Ribosome Biogenesis Underpins Tumor Progression: A Comprehensive Signature for Survival and Immunotherapy Response Prediction
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection and Preprocessing
- GSE202203 (training cohort): Expression data restricted to the 515 RiBi genes were acquired from the Gene Expression Omnibus (GEO).
- The Cancer Genome Atlas (TCGA): Processed gene expression and matched clinical outcomes for pan-cancer analyses were accessed via the University of California, Santa Cruz Xena Browser [17].
2.2. OncoRibo-68 Score Construction via LASSO Regression
2.3. Survival Analyses
- Median cut-off: Patients with scores above the median were assigned to the High group, and those below the median to the Low group.
- Quartile-based cut-offs: Patients in the top quartile vs. bottom quartile of the RiBi scores distribution.
2.4. Statistical Analyses
2.5. Immunotherapy Response and TIDE Analysis
2.6. Kaplan–Meier Plotter (Immunotherapy Module)
2.7. Immune and Stemness Analyses
2.8. Software and Code Availability
3. Results
3.1. Comprehensive Profiling of RiBi-Related Genes Reveals Broad Prognostic Value
3.1.1. PanRibo-515 Score Distribution and Prognostic Impact in TCGA
3.1.2. Functional Enrichment of Genes in PanRibo-515 Signature
3.1.3. PanRibo-515 Score Stratifies Survival Endpoints Across Multiple Tumor Types
3.2. Elevated PanRibo-515 Score Is Linked to Aggressive Phenotypes and Immune Modulation in LIHC, KIRC, and LUAD
3.2.1. Correlation of PanRibo-515 Score with Tumor Purity and Stemness
3.2.2. Associations with Aneuploidy, Proliferation, and the Immune Microenvironment
3.3. Development and Validation of the OncoRibo-68 Score in Breast Cancer
3.3.1. Prognostic Significance of OncoRibo-68 Score in GSE202203
3.3.2. Independent Validation in TCGA BRCA
3.3.3. Functional Insights into the 68-Gene Signature
3.4. Predictive Potential of OncoRibo-68 Gene Set in Immunotherapy-Treated Patients
3.4.1. Clinical Outcomes in Patients Receiving Anti–PD-1 or Anti–PD-L1
3.4.2. TIDE Analysis Across Multiple Immunotherapy Cohorts
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FDR | False discovery rate |
GEO | Gene Expression Omnibus |
HER2 | Human epidermal growth factor receptor 2 |
HR | Hazard ratio |
ICI | Immune checkpoint inhibitor |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
KIRC | Kidney renal clear cell carcinoma |
KM | Kaplan–Meier |
LASSO | Least absolute shrinkage and selection operator |
LIHC | Liver hepatocellular carcinoma |
LUAD | Lung adenocarcinoma |
mTOR | mammalian target of rapamycin |
MSI | Microsatellite instability |
OMIM | Online Mendelian Inheritance in Man |
OS | Overall survival |
TP53 | Tumor protein p53 |
PD-1 | Programmed cell death protein 1 |
PD-L1 | Programmed cell death-ligand 1 |
PPI | Protein–protein interaction |
RiBi | RiBi |
R2 | Coefficient of determination |
RNAss | RNA expression–based stemness |
TCGA | The Cancer Genome Atlas |
T-cell | T lymphocyte |
TIDE | Tumor Immune Dysfunction and Exclusion |
Xena | UCSC Xena browser |
References
