Association of Enterotoxigenic Bacteroides fragilis with Immune Modulation in Colorectal Cancer Liver Metastasis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Specimens
2.2. Pathological Analysis
2.2.1. Tissue Microarrays
2.2.2. Immunohistochemistry
2.2.3. Immunohistochemical Evaluation of Tissue Microarrays
2.3. DNA Extraction and Quantitative PCR for ETBF
2.4. Statistical Analysis
3. Results
3.1. Detection of ETBF in CRC Liver Metastasis Tissues
3.2. ETBF and the TIME in CRC Liver Metastasis Tissues
3.3. Diversity of Metastatic Organs Involved in Recurrence
3.4. ETBF in CRC Liver Metastasis Tissues and Survival
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BFT | Bacteroides fragilis toxin |
CRC | Colorectal cancer |
CRP | C-reactive protein |
ddPCR | Droplet digital PCR |
DFS | Disease-free survival |
dMMR | Deficient mismatch repair |
ETBF | Enterotoxigenic Bacteroides fragilis |
FFPE | Formalin-fixed paraffin-embedded |
FISH | Fluorescence in situ hybridization |
H&E | Hematoxylin and eosin |
JFCR | Japanese Foundation for Cancer Research |
MMR | Mismatch repair |
NTC | No-template control |
OS | Overall survival |
SD | Standard deviation |
Th17 | T helper type 17 |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Morgan, E.; Arnold, M.; Gini, A.; Lorenzoni, V.; Cabasag, C.J.; Laversanne, M.; Vignat, J.; Ferlay, J.; Murphy, N.; Bray, F. Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN. Gut 2023, 72, 338–344. [Google Scholar] [CrossRef]
- Pawlik, T.M.; Choti, M.A. Surgical therapy for colorectal metastases to the liver. J. Gastrointest. Surg. 2007, 11, 1057–1077. [Google Scholar] [CrossRef]
- Welch, J.P.; Donaldson, G.A. The clinical correlation of an autopsy study of recurrent colorectal cancer. Ann. Surg. 1979, 189, 496–502. [Google Scholar] [CrossRef]
- Geoghegan, J.G.; Scheele, J. Treatment of colorectal liver metastases. Br. J. Surg. 1999, 86, 158–169. [Google Scholar] [CrossRef]
- Choti, M.A.; Sitzmann, J.V.; Tiburi, M.F.; Sumetchotimetha, W.; Rangsin, R.; Schulick, R.D.; Lillemoe, K.D.; Yeo, C.J.; Cameron, J.L. Trends in long-term survival following liver resection for hepatic colorectal metastases. Ann. Surg. 2002, 235, 759–766. [Google Scholar] [CrossRef]
- Fernandez, F.G.; Drebin, J.A.; Linehan, D.C.; Dehdashti, F.; Siegel, B.A.; Strasberg, S.M. Five-year survival after resection of hepatic metastases from colorectal cancer in patients screened by positron emission tomography with F-18 fluorodeoxyglucose (FDG-PET). Ann. Surg. 2004, 240, 438–447; discussion 447–450. [Google Scholar] [CrossRef] [PubMed]
- Fong, Y.; Cohen, A.M.; Fortner, J.G.; Enker, W.E.; Turnbull, A.D.; Coit, D.G.; Marrero, A.M.; Prasad, M.; Blumgart, L.H.; Brennan, M.F. Liver resection for colorectal metastases. J. Clin. Oncol. 1997, 15, 938–946. [Google Scholar] [CrossRef]
- Yoon, S.S.; Tanabe, K.K. Multidisciplinary management of metastatic colorectal cancer. Surg. Oncol. 1998, 7, 197–207. [Google Scholar] [CrossRef]
