Real-World Systemic Treatment Patterns, Survival Outcomes, and Prognostic Factors in Advanced Hepatocellular Carcinoma: A 15-Year Experience from a Low-Resource Setting
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Study Procedures
2.3. Endpoints
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Treatment Pattern and Information
3.3. OS
3.4. PFS
3.5. ORR
3.6. Prognostic Factors for OS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HCC | hepatocellular carcinoma |
OS | overall survival |
PFS | progression-free survival |
ORR | objective response rate |
TKI | tyrosine kinase inhibitor |
CMT | chemotherapy |
IO | immunotherapy |
PVTT | portal vein tumor thrombus |
ECOG PS | Eastern Cooperative Oncology Group performance status |
BMI | body mass index |
BCLC | Barcelona Clinic Liver Cancer |
AFP | alpha-fetoprotein |
IV | intravenously |
RECIST | Response Evaluation Criteria in Solid Tumors |
IQR | interquartile range |
SD | standard deviation |
CTP | Child–Turcotte–Pugh |
CR | complete response |
TACE | transarterial chemoembolization |
EBRT | external beam radiotherapy |
CSMBS | Civil Servant Medical Benefit Scheme |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers 2021, 7, 6. [Google Scholar] [CrossRef]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef]
- Cheng, A.L.; Kang, Y.K.; Chen, Z.; Tsao, C.J.; Qin, S.; Kim, J.S.; Luo, R.; Feng, J.; Ye, S.; Yang, T.S.; et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: A phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009, 10, 25–34. [Google Scholar] [CrossRef]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.W.; Han, G.; Jassem, J.; et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef]
- Dipasquale, A.; Marinello, A.; Santoro, A. A comparison of lenvatinib versus sorafenib in the first-line treatment of unresectable hepatocellular carcinoma: Selection criteria to guide physician’s choice in a new therapeutic scenario. J. Hepatocell. Carcinoma 2021, 8, 241–251. [Google Scholar] [CrossRef]
- Cheng, A.L.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Lim, H.Y.; Kudo, M.; Breder, V.; Merle, P.; et al. Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J. Hepatol. 2022, 76, 862–873. [Google Scholar] [CrossRef]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef] [PubMed]
- Abou-Alfa, G.K.; Lau, G.; Kudo, M.; Chan, S.L.; Kelley, R.K.; Furuse, J.; Sukeepaisarnjaroen, W.; Kang, Y.K.; Van Dao, T.; De Toni, E.N.; et al. Tremelimumab plus durvalumab in unresectable hepatocellular carcinoma. NEJM Evid. 2022, 1, EVIDoa2100070. [Google Scholar] [CrossRef] [PubMed]
- Ponvilawan, B.; Roth, M.T. Sequencing systemic therapy in hepatocellular carcinoma. Curr. Treat. Options Oncol. 2023, 24, 1580–1597. [Google Scholar] [CrossRef]
