xiao, F.; Dong, X.; Zhang, Y.; Wang, H. Effect of Simulated Microgravity Conditions of Hindlimb Unloading on Mice Hematopoietic and Mesenchymal Stromal Cells. Cell Biol. Int. 2020, 44, 2243–2252. [Google Scholar] [CrossRef]
- Pineda, E.N.; Nounamo, B.; Du, R.; Larrey, E.K.; Gilreath, C.; Cook, H.; Boerma, M.; Koturbash, I.; Pathak, R. Sex-Specific Immune Alterations in Mice Following Long-Term Simulated Microgravity and Chronic Irradiation. NPJ Microgravity 2025, 11, 24. [Google Scholar] [CrossRef]
- Dang, B.; Yang, Y.; Zhang, E.; Li, W.; Mi, X.; Meng, Y.; Yan, S.; Wang, Z.; Wei, W.; Shao, C.; et al. Simulated Microgravity Increases Heavy Ion Radiation-Induced Apoptosis in Human B Lymphoblasts. Life Sci. 2014, 97, 123–128. [Google Scholar] [CrossRef]
- Paul, A.M.; Overbey, E.G.; da Silveira, W.A.; Szewczyk, N.; Nishiyama, N.C.; Pecaut, M.J.; Anand, S.; Galazka, J.M.; Mao, X.W. Immunological and Hematological Outcomes Following Protracted Low Dose/Low Dose Rate Ionizing Radiation and Simulated Microgravity. Sci. Rep. 2021, 11, 11452. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.T.; Walther, I.; Li, C.-F.; Boonyaratanakornkit, J.; Galleri, G.; Meloni, M.A.; Pippia, P.; Cogoli, A.; Hughes-Fulford, M. The Rel/NF-ΚB Pathway and Transcription of Immediate Early Genes in T Cell Activation Are Inhibited by Microgravity. J. Leukoc. Biol. 2012, 92, 1133–1145. [Google Scholar] [CrossRef]
- Dhar, S.; Kaeley, D.K.; Kanan, M.J.; Yildirim-Ayan, E. Mechano-Immunomodulation in Space: Mechanisms Involving Microgravity-Induced Changes in T Cells. Life 2021, 11, 1043. [Google Scholar] [CrossRef]
- Vogel, J.; Thiel, C.S.; Tauber, S.; Stockmann, C.; Gassmann, M.; Ullrich, O. Expression of Hypoxia-Inducible Factor 1α (HIF-1α) and Genes of Related Pathways in Altered Gravity. Int. J. Mol. Sci. 2019, 20, 436. [Google Scholar] [CrossRef]
- Bradley, J.H.; Barwick, S.; Horn, G.Q.; Ullrich, E.; Best, B.; Arnold, J.P.; Gregg, R.K. Simulated Microgravity-Mediated Reversion of Murine Lymphoma Immune Evasion. Sci. Rep. 2019, 9, 14623. [Google Scholar] [CrossRef]
- Sonnenfeld, G. Editorial: Space Flight Modifies T Cell Activation—Role of Microgravity. J. Leukoc. Biol. 2012, 92, 1125–1126. [Google Scholar] [CrossRef]
- Morrow, M.A. Clinorotation Differentially Inhibits T-Lymphocyte Transcription Factor Activation. Vitr. Cell. Dev. Biol.-Anim. 2006, 42, 153. [Google Scholar] [CrossRef]
- Tipton, C.M.; Greenleaf, J.E.; Jackson, C.G.R. Neuroendocrine and Immune System Responses with Spaceflights. Med. Sci. Sports Exerc. 1996, 28, 988–998. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zhang, L.; Qian, M.; Shi, T.; Fan, F.; Li, W.; Zhu, S.; Xie, M. Microgravity versus Microgravity and Irradiation: Investigating the Change of Neuroendocrine-Immune System and the Antagonistic Effect of Traditional Chinese Medicine Formula. BioMed Res. Int. 2020, 2020, 2641324. [Google Scholar] [CrossRef] [PubMed]
- Shimba, A.; Ejima, A.; Ikuta, K. Pleiotropic Effects of Glucocorticoids on the Immune System in Circadian Rhythm and Stress. Front. Immunol. 2021, 12, 706951. [Google Scholar] [CrossRef] [PubMed]
- Elenkov, I.J.; Wilder, R.L.; Chrousos, G.P.; Vizi, E.S. The Sympathetic Nerve—An Integrative Interface between Two Supersystems: The Brain and the Immune System. Pharmacol. Rev. 2000, 52, 595–638. [Google Scholar] [CrossRef]
- Sanders, V.M. The Beta2-Adrenergic Receptor on T and B Lymphocytes: Do We Understand It Yet? Brain Behav. Immun. 2012, 26, 195–200. [Google Scholar] [CrossRef]