- Nordlinger, B.; Guiguet, M.; Vaillant, J.C.; Balladur, P.; Boudjema, K.; Bachellier, P.; Jaeck, D. Surgical resection of colorectal carcinoma metastases to the liver. A prognostic scoring system to improve case selection, based on 1568 patients. Association Française de Chirurgie. Cancer 1996, 77, 1254–1262. [Google Scholar] [CrossRef]
- Thirion, P.; Wolmark, N.; Haddad, E.; Buyse, M.; Piedbois, P. Survival impact of chemotherapy in patients with colorectal metastases confined to the liver: A re-analysis of 1458 non-operable patients randomised in 22 trials and 4 meta-analyses. Meta-Analysis Group in Cancer. Ann. Oncol. 1999, 10, 1317–1320. [Google Scholar] [CrossRef]
- Wagner, J.S.; Adson, M.A.; Van Heerden, J.A.; Adson, M.H.; Ilstrup, D.M. The natural history of hepatic metastases from colorectal cancer. A comparison with resective treatment. Ann. Surg. 1984, 199, 502–508. [Google Scholar] [CrossRef]
- Scheithauer, W.; Rosen, H.; Kornek, G.V.; Sebesta, C.; Depisch, D. Randomised comparison of combination chemotherapy plus supportive care with supportive care alone in patients with metastatic colorectal cancer. BMJ 1993, 306, 752–755. [Google Scholar] [CrossRef]
- Inamura, K.; Hamada, T.; Bullman, S.; Ugai, T.; Yachida, S.; Ogino, S. Cancer as microenvironmental, systemic and environmental diseases: Opportunity for transdisciplinary microbiomics science. Gut 2022, 71, 2107–2122. [Google Scholar] [CrossRef]
- Galeano Niño, J.L.; Wu, H.; LaCourse, K.D.; Kempchinsky, A.G.; Baryiames, A.; Barber, B.; Futran, N.; Houlton, J.; Sather, C.; Sicinska, E.; et al. Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer. Nature 2022, 611, 810–817. [Google Scholar] [CrossRef]
- El Tekle, G.; Garrett, W.S. Bacteria in cancer initiation, promotion and progression. Nat. Rev. Cancer 2023, 23, 600–618. [Google Scholar] [CrossRef]
- Karpiński, T.M.; Ożarowski, M.; Stasiewicz, M. Carcinogenic microbiota and its role in colorectal cancer development. Semin. Cancer Biol. 2022, 86, 420–430. [Google Scholar] [CrossRef]
- Geis, A.L.; Fan, H.; Wu, X.; Wu, S.; Huso, D.L.; Wolfe, J.L.; Sears, C.L.; Pardoll, D.M.; Housseau, F. Regulatory T-cell response to enterotoxigenic Bacteroides fragilis colonization triggers IL17-dependent colon carcinogenesis. Cancer Discov. 2015, 5, 1098–1109. [Google Scholar] [CrossRef] [PubMed]
- Dadgar-Zankbar, L.; Shariati, A.; Bostanghadiri, N.; Elahi, Z.; Mirkalantari, S.; Razavi, S.; Kamali, F.; Darban-Sarokhalil, D. Evaluation of enterotoxigenic Bacteroides fragilis correlation with the expression of cellular signaling pathway genes in Iranian patients with colorectal cancer. Infect. Agents Cancer 2023, 18, 48. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Jiang, D.; Zhou, X.; Ye, X.; Yang, P.; He, Y. Recombinant Bacteroides fragilis enterotoxin-1 (rBFT-1) promotes proliferation of colorectal cancer via CCL3-related molecular pathways. Open Life Sci. 2021, 16, 408–418. [Google Scholar] [CrossRef] [PubMed]