- Bruix, J.; Qin, S.; Merle, P.; Granito, A.; Huang, Y.H.; Bodoky, G.; Pracht, M.; Yokosuka, O.; Rosmorduc, O.; Breder, V.; et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 389, 56–66. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Meyer, T.; Cheng, A.L.; El-Khoueiry, A.B.; Rimassa, L.; Ryoo, B.Y.; Cicin, I.; Merle, P.; Chen, Y.; Park, J.W.; et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N. Engl. J. Med. 2018, 379, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.X.; Kang, Y.K.; Yen, C.J.; Finn, R.S.; Galle, P.R.; Llovet, J.M.; Assenat, E.; Brandi, G.; Pracht, M.; Lim, H.Y.; et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019, 20, 282–296. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Chen, Z.; Fang, W.; Ren, Z.; Xu, R.; Ryoo, B.Y.; Meng, Z.; Bai, Y.; Chen, X.; Liu, X.; et al. Pembrolizumab versus placebo as second-line therapy in patients from Asia with advanced hepatocellular carcinoma: A randomized, double-blind, phase III trial. J. Clin. Oncol. 2023, 41, 1434–1443. [Google Scholar] [CrossRef]
- Finn, R.S.; Ryoo, B.Y.; Merle, P.; Kudo, M.; Bouattour, M.; Lim, H.Y.; Breder, V.; Edeline, J.; Chao, Y.; Ogasawara, S.; et al. Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: A randomized, double-blind, phase III trial. J. Clin. Oncol. 2020, 38, 193–202. [Google Scholar] [CrossRef]
- Finn, R.S.; Merle, P.; Granito, A.; Huang, Y.H.; Bodoky, G.; Pracht, M.; Yokosuka, O.; Rosmorduc, O.; Gerolami, R.; Caparello, C.; et al. Outcomes of sequential treatment with sorafenib followed by regorafenib for HCC: Additional analyses from the phase III RESORCE trial. J. Hepatol. 2018, 69, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Yau, T.; Kang, Y.K.; Kim, T.Y.; El-Khoueiry, A.B.; Santoro, A.; Sangro, B.; Melero, I.; Kudo, M.; Hou, M.M.; Matilla, A.; et al. Efficacy and safety of nivolumab plus ipilimumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib: The CheckMate 040 randomized clinical trial. JAMA Oncol. 2020, 6, e204564. [Google Scholar] [CrossRef]
- Qin, S.; Cheng, Y.; Liang, J.; Shen, L.; Bai, Y.; Li, J.; Fan, J.; Liang, L.; Zhang, Y.; Wu, G.; et al. Efficacy and safety of the FOLFOX4 regimen versus doxorubicin in Chinese patients with advanced hepatocellular carcinoma: A subgroup analysis of the EACH study. Oncologist 2014, 19, 1169–1178. [Google Scholar] [CrossRef]
- Wonglhow, J.; Sunpaweravong, P.; Sathitruangsak, C.; Dechaphunkul, A. LABS score- a prognostic tool for FOLFOX4-treated advanced hepatocellular carcinoma and real-world efficacy: A single-center retrospective study. BMC Cancer 2024, 24, 281. [Google Scholar] [CrossRef]
- Wonglhow, J.; Sunpaweravong, P.; Sathitruangsak, C.; Dechaphunkul, A. The performance of a survival nomogram and albumin-bilirubin grade as prognostic tools in advanced hepatocellular carcinoma treated with FOLFOX4. J. Pers. Med. 2024, 14, 403. [Google Scholar] [CrossRef]
- Chonprasertsuk, S.; Vilaichone, R.K. Epidemiology and treatment of hepatocellular carcinoma in Thailand. Jpn. J. Clin. Oncol. 2017, 47, 294–297. [Google Scholar] [CrossRef][Green Version]