- Masarapu, Y.; Cekanaviciute, E.; Andrusivova, Z.; Westholm, J.O.; Björklund, Å.; Fallegger, R.; Badia-i-Mompel, P.; Boyko, V.; Vasisht, S.; Saravia-Butler, A.; et al. Spatially Resolved Multiomics on the Neuronal Effects Induced by Spaceflight in Mice. Nat. Commun. 2024, 15, 4778. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Li, R.; Tan, X.; Zhang, J.; Fan, C.; Zhao, Q.; Deng, Y.; Xu, A.; Lukong, K.E.; Genth, H.; et al. Simulated Microgravity Reduces Focal Adhesions and Alters Cytoskeleton and Nuclear Positioning Leading to Enhanced Apoptosis via Suppressing FAK/RhoA-Mediated MTORC1/NF-ΚB and ERK1/2 Pathways. Int. J. Mol. Sci. 2018, 19, 1994. [Google Scholar] [CrossRef]
- Blaber, E.A.; Dvorochkin, N.; Torres, M.L.; Yousuf, R.; Burns, B.P.; Globus, R.K.; Almeida, E.A.C. Mechanical Unloading of Bone in Microgravity Reduces Mesenchymal and Hematopoietic Stem Cell-Mediated Tissue Regeneration. Stem Cell Res. 2014, 13, 181–201. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Chen, N.; Patel, K.; Wan, M.; Zheng, J.; Cao, X. Unloading-Induced Skeletal Interoception Alters Hypothalamic Signaling to Promote Bone Loss and Fat Metabolism. Adv. Sci. 2023, 10, 2305042. [Google Scholar] [CrossRef]
- Capri, M.; Conte, M.; Ciurca, E.; Pirazzini, C.; Garagnani, P.; Santoro, A.; Longo, F.; Salvioli, S.; Lau, P.; Moeller, R.; et al. Long-Term Human Spaceflight and Inflammaging: Does It Promote Aging? Ageing Res. Rev. 2023, 87, 101909. [Google Scholar] [CrossRef] [PubMed]
- Strollo, F.; Vernikos, J. Aging-like Metabolic and Adrenal Changes in Microgravity: State of the Art in Preparation for Mars. Neurosci. Biobehav. Rev. 2021, 126, 236–242. [Google Scholar] [CrossRef]
- Mao, J.; Zhang, Q.; Cong, Y.-S. Human Endogenous Retroviruses in Development and Disease. Comput. Struct. Biotechnol. J. 2021, 19, 5978–5986. [Google Scholar] [CrossRef]
- Balada, E.; Ordi-Ros, J.; Vilardell-Tarrés, M. Molecular Mechanisms Mediated by Human Endogenous Retroviruses (HERVs) in Autoimmunity. Rev. Med. Virol. 2009, 19, 273–286. [Google Scholar] [CrossRef]
- Antony, J.M.; DesLauriers, A.M.; Bhat, R.K.; Ellestad, K.K.; Power, C. Human Endogenous Retroviruses and Multiple Sclerosis: Innocent Bystanders or Disease Determinants? Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2011, 1812, 162–176. [Google Scholar] [CrossRef]
- Noli, M.; Meloni, G.; Ruberto, S.; Jasemi, S.; Simula, E.R.; Cossu, D.; Bo, M.; Palermo, M.; Sechi, L.A. HERV-K Envelope Protein Induces Long-Lasting Production of Autoantibodies in T1DM Patients at Onset in Comparison to ZNT8 Autoantibodies. Pathogens 2022, 11, 1188. [Google Scholar] [CrossRef] [PubMed]
- Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W.; et al. Initial Sequencing and Analysis of the Human Genome. Nature 2001, 409, 860–921. [Google Scholar] [CrossRef] [PubMed]
- Dembny, P.; Newman, A.G.; Singh, M.; Hinz, M.; Szczepek, M.; Krüger, C.; Adalbert, R.; Dzaye, O.; Trimbuch, T.; Wallach, T.; et al. Human Endogenous Retrovirus HERV-K(HML-2) RNA Causes Neurodegeneration through Toll-like Receptors. JCI Insight 2020, 5, e131093. [Google Scholar] [CrossRef] [PubMed]
- Roulois, D.; Loo Yau, H.; Singhania, R.; Wang, Y.; Danesh, A.; Shen, S.Y.; Han, H.; Liang, G.; Jones, P.A.; Pugh, T.J.; et al. DNA-Demethylating Agents Target Colorectal Cancer Cells by Inducing Viral Mimicry by Endogenous Transcripts. Cell 2015, 162, 961–973. [Google Scholar] [CrossRef]
- Yu, P.; Lübben, W.; Slomka, H.; Gebler, J.; Konert, M.; Cai, C.; Neubrandt, L.; Prazeres da Costa, O.; Paul, S.; Dehnert, S.; et al. Nucleic Acid-Sensing Toll-like Receptors Are Essential for the Control of Endogenous Retrovirus Viremia and ERV-Induced Tumors. Immunity 2012, 37, 867–879. [Google Scholar] [CrossRef]
