Acute Myeloid Leukemia: Updates on Diagnosis, Treatment and Management
1. Introduction
2. TP53 AML
2.1. Biological Mechanisms Beyond This Special Entity
2.2. Clinical Outcomes and Prognostic Implications
2.3. Therapies of TP53 Mutant AML
3. KMT2A-rAML
4. Secondary AML (sAML)
Acknowledgments
Conflicts of Interest
References
- Pollyea, D.A.; Altman, J.K.; Assi, R.; Bixby, D.; Fathi, A.T.; Foran, J.M.; Gojo, I.; Hall, A.C.; Jonas, B.A.; Kishtagari, A.; et al. Acute Myeloid Leukemia, Version 3.2023, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2023, 21, 503–513. [Google Scholar] [CrossRef]
- Gönen, M.; Figueroa, M.E.; Fernandez, H.; Sun, A.; Racevskis, J.; Van Vlierberghe, P.; Dolgalev, I.; Thomas, S.; Aminova, O.; Patel, J.P.; et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N. Engl. J. Med. 2012, 366, 1079–1089. [Google Scholar] [CrossRef]
- Papaemmanuil, E.; Gerstung, M.; Bullinger, L.; Gaidzik, V.I.; Paschka, P.; Roberts, N.D.; Potter, N.E.; Heuser, M.; Thol, F.; Bolli, N.; et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N. Engl. J. Med. 2016, 374, 2209–2221. [Google Scholar] [CrossRef]
- Dohner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022, 140, 1345–1377. [Google Scholar] [CrossRef] [PubMed]
- Arber, D.A.; Orazi, A.; Hasserjian, R.P.; Borowitz, M.J.; Calvo, K.R.; Kvasnicka, H.-M.; Wang, S.A.; Bagg, A.; Barbui, T.; Branford, S.; et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: Integrating morphologic, clinical, and genomic data. Blood 2022, 140, 1200–1228. [Google Scholar] [CrossRef] [PubMed]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.D.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; DiNardo, C.D.; Appelbaum, F.R.; Craddock, C.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; Larson, R.A.; et al. Genetic risk classification for adults with AML receiving less-intensive therapies: The 2024 ELN Recommendations. Blood 2024, 144, 2169–2173. [Google Scholar] [CrossRef]
- Lanza, F.; Bazarbachi, A. Targeted Therapies and Druggable Genetic Anomalies in Acute Myeloid Leukemia: From Diagnostic Tools to Therapeutic Interventions. Cancers 2021, 13, 4698. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Lachowiez, C.A.; Takahashi, K.; Loghavi, S.; Xiao, L.; Kadia, T.; Daver, N.; Adeoti, M.; Short, N.J.; Sasaki, K.; et al. Venetoclax Combined With FLAG-IDA Induction and Consolidation in Newly Diagnosed and Relapsed or Refractory Acute Myeloid Leukemia. J. Clin. Oncol. 2021, 39, 2768–2778. [Google Scholar] [CrossRef]
- Todisco, E.; Papayannidis, C.; Fracchiolla, N.; Petracci, E.; Zingaretti, C.; Vetro, C.; Martelli, M.P.; Zappasodi, P.; Di Renzo, N.; Gallo, S.; et al. AVALON: The Italian cohort study on real-life efficacy of hypomethylating agents plus venetoclax in newly diagnosed or relapsed/refractory patients with acute myeloid leukemia. Cancer 2023, 129, 992–1004. [Google Scholar] [CrossRef]