- Elhamamsy, A.R.; Metge, B.J.; Alsheikh, H.A.; Shevde, L.A.; Samant, R.S. Ribosome Biogenesis: A Central Player in Cancer Metastasis and Therapeutic Resistance. Cancer Res. 2022, 82, 2344–2353. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, J.; Thomas, G.; Volarevic, S. Ribosome biogenesis in cancer: New players and therapeutic avenues. Nat. Rev. Cancer 2018, 18, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Jiao, L.; Liu, Y.; Yu, X.Y.; Pan, X.; Zhang, Y.; Tu, J.; Song, Y.H.; Li, Y. Ribosome biogenesis in disease: New players and therapeutic targets. Signal Transduct. Target. Ther. 2023, 8, 15. [Google Scholar] [CrossRef]
- Fuentes, P.; Pelletier, J.; Gentilella, A. Decoding ribosome complexity: Role of ribosomal proteins in cancer and disease. NAR Cancer 2024, 6, zcae032. [Google Scholar] [CrossRef] [PubMed]
- Dorner, K.; Ruggeri, C.; Zemp, I.; Kutay, U. Ribosome biogenesis factors-from names to functions. EMBO J. 2023, 42, e112699. [Google Scholar] [CrossRef]
- Cui, L.; Zheng, J.; Lin, Y.; Lin, P.; Lu, Y.; Zheng, Y.; Guo, B.; Zhao, X. Decoding the ribosome’s hidden language: rRNA modifications as key players in cancer dynamics and targeted therapies. Clin. Transl. Med. 2024, 14, e1705. [Google Scholar] [CrossRef]
- Hwang, S.P.; Denicourt, C. The impact of ribosome biogenesis in cancer: From proliferation to metastasis. NAR Cancer 2024, 6, zcae017. [Google Scholar] [CrossRef]
- Jia, X.; He, X.; Huang, C.; Li, J.; Dong, Z.; Liu, K. Protein translation: Biological processes and therapeutic strategies for human diseases. Signal Transduct. Target. Ther. 2024, 9, 44. [Google Scholar] [CrossRef]
- Holmberg Olausson, K.; Nister, M.; Lindstrom, M.S. p53 -Dependent and -Independent Nucleolar Stress Responses. Cells 2012, 1, 774–798. [Google Scholar] [CrossRef]
- Bastide, A.; David, A. The ribosome, (slow) beating heart of cancer (stem) cell. Oncogenesis 2018, 7, 34. [Google Scholar] [CrossRef]
- Ni, C.; Buszczak, M. Ribosome biogenesis and function in development and disease. Development 2023, 150, dev201187. [Google Scholar] [CrossRef] [PubMed]
- Gene Ontology, C.; Aleksander, S.A.; Balhoff, J.; Carbon, S.; Cherry, J.M.; Drabkin, H.J.; Ebert, D.; Feuermann, M.; Gaudet, P.; Harris, N.L.; et al. The Gene Ontology knowledgebase in 2023. Genetics 2023, 224, iyad031. [Google Scholar] [CrossRef] [PubMed]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinform. 2016, 54, 1.30.1–1.30.33. [Google Scholar] [CrossRef]
- UniProt, C. UniProt: The Universal Protein Knowledgebase in 2025. Nucleic Acids Res. 2025, 53, D609–D617. [Google Scholar] [CrossRef]
- Amberger, J.S.; Bocchini, C.A.; Scott, A.F.; Hamosh, A. OMIM.org: Leveraging knowledge across phenotype-gene relationships. Nucleic Acids Res. 2019, 47, D1038–D1043. [Google Scholar] [CrossRef]
- Mi, H.; Ebert, D.; Muruganujan, A.; Mills, C.; Albou, L.P.; Mushayamaha, T.; Thomas, P.D. PANTHER version 16: A revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Res. 2021, 49, D394–D403. [Google Scholar] [CrossRef]
- Goldman, M.J.; Craft, B.; Hastie, M.; Repecka, K.; McDade, F.; Kamath, A.; Banerjee, A.; Luo, Y.; Rogers, D.; Brooks, A.N.; et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol. 2020, 38, 675–678. [Google Scholar] [CrossRef]