- Brisse, M.; Ly, H. Comparative Structure and Function Analysis of the RIG-I-Like Receptors: RIG-I and MDA5. Front. Immunol. 2019, 10, 472812. [Google Scholar] [CrossRef]
- Cañadas, I.; Thummalapalli, R.; Kim, J.W.; Kitajima, S.; Jenkins, R.W.; Christensen, C.L.; Campisi, M.; Kuang, Y.; Zhang, Y.; Gjini, E.; et al. Tumor Innate Immunity Primed by Specific Interferon-Stimulated Endogenous Retroviruses. Nat. Med. 2018, 24, 1143–1150. [Google Scholar] [CrossRef]
- Gonzalez-Cao, M.; Karachaliou, N.; Santarpia, M.; Viteri, S.; Meyerhans, A.; Rosell, R. Activation of Viral Defense Signaling in Cancer. Ther. Adv. Med. Oncol. 2018, 10, 1758835918793105. [Google Scholar] [CrossRef]
- Buonaguro, L.; Petrizzo, A.; Tornesello, M.L.; Buonaguro, F.M. Innate Immunity and Hepatitis C Virus Infection: A Microarray’s View. Infect. Agents Cancer 2012, 7, 7. [Google Scholar] [CrossRef]
- Lamprecht, B.; Walter, K.; Kreher, S.; Kumar, R.; Hummel, M.; Lenze, D.; Köchert, K.; Bouhlel, M.A.; Richter, J.; Soler, E.; et al. Derepression of an Endogenous Long Terminal Repeat Activates the CSF1R Proto-Oncogene in Human Lymphoma. Nat. Med. 2010, 16, 571–579. [Google Scholar] [CrossRef]
- Manghera, M.; Ferguson-Parry, J.; Lin, R.; Douville, R.N. NF-ΚB and IRF1 Induce Endogenous Retrovirus K Expression via Interferon-Stimulated Response Elements in Its 5′ Long Terminal Repeat. J. Virol. 2016, 90, 9338–9349. [Google Scholar] [CrossRef]
- Ito, J.; Sugimoto, R.; Nakaoka, H.; Yamada, S.; Kimura, T.; Hayano, T.; Inoue, I. Systematic Identification and Characterization of Regulatory Elements Derived from Human Endogenous Retroviruses. PLoS Genet. 2017, 13, e1006883. [Google Scholar] [CrossRef] [PubMed]
- Petrizzo, A.; Ragone, C.; Cavalluzzo, B.; Mauriello, A.; Manolio, C.; Tagliamonte, M.; Buonaguro, L. Human Endogenous Retrovirus Reactivation: Implications for Cancer Immunotherapy. Cancers 2021, 13, 1999. [Google Scholar] [CrossRef] [PubMed]
- Montesion, M.; Bhardwaj, N.; Williams, Z.H.; Kuperwasser, C.; Coffin, J.M. Mechanisms of HERV-K (HML-2) Transcription during Human Mammary Epithelial Cell Transformation. J. Virol. 2018, 92, 10-1128. [Google Scholar] [CrossRef]
- Li, M.; Radvanyi, L.; Yin, B.; Rycaj, K.; Li, J.; Chivukula, R.; Lin, K.; Lu, Y.; Shen, J.; Chang, D.Z.; et al. Downregulation of Human Endogenous Retrovirus Type K (HERV-K) Viral env RNA in Pancreatic Cancer Cells Decreases Cell Proliferation and Tumor Growth. Clin. Cancer Res. 2017, 23, 5892–5911. [Google Scholar] [CrossRef]
- Chiappinelli, K.B.; Strissel, P.L.; Desrichard, A.; Li, H.; Henke, C.; Akman, B.; Hein, A.; Rote, N.S.; Cope, L.M.; Snyder, A.; et al. Inhibiting DNA Methylation Causes an Interferon Response in Cancer via DsRNA Including Endogenous Retroviruses. Cell 2015, 162, 974–986. [Google Scholar] [CrossRef]
- Krishnamurthy, J.; Rabinovich, B.A.; Mi, T.; Switzer, K.C.; Olivares, S.; Maiti, S.N.; Plummer, J.B.; Singh, H.; Kumaresan, P.R.; Huls, H.M.; et al. Genetic Engineering of T Cells to Target HERV-K, an Ancient Retrovirus on Melanoma. Clin. Cancer Res. 2015, 21, 3241–3251. [Google Scholar] [CrossRef] [PubMed]
- Johanning, G.L.; Malouf, G.G.; Zheng, X.; Esteva, F.J.; Weinstein, J.N.; Wang-Johanning, F.; Su, X. Expression of Human Endogenous Retrovirus-K Is Strongly Associated with the Basal-like Breast Cancer Phenotype. Sci. Rep. 2017, 7, 41960. [Google Scholar] [CrossRef]
- Saini, S.K.; Ørskov, A.D.; Bjerregaard, A.-M.; Unnikrishnan, A.; Holmberg-Thydén, S.; Borch, A.; Jensen, K.V.; Anande, G.; Bentzen, A.K.; Marquard, A.M.; et al. Human Endogenous Retroviruses Form a Reservoir of T Cell Targets in Hematological Cancers. Nat. Commun. 2020, 11, 5660. [Google Scholar] [CrossRef]