- Takashima, Y.; Kawamura, H.; Okadome, K.; Ugai, S.; Haruki, K.; Arima, K.; Mima, K.; Akimoto, N.; Nowak, J.A.; Giannakis, M.; et al. Enrichment of Bacteroides fragilis and enterotoxigenic Bacteroides fragilis in CpG island methylator phenotype (CIMP)-high colorectal carcinoma. Clin. Microbiol. Infect. 2024, 30, 630–636. [Google Scholar] [CrossRef] [PubMed]
- Fu, A.; Yao, B.; Dong, T.; Chen, Y.; Yao, J.; Liu, Y.; Li, H.; Bai, H.; Liu, X.; Zhang, Y.; et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer. Cell 2022, 185, 1356–1372.e26. [Google Scholar] [CrossRef]
- Shigematsu, Y.; Saito, R.; Amori, G.; Kanda, H.; Takahashi, Y.; Takeuchi, K.; Takahashi, S.; Inamura, K. Fusobacterium nucleatum, immune responses, and metastatic organ diversity in colorectal cancer liver metastasis. Cancer Sci. 2024, 115, 3248–3255. [Google Scholar] [CrossRef]
- Shigematsu, Y.; Saito, R.; Kanda, H.; Takahashi, Y.; Takeuchi, K.; Takahashi, S.; Inamura, K. Inverse Correlation between pks-carrying Escherichia coli abundance in colorectal cancer liver metastases and the number of organs involved in recurrence. Cancers 2024, 16, 3003. [Google Scholar] [CrossRef]
- Nagtegaal, I.D.; Odze, R.D.; Klimstra, D.; Paradis, V.; Rugge, M.; Schirmacher, P.; Washington, K.M.; Carneiro, F.; Cree, I.A. The 2019 WHO classification of tumours of the digestive system. Histopathology 2020, 76, 182–188. [Google Scholar] [CrossRef]
- Camp, R.L.; Charette, L.A.; Rimm, D.L. Validation of tissue microarray technology in breast carcinoma. Lab. Investig. 2000, 80, 1943–1949. [Google Scholar] [CrossRef]
- Voduc, D.; Kenney, C.; Nielsen, T.O. Tissue microarrays in clinical oncology. Semin. Radiat. Oncol. 2008, 18, 89–97. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Zamani, S.; Hesam Shariati, S.; Zali, M.R.; Asadzadeh Aghdaei, H.; Sarabi Asiabar, A.; Bokaie, S.; Nomanpour, B.; Sechi, L.A.; Feizabadi, M.M. Detection of enterotoxigenic Bacteroides fragilis in patients with ulcerative colitis. Gut Pathog. 2017, 9, 53. [Google Scholar] [CrossRef]
- Bullman, S.; Pedamallu, C.S.; Sicinska, E.; Clancy, T.E.; Zhang, X.; Cai, D.; Neuberg, D.; Huang, K.; Guevara, F.; Nelson, T.; et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 2017, 358, 1443–1448. [Google Scholar] [CrossRef]
- Eisenhofer, R.; Minich, J.J.; Marotz, C.; Cooper, A.; Knight, R.; Weyrich, L.S. Contamination in low microbial biomass microbiome studies: Issues and recommendations. Trends Microbiol. 2019, 27, 105–117. [Google Scholar] [CrossRef]
- Salter, S.J.; Cox, M.J.; Turek, E.M.; Calus, S.T.; Cookson, W.O.; Moffatt, M.F.; Turner, P.; Parkhill, J.; Loman, N.J.; Walker, A.W. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014, 12, 87. [Google Scholar] [CrossRef]