- Sara, A.; Ruff, S.M.; Noonan, A.M.; Pawlik, T.M. Real-world use of immunotherapy for hepatocellular carcinoma. Pragmat. Obs. Res. 2023, 14, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Lopez, A.; Gayoso-Rey, M.; Garcia-Beloso, N.; Romero-Ventosa, Y.; Robles-Torres, D.; Martinez-Reglero, C.; Pineiro-Corrales, G. Real-world evidence of sorafenib for the treatment of hepatocellular carcinoma: A single-center study. J. Cancer Res. Ther. 2023, 19, 1345–1349. [Google Scholar] [CrossRef]
- Li, D.; Gruber, S.B.; Iyer, S.; Gupta, S.; Tejani, M. Real-world clinical effectiveness of sorafenib among patients with unresectable hepatocellular carcinoma at two centers in the United States. World J. Gastrointest. Oncol. 2023, 15, 1796–1806. [Google Scholar] [CrossRef]
- Ghaziani, T.T.; Dhanasekaran, R. Recent progress in systemic therapy for hepatocellular cancer (HCC). Curr. Treat. Options Gastroenterol. 2021, 19, 351–368. [Google Scholar] [CrossRef] [PubMed]
- Novick, D.; Cho, J.M.; Colman, S.; Szende, A. Real-world treatment patterns and health-resource utilization in patients with hepatocellular carcinoma (HCC) following failure of sorafenib: A retrospective chart review of 127 patients in South Korea. Drugs Real World Outcomes 2022, 9, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Falette-Puisieux, M.; Nault, J.C.; Bouattour, M.; Lequoy, M.; Amaddeo, G.; Decaens, T.; Di Fiore, F.; Manfredi, S.; Merle, P.; Baron, A.; et al. Beyond atezolizumab plus bevacizumab in patients with advanced hepatocellular carcinoma: Overall efficacy and safety of tyrosine kinase inhibitors in a real-world setting. Ther. Adv. Med. Oncol. 2023, 15, 17588359231189425. [Google Scholar] [CrossRef]
- Köstek, O.; Demirel, A.; Hacıoğlu, M.B.; Tastekin, D.; Karabulut, S.; Gündogdu, A.; Sever, N.; Ayhan, M.; Çelebi, A.; Majidova, N.; et al. The prognostic factors in patients with advanced hepatocellular carcinoma: Impact of treatment sequencing. J. Chemother. 2024, 36, 613–621. [Google Scholar] [CrossRef]
- Leyh, C.; Ehmer, U.; Roessler, D.; Philipp, A.B.; Reiter, F.P.; Jeliazkova, P.; Jochheim, L.S.; Jeschke, M.; Hammig, J.; Ludwig, J.M.; et al. Sorafenib versus lenvatinib-based sequential systemic therapy for advanced hepatocellular carcinoma: A real-world analysis. Cancers 2022, 14, 1975. [Google Scholar] [CrossRef]
- Lennon, H.; Sperrin, M.; Badrick, E.; Renehan, A.G. The obesity paradox in cancer: A review. Curr. Oncol. Rep. 2016, 18, 56. [Google Scholar] [CrossRef] [PubMed]
- Petrelli, F.; Cortellini, A.; Indini, A.; Tomasello, G.; Ghidini, M.; Nigro, O.; Salati, M.; Dottorini, L.; Iaculli, A.; Varricchio, A.; et al. Association of obesity with survival outcomes in patients with cancer: A systematic review and meta-analysis. JAMA Netw. Open 2021, 4, e213520. [Google Scholar] [CrossRef] [PubMed]
- Himmelsbach, V.; Pinter, M.; Scheiner, B.; Venerito, M.; Sinner, F.; Zimpel, C.; Marquardt, J.U.; Trojan, J.; Waidmann, O.; Finkelmeier, F. Efficacy and safety of atezolizumab and bevacizumab in the real-world treatment of advanced hepatocellular carcinoma: Experience from four tertiary centers. Cancers 2022, 14, 1722. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.K.H.; Hui, R.W.H.; Mak, L.Y.; Fung, J.; Seto, W.K.; Yuen, M.F. Hepatocellular carcinoma: Advances in systemic therapies. F1000Research 2024, 13, 104. [Google Scholar] [CrossRef]