- Marconi, G.; Petracci, E.; Lanzarone, G.; Vetro, C.; Martelli, M.P.; Papayannidis, C.; Audisio, E.; Minetto, P.; Riva, C.; Guolo, F.; et al. Impact of Pre-Treatment Comorbidity Burden on Survival in Patients Receiving Venetoclax Plus Hypomethylating Agents. Am. J. Hematol. 2025, 100, 708–711. [Google Scholar] [CrossRef]
- Willekens, C.; Bazinet, A.; Chraibi, S.; Bataller, A.; Decroocq, J.; Arani, N.; Carpentier, B.; Rausch, C.; Lebon, D.; Maiti, A.; et al. Reduced venetoclax exposure to 7 days vs standard exposure with hypomethylating agents in newly diagnosed AML patients. Blood Cancer J. 2025, 15, 68. [Google Scholar] [CrossRef] [PubMed]
- Ikoma, Y.; Nakamura, N.; Kaneda, Y.; Takamori, H.; Seki, T.; Hiramoto, N.; Kitagawa, J.; Kanda, J.; Fujita, K.; Morishita, T.; et al. Impact of myelodysplasia-related gene mutations and residual mutations at remission in venetoclax/azacitidine for AML. Leukemia 2025, 39, 1362–1367. [Google Scholar] [CrossRef] [PubMed]
- Chou, W.C.; Lei, W.C.; Ko, B.S.; Hou, H.A.; Chen, C.Y.; Tang, J.L.; Yao, M.; Tsay, W.; Wu, S.J.; Huang, S.Y.; et al. The prognostic impact and stability of Isocitrate dehydrogenase 2 mutation in adult patients with acute myeloid leukemia. Leukemia 2011, 25, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Stein, E.M.; DiNardo, C.D.; Pollyea, D.A.; Fathi, A.T.; Roboz, G.J.; Altman, J.K.; Stone, R.M.; DeAngelo, D.J.; Levine, R.L.; Flinn, I.W.; et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood 2017, 130, 722–731. [Google Scholar] [CrossRef]
- de Botton, S.; Montesinos, P.; Schuh, A.C.; Papayannidis, C.; Vyas, P.; Wei, A.H.; Ommen, H.; Semochkin, S.; Kim, H.J.; Larson, R.A.; et al. Enasidenib vs conventional care in older patients with late-stage mutant-IDH2 relapsed/refractory AML: A randomized phase 3 trial. Blood 2023, 141, 156–167. [Google Scholar] [CrossRef]
- Venditti, A.; Piciocchi, A.; Candoni, A.; Arena, V.; Palmieri, R.; Filì, C.; Carella, A.M.; Calafiore, V.; Cairoli, R.; de Fabritiis, P.; et al. Risk-adapted MRD-directed therapy for young acute myeloid leukemia adults: 6-year update of the GIMEMA AML1310 trial. Blood Adv. 2024, 8, 4410–4413. [Google Scholar] [CrossRef]
- Gottardi, M.; Simonetti, G.; Sperotto, A.; Nappi, D.; Ghelli Luserna di Rorà, A.; Padella, A.; Norata, A.; Giannini, M.B.; Musuraca, G.; Lanza, F.; et al. Therapeutic Targeting of Acute Myeloid Leukemia by Gemtuzumab Ozogamicin. Cancers 2021, 13, 4566. [Google Scholar] [CrossRef]
- Röllig, C.; Steffen, B.; Schliemann, C.; Mikesch, J.-H.; Alakel, N.; Herbst, E.; Hänel, M.; Noppeney, R.; Hanoun, M.; Kaufmann, M.; et al. Single or Double Induction With 7 + 3 Containing Standard or High-Dose Daunorubicin for Newly Diagnosed AML: The Randomized DaunoDouble Trial by the Study Alliance Leukemia. J. Clin. Oncol. 2025, 43, 65–74. [Google Scholar] [CrossRef]
- Mishra, S.K.; Millman, S.E.; Zhang, L. Metabolism in acute myeloid leukemia: Mechanistic insights and therapeutic targets. Blood 2023, 141, 1119–1135. [Google Scholar] [CrossRef]