- Fu, J.; Li, K.; Zhang, W.; Wan, C.; Zhang, J.; Jiang, P.; Liu, X.S. Large-scale public data reuse to model immunotherapy response and resistance. Genome Med. 2020, 12, 21. [Google Scholar] [CrossRef]
- Kovacs, S.A.; Fekete, J.T.; Gyorffy, B. Predictive biomarkers of immunotherapy response with pharmacological applications in solid tumors. Acta Pharmacol. Sin. 2023, 44, 1879–1889. [Google Scholar] [CrossRef]
- Yoshihara, K.; Shahmoradgoli, M.; Martinez, E.; Vegesna, R.; Kim, H.; Torres-Garcia, W.; Trevino, V.; Shen, H.; Laird, P.W.; Levine, D.A.; et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 2013, 4, 2612. [Google Scholar] [CrossRef]
- Zisi, A.; Bartek, J.; Lindstrom, M.S. Targeting Ribosome Biogenesis in Cancer: Lessons Learned and Way Forward. Cancers 2022, 14, 2126. [Google Scholar] [CrossRef]
- Weeks, S.E.; Metge, B.J.; Samant, R.S. The nucleolus: A central response hub for the stressors that drive cancer progression. Cell Mol. Life Sci. 2019, 76, 4511–4524. [Google Scholar] [CrossRef]
- D’Andrea, G.; Deroma, G.; Miluzio, A.; Biffo, S. The Paradox of Ribosomal Insufficiency Coupled with Increased Cancer: Shifting the Perspective from the Cancer Cell to the Microenvironment. Cancers 2024, 16, 2392. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, S.; Hu, W.; Liu, X.; Xu, L.; Tong, B.; Zhang, T.; Xue, Z.; Guo, Y.; Zhao, J.; et al. T cell proliferation requires ribosomal maturation in nucleolar condensates dependent on DCAF13. J. Cell Biol. 2023, 222, e202201096. [Google Scholar] [CrossRef]
- Ramalho, S.; Dopler, A.; Faller, W.J. Ribosome specialization in cancer: A spotlight on ribosomal proteins. NAR Cancer 2024, 6, zcae029. [Google Scholar] [CrossRef]
- Dopler, A.; Alkan, F.; Malka, Y.; van der Kammen, R.; Hoefakker, K.; Taranto, D.; Kocabay, N.; Mimpen, I.; Ramirez, C.; Malzer, E.; et al. P-stalk ribosomes act as master regulators of cytokine-mediated processes. Cell 2024, 187, 6981–6993.e23. [Google Scholar] [CrossRef]
- Sanchez, C.G.; Teixeira, F.K.; Czech, B.; Preall, J.B.; Zamparini, A.L.; Seifert, J.R.; Malone, C.D.; Hannon, G.J.; Lehmann, R. Regulation of Ribosome Biogenesis and Protein Synthesis Controls Germline Stem Cell Differentiation. Cell Stem Cell 2016, 18, 276–290. [Google Scholar] [CrossRef]
- Xue, M.; Dong, L.; Zhang, H.; Li, Y.; Qiu, K.; Zhao, Z.; Gao, M.; Han, L.; Chan, A.K.N.; Li, W.; et al. METTL16 promotes liver cancer stem cell self-renewal via controlling ribosome biogenesis and mRNA translation. J. Hematol. Oncol. 2024, 17, 7. [Google Scholar] [CrossRef]
- Zhou, F.; Aroua, N.; Liu, Y.; Rohde, C.; Cheng, J.; Wirth, A.K.; Fijalkowska, D.; Gollner, S.; Lotze, M.; Yun, H.; et al. A Dynamic rRNA Ribomethylome Drives Stemness in Acute Myeloid Leukemia. Cancer Discov. 2023, 13, 332–347. [Google Scholar] [CrossRef]
- Marcel, V.; Kielbassa, J.; Marchand, V.; Natchiar, K.S.; Paraqindes, H.; Nguyen Van Long, F.; Ayadi, L.; Bourguignon-Igel, V.; Lo Monaco, P.; Monchiet, D.; et al. Ribosomal RNA 2’O-methylation as a novel layer of inter-tumour heterogeneity in breast cancer. NAR Cancer 2020, 2, zcaa036. [Google Scholar] [CrossRef]