- Nestarenkaite, A.; Fadhil, W.; Rasmusson, A.; Susanti, S.; Hadjimichael, E.; Laurinaviciene, A.; Ilyas, M.; Laurinavicius, A. Immuno-interface score to predict outcome in colorectal cancer independent of microsatellite instability status. Cancers 2020, 12, 2902. [Google Scholar] [CrossRef] [PubMed]
- Ahluwalia, P.; Mondal, A.K.; Ahluwalia, M.; Sahajpal, N.S.; Jones, K.; Jilani, Y.; Gahlay, G.K.; Barrett, A.; Kota, V.; Rojiani, A.M.; et al. Clinical and molecular assessment of an onco-immune signature with prognostic significance in patients with colorectal cancer. Cancer Med. 2022, 11, 1573–1586. [Google Scholar] [CrossRef]
- Ito, S.; Koshino, A.; Komura, M.; Kato, S.; Otani, T.; Wang, C.; Ueki, A.; Takahashi, H.; Ebi, M.; Ogasawara, N.; et al. Characterization of colorectal cancer by hierarchical clustering analyses of five immune cell markers. Pathol. Int. 2024, 74, 13–25. [Google Scholar] [CrossRef]
- Kwak, Y.; Koh, J.; Kim, D.W.; Kang, S.B.; Kim, W.H.; Lee, H.S. Immunoscore encompassing CD3+ and CD8 T cell densities in distant metastasis is a robust prognostic marker for advanced colorectal cancer. Oncotarget 2016, 7, 81778–81790. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, X.; Xu, Y.; La, X.; Tian, J.; Li, A.; Li, H.; Wu, C.; Xi, Y.; Song, G.; et al. Tumor-associated macrophages confer colorectal cancer 5-fluorouracil resistance by promoting MRP1 membrane translocation via an intercellular CXCL17/CXCL22-CCR4-ATF6-GRP78 axis. Cell Death Dis. 2023, 14, 582. [Google Scholar] [CrossRef]
- Yu, H.; Yang, R.; Li, M.; Li, D.; Xu, Y. The role of Treg cells in colorectal cancer and the immunotherapy targeting Treg cells. Front. Immunol. 2025, 16, 1574327. [Google Scholar] [CrossRef]
- Haas, G.; Fan, S.; Ghadimi, M.; De Oliveira, T.; Conradi, L.C. Different forms of tumor vascularization and their clinical implications focusing on vessel co-option in colorectal cancer liver metastases. Front. Cell Dev. Biol. 2021, 9, 612774. [Google Scholar] [CrossRef]
- Wu, S.; Rhee, K.J.; Albesiano, E.; Rabizadeh, S.; Wu, X.; Yen, H.R.; Huso, D.L.; Brancati, F.L.; Wick, E.; McAllister, F.; et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 2009, 15, 1016–1022. [Google Scholar] [CrossRef]
- Hwang, S.; Lee, C.G.; Jo, M.; Park, C.O.; Gwon, S.Y.; Hwang, S.; Yi, H.C.; Lee, S.Y.; Eom, Y.B.; Karim, B.; et al. Enterotoxigenic Bacteroides fragilis infection exacerbates tumorigenesis in AOM/DSS mouse model. Int. J. Med. Sci. 2020, 17, 145–152. [Google Scholar] [CrossRef]
- Xu, L.; Kitani, A.; Fuss, I.; Strober, W. Cutting edge: Regulatory T cells induce CD4+CD25−Foxp3− T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J. Immunol. 2007, 178, 6725–6729. [Google Scholar] [CrossRef]
- Chung, L.; Thiele Orberg, E.; Geis, A.L.; Chan, J.L.; Fu, K.; DeStefano Shields, C.E.; Dejea, C.M.; Fathi, P.; Chen, J.; Finard, B.B.; et al. Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells. Cell Host Microbe 2018, 23, 203–214.e205. [Google Scholar] [CrossRef]