- Grandi, N.; Tramontano, E. Human Endogenous Retroviruses Are Ancient Acquired Elements Still Shaping Innate Immune Responses. Front. Immunol. 2018, 9, 2039. [Google Scholar] [CrossRef]
- Babaian, A.; Romanish, M.T.; Gagnier, L.; Kuo, L.Y.; Karimi, M.M.; Steidl, C.; Mager, D.L. Onco-Exaptation of an Endogenous Retroviral LTR Drives IRF5 Expression in Hodgkin Lymphoma. Oncogene 2016, 35, 2542–2546. [Google Scholar] [CrossRef]
- Deniz, Ö.; Ahmed, M.; Todd, C.D.; Rio-Machin, A.; Dawson, M.A.; Branco, M.R. Endogenous Retroviruses Are a Source of Enhancers with Oncogenic Potential in Acute Myeloid Leukaemia. Nat. Commun. 2020, 11, 3506. [Google Scholar] [CrossRef]
- Büscher, K.; Trefzer, U.; Hofmann, M.; Sterry, W.; Kurth, R.; Denner, J. Expression of Human Endogenous Retrovirus K in Melanomas and Melanoma Cell Lines. Cancer Res. 2005, 65, 4172–4180. [Google Scholar] [CrossRef]
- Schmitt, K.; Heyne, K.; Roemer, K.; Meese, E.; Mayer, J. HERV-K(HML-2) Rec and Np9 Transcripts Not Restricted to Disease but Present in Many Normal Human Tissues. Mob. DNA 2015, 6, 4. [Google Scholar] [CrossRef]
- Pisano, M.P.; Grandi, N.; Tramontano, E. Human Endogenous Retroviruses (HERVs) and Mammalian Apparent LTRs Retrotransposons (MaLRs) Are Dynamically Modulated in Different Stages of Immunity. Biology 2021, 10, 405. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, R.; Little, M.P.; Day, S.; Charvat, J.; Blattnig, S.; Huff, J.; Patel, Z.S. Cancer Incidence and Mortality in the USA Astronaut Corps, 1959–2017. Occup. Environ. Med. 2021, 78, 869–875. [Google Scholar] [CrossRef] [PubMed]
- Peterson, L.E.; Kovyrshina, T. Adjustment of Lifetime Risks of Space Radiation-Induced Cancer by the Healthy Worker Effect and Cancer Misclassification. Heliyon 2015, 1, e00048. [Google Scholar] [CrossRef]
- Hammond, T.G.; Allen, P.L.; Birdsall, H.H. Effects of Space Flight on Mouse Liver versus Kidney: Gene Pathway Analyses. Int. J. Mol. Sci. 2018, 19, 4106. [Google Scholar] [CrossRef] [PubMed]
- Augoff, K.; Hryniewicz-Jankowska, A.; Tabola, R.; Stach, K. MMP9: A Tough Target for Targeted Therapy for Cancer. Cancers 2022, 14, 1847. [Google Scholar] [CrossRef]
- Ladu, S.; Calvisi, D.F.; Conner, E.A.; Farina, M.; Factor, V.M.; Thorgeirsson, S.S. E2F1 Inhibits C-Myc-Driven Apoptosis via PIK3CA/Akt/MTOR and COX-2 in a Mouse Model of Human Liver Cancer. Gastroenterology 2008, 135, 1322–1332. [Google Scholar] [CrossRef]
- Cao, Y.; Yi, Y.; Han, C.; Shi, B. NF-ΚB Signaling Pathway in Tumor Microenvironment. Front. Immunol. 2024, 15, 1476030. [Google Scholar] [CrossRef] [PubMed]
- Corydon, T.J.; Kopp, S.; Wehland, M.; Braun, M.; Schütte, A.; Mayer, T.; Hülsing, T.; Oltmann, H.; Schmitz, B.; Hemmersbach, R.; et al. Alterations of the Cytoskeleton in Human Cells in Space Proved by Life-Cell Imaging. Sci. Rep. 2016, 6, 20043. [Google Scholar] [CrossRef]
- Chen, Z.-Y.; Guo, S.; Li, B.-B.; Jiang, N.; Li, A.; Yan, H.-F.; Yang, H.-M.; Zhou, J.-L.; Li, C.-L.; Cui, Y. Effect of Weightlessness on the 3D Structure Formation and Physiologic Function of Human Cancer Cells. BioMed Res. Int. 2019, 2019, 4894083. [Google Scholar] [CrossRef]
- Neelam, S.; Richardson, B.; Barker, R.; Udave, C.; Gilroy, S.; Cameron, M.J.; Levine, H.G.; Zhang, Y. Changes in Nuclear Shape and Gene Expression in Response to Simulated Microgravity Are LINC Complex-Dependent. Int. J. Mol. Sci. 2020, 21, 6762. [Google Scholar] [CrossRef]