- McCall, D.; Alqahtani, S.; Budak, M.; Sheikh, I.; Fan, A.E.; Ramakrishnan, R.; Nunez, C.; Roth, M.; Garcia, M.B.; Gibson, A.; et al. Cladribine-Based Therapy for Relapsed or Refractory Acute Myeloid Leukemia in Child, Adolescent, and Early Young Adult Patients: The MD Anderson Cancer Center Experience. Cancers 2024, 16, 3886. [Google Scholar] [CrossRef]
- Mosna, F.; Borlenghi, E.; Litzow, M.; Byrd, J.C.; Papayannidis, C.; Tecchio, C.; Ferrara, F.; Marcucci, G.; Cairoli, R.; Morgan, E.A.; et al. Long-term survival can be achieved in a significant fraction of older patients with core binding factor acute myeloid leukemia treated with intensive chemotherapy. Haematologica 2024, 110, 608–620. [Google Scholar] [CrossRef]
- George, B.M.; Luskin, M.R. Is age just a number? Intensive therapy for core-binding factor acute myeloid leukemia in older adults. Haematologica 2025, 110, 543–545. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; Wang, J.; He, Q.; Zhu, J.; Liu, P.; Wang, H.; Zhang, F. Auto-hematopoietic stem cell transplantation or chemotherapy? Meta-analysis of clinical choice for AML. Ann. Hematol. 2024, 103, 3855–3866. [Google Scholar] [CrossRef] [PubMed]
- Gangat, N.; Elbeih, A.; Ghosoun, N.; McCullough, K.; Aperna, F.; Johnson, I.M.; Abdelmagid, M.; Al-Kali, A.; Alkhateeb, H.B.; Begna, K.H.; et al. Risk Models for Newly Diagnosed Acute Myeloid Leukemia Treated With Venetoclax + Hypomethylating Agent. Am. J. Hematol. 2024, 100, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Lachowiez, C.A.; Ravikumar, V.I.; Othman, J.; O’Nions, J.; Peters, D.T.; McMahon, C.; Swords, R.; Cook, R.; Saultz, J.N.; Tyner, J.W.; et al. Refined ELN 2024 risk stratification improves survival prognostication following venetoclax-based therapy in AML. Blood 2024, 144, 2788–2792. [Google Scholar] [CrossRef]
- Lachowiez, C.A.; Heiblig, M.; Requena, G.A.; Tavernier-Tardy, E.; Dai, F.; Ashango, A.B.; Peters, D.T.; Fang, J.; Kaempf, A.; Long, N.; et al. Genetic and Phenotypic correlates of clinical outcomes with Venetoclax in Acute Myeloid Leukemia: The GEN-PHEN-VEN study. Blood Cancer Discov. 2025, Online ahead of print. [Google Scholar] [CrossRef]
- Shimony, S.; Stahl, M.; Stone, R.M. Acute myeloid leukemia: 2023 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 2023, 98, 502–526. [Google Scholar] [CrossRef]
- Lanza, F.; Rondoni, M.; Zannetti, B.A. New Horizons in Immunology and Immunotherapy of Acute Leukemias and Related Disorders. Cancers 2023, 15, 2422. [Google Scholar] [CrossRef]
- Rondoni, M.; Marconi, G.; Nicoletti, A.; Giannini, B.; Zuffa, E.; Giannini, M.B.; Mianulli, A.; Norata, M.; Monaco, F.; Zaccheo, I.; et al. Low WT1 Expression Identifies a Subset of Acute Myeloid Leukemia with a Distinct Genotype. Cancers 2025, 17, 1213. [Google Scholar] [CrossRef]
- Hiwase, D.; Hahn, C.; Tran, E.N.H.; Chhetri, E.; Baranwal, A.; Al-Kali, A.; Sharplin, K.; Ladon, D.; Hollins, R.; Greipp, P.; et al. TP53 mutation in therapy-related myeloid neoplasm defines a distinct molecular subtype. Blood 2023, 141, 1087–1091. [Google Scholar] [CrossRef] [PubMed]