TKI (n = 230) | CMT (n = 77) | IO/Targeted Therapy (n = 12) | Dual IO (n = 6) | IO-Monotherapy (n = 5) | Total (n = 330) | p-Value | |
---|---|---|---|---|---|---|---|
First-line regimen, n (%) | <0.001 | ||||||
Sorafenib | 162 (70.4) | - | - | - | - | 162 (49.1) | |
Lenvatinib | 68 (29.6) | - | - | - | - | 68 (20.6) | |
FOLFOX | - | 66 (85.7) | - | - | - | 66 (20) | |
Doxorubicin | - | 11 (14.3) | - | - | - | 11 (3.3) | |
Atezolizumab/bevacizumab | - | - | 12 (100) | - | - | 12 (3.6) | |
Durvalumab/tremelimumab | - | - | - | 6 (100) | - | 6 (1.8) | |
Nivolumab | - | - | - | - | 5 (100) | 5 (1.5) | |
Age, years (SD) | 64.6 (10.2) | 56.4 (9.8) | 63.6 (11.1) | 61.1 (8.1) | 64.6 (13.3) | 62.6 (10.7) | <0.001 |
<65 years, n (%) | 124 (53.9) | 64 (83.1) | 6 (50.0) | 4 (66.7) | 2 (40.0) | 200 (60.6) | |
≥65 years, n (%) | 106 (46.1) | 13 (16.9) | 6 (50.0) | 2 (33.3) | 3 (60.0) | 130 (39.4) | |
Sex, n (%) | 0.6 | ||||||
Female | 52 (22.6) | 13 (16.9) | 2 (16.7) | 1 (16.7) | 2 (40) | 70 (21.2) | |
Male | 178 (77.4) | 64 (83.1) | 10 (83.3) | 5 (83.3) | 3 (60) | 260 (78.8) | |
BMI, n (%) | 0.522 | ||||||
<18.5 kg/m2 | 30 (13) | 11 (14.3) | 0 (0) | 0 (0) | 0 (0) | 41 (12.4) | |
18.5–22.9 kg/m2 | 88 (38.3) | 35 (45.5) | 3 (25) | 2 (33.3) | 3 (60) | 131 (39.7) | |
≥23 kg/m2 | 112 (48.7) | 31 (40.3) | 9 (75) | 4 (66.7) | 2 (40) | 158 (47.9) | |
ECOG PS, n (%) | 0.081 | ||||||
0–1 | 216 (93.9) | 72 (93.5) | 12 (100) | 5 (83.3) | 3 (60) | 308 (93.3) | |
2 | 14 (6.1) | 5 (6.5) | 0 (0) | 1 (16.7) | 2 (40) | 22 (6.7) | |
Cirrhosis, n (%) | 220 (95.7) | 72 (93.5) | 11 (91.7) | 5 (83.3) | 5 (100) | 313 (94.8) | 0.368 |
CTP class, n (%) | 0.004 | ||||||
A | 193 (83.9) | 53 (68.8) | 11 (91.7) | 4 (66.7) | 2 (40) | 263 (79.7) | |
B | 37 (16.1) | 24 (31.2) | 1 (8.3) | 2 (33.3) | 3 (60) | 67 (20.3) | |
Etiology of cirrhosis, n (%) | 0.012 | ||||||
Alcoholic | 25 (10.9) | 6 (7.8) | 1 (8.3) | 1 (16.7) | 1 (20) | 34 (10.3) | |
HBV | 117 (50.9) | 52 (67.5) | 9 (75) | 1 (16.7) | 1 (20) | 180 (54.5) | |
HCV | 42 (18.3) | 11 (14.3) | 0 (0) | 2 (33.3) | 2 (40) | 57 (17.3) | |
NAFLD | 36 (15.7) | 3 (3.9) | 1 (8.3) | 1 (16.7) | 1 (20) | 42 (12.7) | |
No cirrhosis | 10 (4.3) | 5 (6.5) | 1 (8.3) | 1 (16.7) | 0 (0) | 17 (5.2) | |
Number of liver masses, n (%) | 0.061 | ||||||
≤5 | 100 (43.4) | 38 (49.3) | 3 (25.0) | 4 (66.6) | 3 (60.0) | 148 (44.9) | |
>5 | 94 (40.9) | 32 (41.6) | 8 (66.7) | 1 (16.7) | 0 (0) | 135 (40.9) | |
Infiltrative mass | 36 (15.7) | 7 (9.1) | 1 (8.3) | 1 (16.7) | 2 (40) | 47 (14.2) | |
Largest tumor diameter, cm (IQR) | 6.7 (3.7–11.9) | 10 (4.4–14.2) | 7.6 (3.3–14.3) | 7.6 (7.1–15.1) | 4.9 (3.6–11.8) | 7.2 (3.8–12.5) | 0.198 |
BCLC staging, n (%) | 0.414 | ||||||
B | 42 (18.3) | 9 (11.7) | 3 (25) | 0 (0) | 1 (20) | 55 (16.7) | |
C | 188 (81.7) | 68 (88.3) | 9 (75) | 6 (100) | 4 (80) | 275 (83.3) | |
Portal vein involvement, n (%) | 126 (54.8) | 45 (58.4) | 7 (58.3) | 3 (50) | 4 (80) | 185 (56.1) | 0.836 |