- Alcorta-Sevillano, N.; Macías, I.; Rodríguez, C.I.; Infante, A. Crucial Role of Lamin A/C in the Migration and Differentiation of MSCs in Bone. Cells 2020, 9, 1330. [Google Scholar] [CrossRef]
- Grimm, D.; Wehland, M.; Corydon, T.J.; Richter, P.; Prasad, B.; Bauer, J.; Egli, M.; Kopp, S.; Lebert, M.; Krüger, M. The Effects of Microgravity on Differentiation and Cell Growth in Stem Cells and Cancer Stem Cells. Stem Cells Transl. Med. 2020, 9, 882–894. [Google Scholar] [CrossRef]
- Marrero, B.; Messina, J.L.; Heller, R. Generation of a Tumor Spheroid in a Microgravity Environment as a 3D Model of Melanoma. Vitr. Cell Dev. Biol. Anim. 2009, 45, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Topal, U.; Zamur, C. Microgravity, Stem Cells, and Cancer: A New Hope for Cancer Treatment. Stem Cells Int. 2021, 2021, 5566872. [Google Scholar] [CrossRef] [PubMed]
- Deng, B.; Liu, R.; Tian, X.; Han, Z.; Chen, J. Simulated Microgravity Inhibits the Viability and Migration of Glioma via FAK/RhoA/Rock and FAK/Nek2 Signaling. Vitr. Cell Dev. Biol. Anim. 2019, 55, 260–271. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, H.; Wu, L.; Cao, L.; Yang, Q.; Dong, H.; Wang, Z.; Ma, J.; Li, Z. The Influence of Simulated Microgravity on Proliferation and Apoptosis in U251 Glioma Cells. Vitr. Cell Dev. Biol. Anim. 2017, 53, 744–751. [Google Scholar] [CrossRef]
- Ma, X.; Pietsch, J.; Wehland, M.; Schulz, H.; Saar, K.; Hübner, N.; Bauer, J.; Braun, M.; Schwarzwälder, A.; Segerer, J.; et al. Differential gene expression profile and altered cytokine secretion of thyroid cancer cells in space. FASEB J. 2013, 28, 813–835. [Google Scholar] [CrossRef]
- Nassef, M.Z.; Melnik, D.; Kopp, S.; Sahana, J.; Infanger, M.; Lützenberg, R.; Relja, B.; Wehland, M.; Grimm, D.; Krüger, M. Breast Cancer Cells in Microgravity: New Aspects for Cancer Research. Int. J. Mol. Sci. 2020, 21, 7345. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Chen, Z.; Li, B.; Guo, S.; Li, A.; Zhang, T.; Fu, X.; Si, S.; Cui, Y. Effects of Rotary Cell Culture System-simulated Microgravity on the Ultrastructure and Biological Behavior of Human MDA-MB-231 Breast Cancer Cells. Precis. Radiat. Oncol. 2019, 3, 87–93. [Google Scholar] [CrossRef]
- Degan, P.; Cortese, K.; Pulliero, A.; Bruno, S.; Gagliani, M.C.; Congiu, M.; Izzotti, A. Simulated Microgravity Effects on Human Adenocarcinoma Alveolar Epithelial Cells: Characterization of Morphological, Functional, and Epigenetic Parameters. Int. J. Mol. Sci. 2021, 22, 6951. [Google Scholar] [CrossRef] [PubMed]
- Dietz, C.; Infanger, M.; Romswinkel, A.; Strube, F.; Kraus, A. Apoptosis Induction and Alteration of Cell Adherence in Human Lung Cancer Cells under Simulated Microgravity. Int. J. Mol. Sci. 2019, 20, 3601. [Google Scholar] [CrossRef]
- Romswinkel, A.; Infanger, M.; Dietz, C.; Strube, F.; Kraus, A. The Role of C-X-C Chemokine Receptor Type 4 (CXCR4) in Cell Adherence and Spheroid Formation of Human Ewing’s Sarcoma Cells under Simulated Microgravity. Int. J. Mol. Sci. 2019, 20, 6073. [Google Scholar] [CrossRef]
- Prasad, B.; Grimm, D.; Strauch, S.M.; Erzinger, G.S.; Corydon, T.J.; Lebert, M.; Magnusson, N.E.; Infanger, M.; Richter, P.; Krüger, M. Influence of Microgravity on Apoptosis in Cells, Tissues, and Other Systems In Vivo and In Vitro. Int. J. Mol. Sci. 2020, 21, 9373. [Google Scholar] [CrossRef] [PubMed]
- Kopp, S.; Sahana, J.; Islam, T.; Petersen, A.G.; Bauer, J.; Corydon, T.J.; Schulz, H.; Saar, K.; Huebner, N.; Slumstrup, L.; et al. The Role of NFκB in Spheroid Formation of Human Breast Cancer Cells Cultured on the Random Positioning Machine. Sci. Rep. 2018, 8, 921. [Google Scholar] [CrossRef]