- Sallman, D.A.; Stahl, M. TP53-mutated acute myeloid leukemia: How can we improve outcomes? Blood 2025, 145, 2828–2833. [Google Scholar] [CrossRef] [PubMed]
- Lane, D.P. How to lose tumor suppression. Science 2019, 365, 539–540. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Sammons, M.A.; Donahue, G.; Dou, Z.; Vedadi, M.; Getlik, M.; Barsyte-Lovejoy, D.; Al-awar, R.; Katona, B.W.; Shilatifard, A.; et al. Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth. Nature 2015, 525, 206–211. [Google Scholar] [CrossRef]
- Wong, T.N.; Ramsingh, G.; Young, A.; Miller, C.A.; Touma, W.; Welch, J.S.; Lamprecht, T.L.; Shen, D.; Hundal, J.; Fulton, R.S.; et al. Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature 2015, 518, 552–555. [Google Scholar] [CrossRef]
- Usui, Y.; Endo, M.; Iwasaki, Y.; Iijima, H.; Nakagawa, H.; Matsuda, K.; Momozawa, Y. Clinical Significance of TP53-Mutant Clonal Hematopoiesis Across Diseases. Blood Cancer Discov. 2025, 6, 298–306. [Google Scholar] [CrossRef]
- Senapati, J.; Loghavi, S.; Garcia-Manero, G.; Tang, G.; Kadia, T.; Short, N.J.; Abbas, H.A.; Arani, N.; DiNardo, C.D.; Borthakur, G.; et al. Clinical interrogation of TP53 aberrations and its impact on survival in patients with myeloid neoplasms. Haematologica 2025, 110, 1304–1315. [Google Scholar] [CrossRef]
- Diamond, B.; Ziccheddu, B.; Maclachlan, K.; Taylor, J.; Boyle, E.; Ossa, J.A.; Jahn, J.; Affer, M.; Totiger, T.M.; Coffey, D.; et al. Tracking the evolution of therapy-related myeloid neoplasms using chemotherapy signatures. Blood 2023, 141, 2359–2371. [Google Scholar] [CrossRef]
- Platzbecker, U.; Kordasti, S. Natural born survivors: The inglorious TP53. Blood 2020, 136, 2727–2728. [Google Scholar] [CrossRef]
- Sallman, D.A.; McLemore, A.F.; Aldrich, A.L.; Komrokji, R.S.; McGraw, K.L.; Dhawan, A.; Geyer, S.; Hou, H.A.; Eksioglu, E.A.; Sullivan, A.; et al. TP53 mutations in myelodysplastic syndromes and secondary AML confer an immunosuppressive phenotype. Blood 2020, 136, 2812–2823. [Google Scholar] [CrossRef]
- Weinberg, O.K.; Siddon, A.; Madanat, Y.F.; Gagan, J.; Arber, D.A.; Dal Cin, P.; Narayanan, D.; Ouseph, M.M.; Kurzer, J.H.; Hasserjian, R.P. TP53 mutation defines a unique subgroup within complex karyotype de novo and therapy-related MDS/AML. Blood Adv. 2022, 6, 2847–2853. [Google Scholar] [CrossRef] [PubMed]
- Grob, T.; Al Hinai, A.S.A.; Sanders, M.A.; Kavelaars, F.G.; Rijken, M.; Gradowska, P.L.; Biemond, B.J.; Breems, D.A.; Maertens, J.; van Marwijk Kooy, M.; et al. Molecular characterization of mutant TP53 acute myeloid leukemia and high-risk myelodysplastic syndrome. Blood 2022, 139, 2347–2354. [Google Scholar] [CrossRef] [PubMed]
- Stengel, A.; Meggendorfer, M.; Walter, W.; Baer, C.; Nadarajah, N.; Hutter, S.; Kern, W.; Haferlach, T.; Haferlach, C. Interplay of TP53 allelic state, blast count, and complex karyotype on survival of patients with AML and MDS. Blood Adv. 2023, 7, 5540–5548. [Google Scholar] [CrossRef] [PubMed]