Ascites, n (%) | 18 (7.8) | 7 (9.1) | 1 (8.3) | 2 (33.3) | 3 (60) | 31 (9.4) | 0.005 |
Extrahepatic metastasis, n (%) * | 108 (47) | 36 (46.8) | 4 (33.3) | 4 (66.7) | 0 (0) | 152 (46.1) | 0.201 |
Lung metastasis | 47 (20.4) | 15 (19.5) | 2 (16.7) | 2 (33.3) | 0 (0) | 66 (20) | 0.81 |
Peritoneal metastasis | 13 (5.7) | 11 (14.3) | 1 (8.3) | 1 (16.7) | 0 (0) | 26 (7.9) | 0.092 |
Adrenal metastasis | 14 (6.1) | 2 (2.6) | 0 (0) | 0 (0) | 0 (0) | 16 (4.8) | 0.729 |
Bone metastasis | 18 (7.8) | 2 (2.6) | 1 (8.3) | 0 (0) | 0 (0) | 21 (6.4) | 0.436 |
Other metastases | 3 (1.3) | 1 (1.3) | 0 (0) | 1 (16.7) | 0 (0) | 5 (1.5) | - |
Number of organ metastasis, n (%) | 0.487 | ||||||
1 | 87 (37.8) | 29 (37.7) | 3 (25) | 2 (33.3) | 0 (0) | 121 (36.7) | |
≥2 | 143 (62.2) | 48 (62.3) | 9 (75) | 4 (66.7) | 5 (100) | 209 (63.3) | |
Laboratory test values | |||||||
TB, mg/dL (IQR) | 0.9 (0.6–1.4) | 1.2 (0.7–1.9) | 0.9 (0.7–1.1) | 1.3 (0.9–1.9) | 1.3 (0.7–1.4) | 1 (0.6–1.5) | 0.078 |
Albumin, g/dL (SD) | 3.6 (0.5) | 3.4 (0.5) | 3.5 (0.6) | 3.2 (0.3) | 3.4 (0.7) | 3.5 (0.5) | 0.07 |
AFP, ng/dL (IQR) | 510 (24.7–12,043) | 4222 (83.3–29,648) | 17 (11.1–11,762) | 11,085.3 (4548.1–22,298) | 498.6 (13.4–34,127) | 725 (27.7–1878) | 0.094 |
Previous treatment, n (%) * | |||||||
Resection | 28 (12.2) | 8 (10.4) | 1 (8.3) | 0 (0) | 0 (0) | 37 (11.2) | 0.988 |
Ablative treatment | 41 (17.8) | 7 (9.1) | 2 (16.7) | 2 (33.3) | 1 (20) | 53 (16.1) | 0.188 |
TACE | 104 (45.2) | 28 (36.4) | 4 (33.3) | 3 (50) | 3 (60) | 142 (43) | 0.54 |
First-Line Treatment | Second-Line Treatment | n | OS | HR (95% CI) | p Value |
---|---|---|---|---|---|
First-line TKI cohort | |||||
TKI | - | 168 | 4.67 | Ref | |
TKI | TKI | 13 | 33.07 | 0.32 (0.17–0.59) | <0.001 |
TKI | IO | 30 | 18.53 | 0.41 (0.26–0.63) | <0.001 |
TKI | CMT | 18 | 13.08 | 0.55 (0.32–0.94) | 0.028 |
TKI | IO/targeted therapy | 1 | NA * | NA | NA |
First-line CMT cohort | |||||
CMT | - | 63 | 3.48 | Ref | |
CMT | TKI | 3 | 12.32 | 0.38 (0.09–1.57) | 0.181 |
CMT | IO | 1 | 5.82 | 1.07 (0.15–7.77) | 0.950 |
CMT | CMT | 10 | 15.56 | 0.48 (0.24–0.94) | 0.034 |
First-line IO/targeted therapy cohort | |||||
IO/targeted therapy | - | 7 | 3.48 | Ref | |
IO/targeted therapy | TKI | 2 | 11.63 | 0.59 (0.07–5.21) | 0.636 |
IO/targeted therapy | IO | 2 | 5.22 | 0.42 (0.05–3.49) | 0.420 |
IO/targeted therapy | CMT | 1 | 10.97 | 1.22 (0.13–11.20) | 0.858 |
First-line dual IO cohort | |||||
Dual IO | - | 1 | 4.73 | Ref | |
Dual IO | TKI | 2 | 16.64 | 0.25 (0.01–5.90) | 0.386 |
Dual IO | CMT | 3 | 10.71 | 0.21 (0.01–3.90) | 0.298 |
First-line IO-monotherapy cohort | |||||
IO | - | 2 | 0.62 | Ref | |
IO | IO/targeted therapy | 1 | NA ** | NA | NA |
IO | TKI | 2 | 22.82 | 3.66−10 (0–inf) | 0.99 |
Factors | Univariate Analysis Results | Multivariate Analysis Results | ||
---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
First-line treatment | ||||
TKI | Ref | Ref | ||
IO/targeted therapy | 0.81 (0.41–1.58) | 0.534 | 1.08 (0.54–2.16) | 0.826 |