- Wang, D.; Silvani, G.; Schroeter, L.; Brynn, R.; Chou, J.; Poole, K. The Mechanosensitive Channel ELKIN1 Regulates Cellular Adaptations to Simulated Microgravity. NPJ Microgravity 2025, 11, 10. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, K.; Wei, D.; Tian, Y.; Gao, Y.; Chen, Z.; Qian, A. The Impact of Spaceflight and Simulated Microgravity on Cell Adhesion. Int. J. Mol. Sci. 2020, 21, 3031. [Google Scholar] [CrossRef]
- Maier, J.A.M.; Cialdai, F.; Monici, M.; Morbidelli, L. The Impact of Microgravity and Hypergravity on Endothelial Cells. Biomed. Res. Int. 2015, 2015, 434803. [Google Scholar] [CrossRef]
- Kopp, S.; Krüger, M.; Feldmann, S.; Oltmann, H.; Schütte, A.; Schmitz, B.; Bauer, J.; Schulz, H.; Saar, K.; Huebner, N.; et al. Thyroid Cancer Cells in Space during the TEXUS-53 Sounding Rocket Mission—The THYROID Project. Sci. Rep. 2018, 8, 10355. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Xu, A.; Zhao, T.; Zhao, Q.; Zhang, J.; Fan, C.; Deng, Y.; Freywald, A.; Genth, H.; Xiang, J. Simulated Microgravity Inhibits Cell Focal Adhesions Leading to Reduced Melanoma Cell Proliferation and Metastasis via FAK/RhoA-Regulated MTORC1 and AMPK Pathways. Sci. Rep. 2018, 8, 3769. [Google Scholar] [CrossRef]
- Sahana, J.; Corydon, T.J.; Wehland, M.; Krüger, M.; Kopp, S.; Melnik, D.; Kahlert, S.; Relja, B.; Infanger, M.; Grimm, D. Alterations of Growth and Focal Adhesion Molecules in Human Breast Cancer Cells Exposed to the Random Positioning Machine. Front. Cell Dev. Biol. 2021, 9, 672098. [Google Scholar] [CrossRef] [PubMed]
- Wise, P.M.; Neviani, P.; Riwaldt, S.; Corydon, T.J.; Wehland, M.; Braun, M.; Krüger, M.; Infanger, M.; Grimm, D. Changes in Exosome Release in Thyroid Cancer Cells after Prolonged Exposure to Real Microgravity in Space. Int. J. Mol. Sci. 2021, 22, 2132. [Google Scholar] [CrossRef] [PubMed]
- Wise, P.M.; Sahana, J.; Neviani, P.; Corydon, T.J.; Schulz, H.; Wehland, M.; Infanger, M.; Grimm, D. Prolonged Exposure to Simulated Microgravity Changes Release of Small Extracellular Vesicle in Breast Cancer Cells. Int. J. Mol. Sci. 2022, 23, 16095. [Google Scholar] [CrossRef]
- Fukazawa, T.; Tanimoto, K.; Shrestha, L.; Imura, T.; Takahashi, S.; Sueda, T.; Hirohashi, N.; Hiyama, E.; Yuge, L. Simulated Microgravity Enhances CDDP-Induced Apoptosis Signal via P53-Independent Mechanisms in Cancer Cells. PLoS ONE 2019, 14, e0219363. [Google Scholar] [CrossRef]
- Prasanth, D.; Suresh, S.; Prathivadhi-Bhayankaram, S.; Mimlitz, M.; Zetocha, N.; Lee, B.; Ekpenyong, A. Microgravity Modulates Effects of Chemotherapeutic Drugs on Cancer Cell Migration. Life 2020, 10, 162. [Google Scholar] [CrossRef]
- McKinley, S.; Taylor, A.; Peeples, C.; Jacob, M.; Khaparde, G.; Walter, Y.; Ekpenyong, A. Simulated Microgravity-Induced Changes to Drug Response in Cancer Cells Quantified Using Fluorescence Morphometry. Life 2023, 13, 1683. [Google Scholar] [CrossRef]
- Veliz, A.L.; Hughes, L.; Carrillo, D.; Pecaut, M.J.; Kearns-Jonker, M. Immunization Induces Inflammation in the Mouse Heart during Spaceflight. BMC Genom. 2025, 26, 229. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.; Li, X.; Qian, Y. Vaccination Efficacy with Marrow Mesenchymal Stem Cell against Cancer Was Enhanced under Simulated Microgravity. Biochem. Biophys. Res. Commun. 2017, 485, 606–613. [Google Scholar] [CrossRef]
- Baghoum, H.; Alahmed, H.; Hachim, M.; Senok, A.; Jalaleddine, N.; Al Heialy, S. Simulated Microgravity Influences Immunity-Related Biomarkers in Lung Cancer. Int. J. Mol. Sci. 2022, 24, 155. [Google Scholar] [CrossRef]