- Stengel, A.; Haferlach, T.; Baer, C.; Hutter, S.; Meggendorfer, M.; Kern, W.; Haferlach, C. Specific subtype distribution with impact on prognosis of TP53 single-hit and double-hit events in AML and MDS. Blood Adv. 2023, 7, 2952–2956. [Google Scholar] [CrossRef]
- Fontana, M.C.; Marconi, G.; Feenstra, J.D.M.; Fonzi, E.; Papayannidis, C.; Ghelli Luserna di Rorá, A.; Padella, A.; Solli, V.; Franchini, E.; Ottaviani, E.; et al. Chromothripsis in acute myeloid leukemia: Biological features and impact on survival. Leukemia 2018, 32, 1609–1620. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Jonas, B.A.; Pullarkat, V.; Thirman, M.J.; Garcia, J.S.; Wei, A.H.; Konopleva, M.; Döhner, H.; Letai, A.; Fenaux, P.; et al. Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. N. Engl. J. Med. 2020, 383, 617–629. [Google Scholar] [CrossRef]
- Badar, T.; Atallah, E.; Shallis, R.M.; Goldberg, A.D.; Patel, A.; Abaza, Y.; Bewersdorf, J.P.; Saliba, A.N.; Sacchi De Camargo Correia, G.; Murthy, G.; et al. Outcomes of TP53-mutated AML with evolving frontline therapies: Impact of allogeneic stem cell transplantation on survival. Am. J. Hematol. 2022, 97, E232–E235. [Google Scholar] [CrossRef]
- Kim, K.; Maiti, A.; Loghavi, S.; Pourebrahim, R.; Kadia, T.M.; Rausch, C.R.; Furudate, K.; Daver, N.G.; Alvarado, Y.; Ohanian, M.; et al. Outcomes of TP53-mutant acute myeloid leukemia with decitabine and venetoclax. Cancer 2021, 127, 3772–3781. [Google Scholar] [CrossRef]
- Garcia-Manero, G.; Goldberg, A.D.; Winer, E.S.; Altman, J.K.; Fathi, A.T.; Odenike, O.; Roboz, G.J.; Sweet, K.; Miller, K.; Wennborg, A.; et al. Eprenetapopt combined with venetoclax and azacitidine in TP53-mutated acute myeloid leukaemia: A phase 1, dose-finding and expansion study. Lancet Haematol. 2023, 10, e272–e283. [Google Scholar] [CrossRef]
- Uy, G.L.; Aldoss, I.; Foster, M.C.; Sayre, P.H.; Wieduwilt, M.J.; Advani, A.S.; Godwin, J.E.; Arellano, M.L.; Sweet, K.L.; Emadi, A.; et al. Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia. Blood 2021, 137, 751–762. [Google Scholar] [CrossRef]
- Zeidner, J.D.; Sallman, D.A.; Récher, C.; Daver, N.G.; Leung, A.Y.; Hiwase, D.K.; Subklewe, M.; Pabst, T.; Montesinos, P.; Larson, R.A.; et al. Magrolimab plus azacitidine vs physician’s choice for untreated TP53-mutated acute myeloid leukemia: The ENHANCE-2 study. Blood 2025, Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Nawas, M.T.; Kosuri, S. Utility or futility? A contemporary approach to allogeneic hematopoietic cell transplantation for TP53-mutated MDS/AML. Blood Adv. 2024, 8, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Ball, S.; Loghavi, S.; Zeidan, A.M. TP53-altered higher-risk myelodysplastic syndromes/neoplasms and acute myeloid leukemia: A distinct genetic entity with unique unmet needs. Leuk. Lymphoma 2023, 64, 540–550. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, M.; Amin, M.K.; Daver, N.G.; Shah, M.V.; Hiwase, D.; Arber, D.A.; Kharfan-Dabaja, M.A.; Badar, T. What have we learned about TP53-mutated acute myeloid leukemia? Blood Cancer J. 2024, 14, 202. [Google Scholar] [CrossRef]