- Wu, S.; Powell, J.; Mathioudakis, N.; Kane, S.; Fernandez, E.; Sears, C.L. Bacteroides fragilis enterotoxin induces intestinal epithelial cell secretion of interleukin-8 through mitogen-activated protein kinases and a tyrosine kinase-regulated nuclear factor-kappaB pathway. Infect. Immun. 2004, 72, 5832–5839. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.L.; Duan, W.; Su, C.Y.; Mao, F.Y.; Lv, Y.P.; Teng, Y.S.; Yu, P.W.; Zhuang, Y.; Zhao, Y.L. Interleukin 6 induces M2 macrophage differentiation by STAT3 activation that correlates with gastric cancer progression. Cancer Immunol. Immunother. 2017, 66, 1597–1608. [Google Scholar] [CrossRef] [PubMed]
- Bettelli, E.; Carrier, Y.; Gao, W.; Korn, T.; Strom, T.B.; Oukka, M.; Weiner, H.L.; Kuchroo, V.K. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006, 441, 235–238. [Google Scholar] [CrossRef]
- Månsson Kvarnhammar, A.; Tengroth, L.; Adner, M.; Cardell, L.O. Innate immune receptors in human airway smooth muscle cells: Activation by TLR1/2, TLR3, TLR4, TLR7 and NOD1 agonists. PLoS ONE 2013, 8, e68701. [Google Scholar] [CrossRef]
- Kawai, T.; Akira, S. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nat. Immunol. 2010, 11, 373–384. [Google Scholar] [CrossRef]
- Li, D.; Wu, M. Pattern recognition receptors in health and diseases. Signal Transduct. Target. Ther. 2021, 6, 291. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, Y.; Mima, K.; Ishimoto, T.; Ogata, Y.; Imai, K.; Miyamoto, Y.; Akiyama, T.; Daitoku, N.; Hiyoshi, Y.; Iwatsuki, M.; et al. Relationship between Fusobacterium nucleatum and antitumor immunity in colorectal cancer liver metastasis. Cancer Sci. 2021, 112, 4470–4477. [Google Scholar] [CrossRef]
- Arima, K.; Zhong, R.; Ugai, T.; Zhao, M.; Haruki, K.; Akimoto, N.; Lau, M.C.; Okadome, K.; Mehta, R.S.; Väyrynen, J.P.; et al. Western-style diet, pks island-carrying Escherichia coli, and colorectal cancer: Analyses from two large prospective cohort studies. Gastroenterology 2022, 163, 862–874. [Google Scholar] [CrossRef] [PubMed]
- Yamaoka, Y.; Suehiro, Y.; Hashimoto, S.; Hoshida, T.; Fujimoto, M.; Watanabe, M.; Imanaga, D.; Sakai, K.; Matsumoto, T.; Nishioka, M.; et al. Fusobacterium nucleatum as a prognostic marker of colorectal cancer in a Japanese population. J. Gastroenterol. 2018, 53, 517–524. [Google Scholar] [CrossRef] [PubMed]
Variable | Total (N = 226) | ETBF-DNA Level in CRC Liver Metastatic Tissues | p Value | ||
---|---|---|---|---|---|
Very Low (N = 178) | Low (N = 24) | High (N = 24) | |||
Age (years) † | 62.3 (11.0) | 62.9 (11.0) | 60.5 (11.5) | 59.3 (10.3) | 0.190 |
Sex § | 0.777 | ||||
Female | 144 (63.7) | 112 (62.9) | 15 (62.5) | 17 (70.8) | |
Male | 82 (36.3) | 66 (37.1) | 9 (37.5) | 7 (29.2) | |
Serum CRP (mg/dL) † | 0.4 (1.0) | 0.3 (0.8) | 0.6 (1.2) | 0.7 (1.9) | 0.226 |
Number of liver metastasis ‡ | 2 (1–5) | 2 (1–6) | 1 (1–2.25) | 2 (1–4) | 0.082 |
Primary tumor location § | 0.556 | ||||