- Grimm, D.; Schulz, H.; Krüger, M.; Cortés-Sánchez, J.L.; Egli, M.; Kraus, A.; Sahana, J.; Corydon, T.J.; Hemmersbach, R.; Wise, P.M.; et al. The Fight against Cancer by Microgravity: The Multicellular Spheroid as a Metastasis Model. Int. J. Mol. Sci. 2022, 23, 3073. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, B.; Peng, J.; Tang, H.; Wang, S.; Peng, S.; Ye, F.; Wang, J.; Ouyang, K.; Li, J.; et al. Inhibition of NF-ΚB Signaling Unveils Novel Strategies to Overcome Drug Resistance in Cancers. Drug Resist. Updates 2024, 73, 101042. [Google Scholar] [CrossRef] [PubMed]
- Jansz, N.; Faulkner, G.J. Endogenous Retroviruses in the Origins and Treatment of Cancer. Genome Biol. 2021, 22, 147. [Google Scholar] [CrossRef] [PubMed]
- Hassell, B.A.; Goyal, G.; Lee, E.; Sontheimer-Phelps, A.; Levy, O.; Chen, C.S.; Ingber, D.E. Human Organ Chip Models Recapitulate Orthotopic Lung Cancer Growth, Therapeutic Responses, and Tumor Dormancy In Vitro. Cell Rep. 2017, 21, 508–516. [Google Scholar] [CrossRef]
- Neal, J.T.; Li, X.; Zhu, J.; Giangarra, V.; Grzeskowiak, C.L.; Ju, J.; Liu, I.H.; Chiou, S.-H.; Salahudeen, A.A.; Smith, A.R.; et al. Organoid Modeling of the Tumor Immune Microenvironment. Cell 2018, 175, 1972–1988.e16. [Google Scholar] [CrossRef]
- Fong, E.L.S.; Toh, T.B.; Yu, H.; Chow, E.K.-H. 3D Culture as a Clinically Relevant Model for Personalized Medicine. SLAS Technol. Transl. Life Sci. Innov. 2017, 22, 245–253. [Google Scholar] [CrossRef]
- Vlachogiannis, G.; Hedayat, S.; Vatsiou, A.; Jamin, Y.; Fernández-Mateos, J.; Khan, K.; Lampis, A.; Eason, K.; Huntingford, I.; Burke, R.; et al. Patient-Derived Organoids Model Treatment Response of Metastatic Gastrointestinal Cancers. Science 2018, 359, 920–926. [Google Scholar] [CrossRef]
- Gottfried, E.; Kunz-Schughart, L.A.; Andreesen, R.; Kreutz, M. Brave Little World: Spheroids as an in Vitro Model to Study Tumor-Immune-Cell Interactions. Cell Cycle 2006, 5, 691–695. [Google Scholar] [CrossRef] [PubMed]
Cell Type/System | µg Platform | Exposure Time | Key Observed Effect | Reference |
---|---|---|---|---|
Human (astronaut skin biopsies, n = 4) | Real µg | Short (3-day flight; pre- and 1-day postflight) | ↑ KRAS and inflammatory pathways across skin layers; altered interferon response, DNA damage, epithelial barrier disruption, T-cell migration | [48] |
T cells (primary and Jurkat); Monocytes/macrophages (U937, etc.) | Simulated µg (2D clinostat), real µg (parabolic flight) | Short-term (minutes–hours) | Jurkat: ↑ ERK/MEK/p38, ↓ NF-κB nuclear translocation; U937: c-Jun activation ↑ or ↓ (stim-dependent); ↑ p53 phosphorylation | [43] |
Mouse macrophage (RAW 264.7 cell line) | Simulated µg | 8, 24, 48 h | ↓ viability, ↓ phagocytosis, shift in DEGs (↑ at 8–24 h, ↓ at 48 h), cytoskeleton disruption (Arp2/3) | [62] |
Human B lymphoblasts (HMy2.CIR cells) | Simulated µg | 30 min | ↑ apoptosis under heavy ion radiation, ↑ ROS, ↑ ERK/MKP-1/caspase-3 activation | [81] |
Human astronauts (PBMC) | Real µg | 135–210 days | ↓ mitochondrial function (OXPHOS), ↑ T cell exhaustion markers (CTLA-4, TIGIT, PD-L1, EOMES), ↓ calcium/GPCR signaling | [78] |
human T cells | Real µg | 1.5 h | ↓ Rel/NF-κB, CREB, SRF activation; ↓ cREL; inhibited TNF pathway → impaired early T cell activation | [83] |
Human cells (Jurkat), monocytes (U937) | Real µg | Seconds to minutes | ↓ HIF-1α expression (mRNA and protein), ↓ PDK1 transiently; adaptation within ~5 min | [85] |
Human astraunautPBMCs | Real µg | ~3 days | ↑ FOXP3+ Tregs; ↓ MHC I genes; ↑ inflammatory cytokines | [17] |
Human (in vitro PBMCs) + validation with human/mouse in vivo | simulated µg + validation with real µg (I4, ISS, JAXA) | 25 h | ↓ T/NK cytotoxicity; ↑ monocyte inflammation; dysregulated IFN and IL-6; cytoskeletal changes; pyroptosis; sirtuin modulation | [27] |