- Barozzi, C.; Zacchini, F.; Corradini, A.G.; Morara, M.; Serra, M.; De Sanctis, V.; Bertorelli, R.; Dassi, E.; Montanaro, L. Alterations of ribosomal RNA pseudouridylation in human breast cancer. NAR Cancer 2023, 5, zcad026. [Google Scholar] [CrossRef] [PubMed]
- Kennecke, H.; Yerushalmi, R.; Woods, R.; Cheang, M.C.; Voduc, D.; Speers, C.H.; Nielsen, T.O.; Gelmon, K. Metastatic behavior of breast cancer subtypes. J. Clin. Oncol. 2010, 28, 3271–3277. [Google Scholar] [CrossRef]
- Ginsburg, O.; Yip, C.H.; Brooks, A.; Cabanes, A.; Caleffi, M.; Dunstan Yataco, J.A.; Gyawali, B.; McCormack, V.; McLaughlin de Anderson, M.; Mehrotra, R.; et al. Breast cancer early detection: A phased approach to implementation. Cancer 2020, 126 (Suppl. S10), 2379–2393. [Google Scholar] [CrossRef] [PubMed]
- Metge, B.J.; Williams, L.; Swain, C.A.; Hinshaw, D.C.; Elhamamsy, A.R.; Chen, D.; Samant, R.S.; Shevde, L.A. Ribosomal RNA Biosynthesis Functionally Programs Tumor-Associated Macrophages to Support Breast Cancer Progression. Cancer Res. 2025, 85, 1459–1478. [Google Scholar] [CrossRef]
- Bianco, C.; Mohr, I. Ribosome biogenesis restricts innate immune responses to virus infection and DNA. Elife 2019, 8, e49551. [Google Scholar] [CrossRef]
- Almeida, L.; Dhillon-LaBrooy, A.; Castro, C.N.; Adossa, N.; Carriche, G.M.; Guderian, M.; Lippens, S.; Dennerlein, S.; Hesse, C.; Lambrecht, B.N.; et al. Ribosome-Targeting Antibiotics Impair T Cell Effector Function and Ameliorate Autoimmunity by Blocking Mitochondrial Protein Synthesis. Immunity 2021, 54, 68–83.e6. [Google Scholar] [CrossRef]
- Chung, S.Y.; Chang, Y.C.; Hsu, D.S.; Hung, Y.C.; Lu, M.L.; Hung, Y.P.; Chiang, N.J.; Yeh, C.N.; Hsiao, M.; Soong, J.; et al. A G-quadruplex stabilizer, CX-5461 combined with two immune checkpoint inhibitors enhances in vivo therapeutic efficacy by increasing PD-L1 expression in colorectal cancer. Neoplasia 2023, 35, 100856. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elhamamsy, A.R.; Aly, S.M.; Samant, R.S.; Shevde, L.A. Ribosome Biogenesis Underpins Tumor Progression: A Comprehensive Signature for Survival and Immunotherapy Response Prediction. Cancers 2025, 17, 2576. https://doi.org/10.3390/cancers17152576
Elhamamsy AR, Aly SM, Samant RS, Shevde LA. Ribosome Biogenesis Underpins Tumor Progression: A Comprehensive Signature for Survival and Immunotherapy Response Prediction. Cancers. 2025; 17(15):2576. https://doi.org/10.3390/cancers17152576
Chicago/Turabian StyleElhamamsy, Amr R., Salma M. Aly, Rajeev S. Samant, and Lalita A. Shevde. 2025. "Ribosome Biogenesis Underpins Tumor Progression: A Comprehensive Signature for Survival and Immunotherapy Response Prediction" Cancers 17, no. 15: 2576. https://doi.org/10.3390/cancers17152576
APA StyleElhamamsy, A. R., Aly, S. M., Samant, R. S., & Shevde, L. A. (2025). Ribosome Biogenesis Underpins Tumor Progression: A Comprehensive Signature for Survival and Immunotherapy Response Prediction. Cancers, 17(15), 2576. https://doi.org/10.3390/cancers17152576