Right side | 47 (20.9) | 40 (22.5) | 3 (12.5) | 4 (17.4) | |
Left side | 178 (79.1) | 138 (77.5) | 21 (87.5) | 19 (82.6) | |
Preoperative chemotherapy § | 0.295 | ||||
None | 130 (55.3) | 108 (57.8) | 10 (41.7) | 12 (50.0) | |
received | 105 (44.7) | 79 (42.2) | 14 (58.3) | 12 (50.0) | |
Adjuvant chemotherapy § | 0.840 | ||||
None | 124 (52.8) | 98 (52.4) | 14 (58.3) | 12 (50.0) | |
received | 111(47.2) | 89 (47.6) | 10 (41.7) | 12 (50.0) | |
Timing of metastasis § | 0.293 | ||||
Synchronous | 122 (54.0) | 101 (56.7) | 10 (41.7) | 11 (45.8) | |
Metachronous | 104 (46.0) | 77 (43.3) | 14 (58.3) | 13 (54.2) | |
Tumor differentiation § | 0.850 | ||||
Well to moderate | 214 (95.1) | 167 (94.4) | 23 (95.8) | 24 (100) | |
Poor | 11 (4.9) | 10 (5.6) | 1 (4.2) | 0 (0) | |
Mismatch repair protein § | 0.167 | ||||
Intact | 219 (96.9) | 174 (97.8) | 23 (95.8) | 22 (91.7) | |
Deficient | 7 (3.1) | 4 (2.2) | 1 (4.2) | 2 (8.3) |
Cell Type | ETBF-DNA Level in CRC Liver Metastasis | p Value for Trend | ||
---|---|---|---|---|
Very Low Mean ± SD (cells/mm2) (N = 178) | Low Mean ± SD (cells/mm2) (N = 24) | High Mean ± SD (cells/mm2) (N = 24) | ||
CD8+ cells | 57.0 (±94.5) | 41.5 (±51.9) | 34.0 (±53.4) | 0.868 |
CD4+ cells | 33.4 (±72.0) | 26.1 (±37.9) | 18.8 (±22.7) | 0.132 |
CD20+ cells | 7.9 (±27.9) | 6.5 (±19.3) | 8.6 (±24.9) | 0.366 |
FOXP3+ cells | 16.0 (±16.5) | 12.2 (±15.0) | 10.4 (±11.8) | 0.016 |
CD163+ cells | 133.8 (±165.9) | 77.0 (±85.4) | 135.7 (±235.1) | 0.272 |
CD68+ cells | 167.3 (±251.7) | 179.3 (±200.7) | 245.9 (±197.2) | 0.020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saito, R.; Shigematsu, Y.; Amori, M.; Amori, G.; Takamatsu, M.; Nishida, K.; Kanda, H.; Takahashi, Y.; Miura, Y.; Takeuchi, K.; et al. Association of Enterotoxigenic Bacteroides fragilis with Immune Modulation in Colorectal Cancer Liver Metastasis. Cancers 2025, 17, 2733. https://doi.org/10.3390/cancers17172733
Saito R, Shigematsu Y, Amori M, Amori G, Takamatsu M, Nishida K, Kanda H, Takahashi Y, Miura Y, Takeuchi K, et al. Association of Enterotoxigenic Bacteroides fragilis with Immune Modulation in Colorectal Cancer Liver Metastasis. Cancers. 2025; 17(17):2733. https://doi.org/10.3390/cancers17172733
Chicago/Turabian StyleSaito, Rumiko, Yasuyuki Shigematsu, Mahmut Amori, Gulanbar Amori, Manabu Takamatsu, Kenji Nishida, Hiroaki Kanda, Yu Takahashi, Yuji Miura, Kengo Takeuchi, and et al. 2025. "Association of Enterotoxigenic Bacteroides fragilis with Immune Modulation in Colorectal Cancer Liver Metastasis" Cancers 17, no. 17: 2733. https://doi.org/10.3390/cancers17172733
APA StyleSaito, R., Shigematsu, Y., Amori, M., Amori, G., Takamatsu, M., Nishida, K., Kanda, H., Takahashi, Y., Miura, Y., Takeuchi, K., Takahashi, S., & Inamura, K. (2025). Association of Enterotoxigenic Bacteroides fragilis with Immune Modulation in Colorectal Cancer Liver Metastasis. Cancers, 17(17), 2733. https://doi.org/10.3390/cancers17172733