Human astronauts Plasma | Real µg | 9–14 days | ↑ IL-1α, IL-6, IL-8, IFN-γ, IL-4, IL-10, IL-12, IL-13, eotaxin, IP-10; strong Th2 shift (IL-4 ↑ 21×) | [50] |
THP-1-derived macrophages (M0, M1, M2 phenotypes) | Simulated µg | 48 h | ↓ TNF-α; ↑ IL-12 and VEGF (all phenotypes); ↑ IL-10 (M1 and M2) | [44] |
Natural Killer (NK) cells | Simulated µg | 48 h | ↓ NK cytotoxicity vs. K-562/MOLT-4; ↓ GZMB, PRF1; ↑ impairment with prolonged exposure | [54] |
Human astronauts | Real µg | 180–360 day | ↓ NK cytotoxicity (~50%) vs. K-562; no change in NK count/receptors; greater decline in rookies | [58] |
Human PBMCs (in vitro) | Simulated µg | 18 h | ↓ NK, CD4+, CD8+ function; ↑ Treg function (STAT5 activation) | [55] |
Primary mouse macrophages | Simulated µg | 24 h | ↑ Arginase-1 (M2); ↑ IL-6; ↓ IL-12B (p40); p38 MAPK → C/EBPβ pathway | [67] |
Human thyroid cancer (FTC-133 cells) | Real µg | ~6.5 min | ↑ cytoskeletal gene expression, disruption of F-actin bundles (holes, loss of filopodia/lamellipodia), ↑ ACTB, EZR, RDX, MSN; ↓ SEPT11 → altered cytoskeleton dynamics | [134] |
Human breast epithelial (MCF 10A, LINC-intact vs. disrupted) | Simulated µg | 2–20 h | SMG-induced nuclear shape change requires LINC; LINC-dependent gene expression (e.g., ↑ RBMS3, altered ECM/adhesion genes) | [136] |
Human Ewing’s sarcoma (A673) | Simulated µg | 24 h | ↑ EWS/FLI1 in both adherent and spheroids; ↑ CXCR4 and CD44 in spheroids; ↑ CAV1; ↓ DKK2, ↓ VEGF-A under s-µg | [148] |
Mouse melanoma (B16 BL6-10) | Simulated µg | 24 h | ↑ apoptosis; ↓ focal adhesions and cytoskeleton stability; suppression of FAK/RhoA → ↓ mTORC1/NF-κB and ERK1/2 signaling; ↓ NEPs (lamin-A, emerin, sun1, nesprin-3) | [95] |
Human breast cancer (MCF-7) | Simulated µg | 24 h | ↑ multicellular spheroid formation; NFκB p65 translocates to nucleus; ↑ HMOX1, ANXA1, ANXA2, CTGF, CAV2, ICAM1, FAS, Casp8, BAX, p53, CYC1, PARP1 | [150] |
Human glioma (U251MG) | Simulated µg | smg | ↑ apoptosis (↑ p21, ↓ IGFBP-2), ↓ proliferation | [142] |
Human lung cancer (squamous) | Simulated µg | Up to 96 h | ↑ 3D spheroid formation → ↑ apoptosis (spheroids), ↑ TP53, CDKN2A (p14), RB1, PTEN; actin shifts to spherical alignment; SOX2 ↑ in adherent cells | [147] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jasemi, S.; Simula, E.R.; Lin, Y.; Satta, R.R.; Rubino, C.; Cossu, A.; Fais, M.; Noli, M.; Sechi, L.A. Immune System–Tumor Crosstalk Under Microgravity: Mechanistic Insights, Challenges, and Translational Perspectives. Cancers 2025, 17, 2737. https://doi.org/10.3390/cancers17172737
Jasemi S, Simula ER, Lin Y, Satta RR, Rubino C, Cossu A, Fais M, Noli M, Sechi LA. Immune System–Tumor Crosstalk Under Microgravity: Mechanistic Insights, Challenges, and Translational Perspectives. Cancers. 2025; 17(17):2737. https://doi.org/10.3390/cancers17172737
Chicago/Turabian StyleJasemi, Seyedesomaye, Elena Rita Simula, Yao Lin, Rosanna Rita Satta, Corrado Rubino, Antonio Cossu, Milena Fais, Marta Noli, and Leonardo A. Sechi. 2025. "Immune System–Tumor Crosstalk Under Microgravity: Mechanistic Insights, Challenges, and Translational Perspectives" Cancers 17, no. 17: 2737. https://doi.org/10.3390/cancers17172737
APA StyleJasemi, S., Simula, E. R., Lin, Y., Satta, R. R., Rubino, C., Cossu, A., Fais, M., Noli, M., & Sechi, L. A. (2025). Immune System–Tumor Crosstalk Under Microgravity: Mechanistic Insights, Challenges, and Translational Perspectives. Cancers, 17(17), 2737. https://doi.org/10.3390/cancers17172737