Dual IO | 0.86 (0.36–2.10) | 0.749 | 0.58 (0.21–1.62) | 0.298 |
IO-monotherapy | 0.68 (0.25–1.83) | 0.443 | 0.56 (0.19–1.61) | 0.282 |
CMT | 1.43 (1.09–1.89) | 0.010 | 1.07 (0.80–1.42) | 0.665 |
Male sex | 1.20 (0.89–1.6) | 0.232 | - | - |
Age ≥ 65 years | 0.95 (0.75–1.21) | 0.658 | - | - |
BMI | ||||
<18.5 kg/m2 | 1.33 (0.92–1.92) | 0.129 | 1.10 (0.74–1.65) | 0.624 |
18.5–22.9 kg/m2 | Ref | Ref | ||
≥23.0 kg/m2 | 0.80 (0.62–1.02) | 0.077 | 0.73 (0.56–0.94) | 0.017 |
ECOG PS | ||||
0–1 | Ref | |||
2 | 1.94 (1.22–3.10) | 0.006 | 1.76 (1.06–2.91) | 0.028 |
Cirrhosis | ||||
HBV | 2.11 (1.11–4.00) | 0.022 | 2.08 (0.98–4.44) | 0.058 |
HCV | 1.50 (0.75–2.98) | 0.248 | 1.70 (0.82–3.54) | 0.153 |
NAFLD | 2.09 (1.03–4.23) | 0.040 | 1.87 (0.89–3.94) | 0.101 |
Alcoholic | 2.54 (1.24–5.17) | 0.011 | 2.08 (0.98–4.44) | 0.058 |
None | Ref | Ref | ||
Largest tumor diameter | ||||
<5 cm | 0.53 (0.40–0.68) | <0.001 | 0.78 (0.58–1.03) | 0.078 |
≥5 cm | Ref | Ref | ||
Extrahepatic metastasis | 1.02 (0.81–1.29) | 0.847 | - | - |
PVTT | 1.91 (1.5–2.43) | <0.001 | 1.47 (1.13–1.92) | 0.005 |
Ascites | 2.94 (1.98–4.35) | <0.001 | 2.20 (1.41–3.43) | <0.001 |
Total bilirubin ≥ 2 mg/dL | 2.87 (2.05–4.02) | <0.001 | 2.56 (1.77–3.71) | <0.001 |
Albumin ≥ 3.5 g/dL | 0.54 (0.42–0.69) | <0.001 | 0.69 (0.53–0.89) | 0.005 |
AFP ≥ 200 ng/dL | 1.90 (1.41–2.30) | <0.001 | 1.73 (1.32–2.27) | <0.001 |
Number of lines of treatment | ||||
1 | Ref | |||
2 | 0.48 (0.35–0.66) | <0.001 | 0.51 (0.36–0.72) | <0.001 |
3 | 0.36 (0.21–0.62) | <0.001 | 0.46 (0.27–0.80) | 0.005 |
4 | 0.20 (0.09–0.47) | <0.001 | 0.27 (0.12–0.65) | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wonglhow, J.; Sathitruangsak, C.; Sunpaweravong, P.; Wetwittayakhlang, P.; Dechaphunkul, A. Real-World Systemic Treatment Patterns, Survival Outcomes, and Prognostic Factors in Advanced Hepatocellular Carcinoma: A 15-Year Experience from a Low-Resource Setting. Cancers 2025, 17, 2729. https://doi.org/10.3390/cancers17172729
Wonglhow J, Sathitruangsak C, Sunpaweravong P, Wetwittayakhlang P, Dechaphunkul A. Real-World Systemic Treatment Patterns, Survival Outcomes, and Prognostic Factors in Advanced Hepatocellular Carcinoma: A 15-Year Experience from a Low-Resource Setting. Cancers. 2025; 17(17):2729. https://doi.org/10.3390/cancers17172729
Chicago/Turabian StyleWonglhow, Jirapat, Chirawadee Sathitruangsak, Patrapim Sunpaweravong, Panu Wetwittayakhlang, and Arunee Dechaphunkul. 2025. "Real-World Systemic Treatment Patterns, Survival Outcomes, and Prognostic Factors in Advanced Hepatocellular Carcinoma: A 15-Year Experience from a Low-Resource Setting" Cancers 17, no. 17: 2729. https://doi.org/10.3390/cancers17172729
APA StyleWonglhow, J., Sathitruangsak, C., Sunpaweravong, P., Wetwittayakhlang, P., & Dechaphunkul, A. (2025). Real-World Systemic Treatment Patterns, Survival Outcomes, and Prognostic Factors in Advanced Hepatocellular Carcinoma: A 15-Year Experience from a Low-Resource Setting. Cancers, 17(17), 2729. https://doi.org/10.3390/cancers17172729