- Mill, C.P.; Fiskus, W.; Das, K.; Davis, J.A.; Birdwell, C.E.; Kadia, T.M.; DiNardo, C.D.; Daver, N.; Takahashi, K.; Sasaki, K.; et al. Causal linkage of presence of mutant NPM1 to efficacy of novel therapeutic agents against AML cells with mutant NPM1. Leukemia 2023, 37, 1336–1348. [Google Scholar] [CrossRef]
- Dohner, K.; Thiede, C.; Jahn, N.; Panina, E.; Gambietz, A.; Larson, R.A.; Prior, T.W.; Marcucci, G.; Jones, D.; Krauter, J.; et al. Impact of NPM1/FLT3-ITD genotypes defined by the 2017 European LeukemiaNet in patients with acute myeloid leukemia. Blood 2020, 135, 371–380. [Google Scholar] [CrossRef]
- Uckelmann, H.J.; Haarer, E.L.; Takeda, R.; Wong, E.M.; Hatton, C.; Marinaccio, C.; Perner, F.; Rajput, M.; Antonissen, N.J.C.; Wen, Y.; et al. Mutant NPM1 Directly Regulates Oncogenic Transcription in Acute Myeloid Leukemia. Cancer Discov. 2023, 13, 746–765. [Google Scholar] [CrossRef]
- Soto-Feliciano, Y.M.; Sanchez-Rivera, F.J.; Perner, F.; Barrows, D.W.; Kastenhuber, E.R.; Ho, Y.J.; Carroll, T.; Xiong, Y.; Anand, D.; Soshnev, A.A.; et al. A Molecular Switch between Mammalian MLL Complexes Dictates Response to Menin-MLL Inhibition. Cancer Discov. 2023, 13, 146–169. [Google Scholar] [CrossRef]
- Fleischmann, M.; Bechwar, J.; Voigtländer, D.; Fischer, M.; Schnetzke, U.; Hochhaus, A.; Scholl, S. Synergistic effects of the RARalpha agonist tamibarotene and the Menin inhibitor revumenib in acute myeloid leukemia cells with KMT2A rearrangement or NPM1 mutation. Cancers 2024, 16, 1311. [Google Scholar] [CrossRef]
- Dalle, I.A.; Labopin, M.; Khvedelidze, I.; Baron, F.; Brissot, E.; Bug, G.; Esteve, J.; Giebel, S.; Gorin, N.-C.; Lanza, F.; et al. Growing adoption of pharmacologic maintenance therapy after allogeneic hematopoietic cell transplantation in acute myeloid leukemia: A survey on behalf of the EBMT acute leukemia working party. Bone Marrow Transplant. 2025, 60, 921–923. [Google Scholar] [CrossRef]
- Marconi, G.; Rondoni, M.; Zannetti, B.A.; Zacheo, I.; Nappi, D.; Mattei, A.; Rocchi, S.; Lanza, F. Novel insights and therapeutic approaches in secondary AML. Front. Oncol. 2024, 14, 1400461. [Google Scholar] [CrossRef]
- Mehta, P.; Campbell, V.; Maddox, J.; Floisand, Y.; Kalakonda, A.J.M.; O’Nions, J.; Coats, T.; Nagumantry, S.; Hodgson, K.; Whitmill, R.; et al. CREST-UK: Real-world effectiveness, safety and outpatient delivery of CPX-351 for first-line treatment of newly diagnosed therapy-related AML and AML with myelodysplasia-related changes in the UK. Br. J. Haematol. 2024, 205, 1326–1336. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Arbolí, E.; Rodríguez-Veiga, R.; Soria-Saldise, E.; Bergua, J.M.; Caballero-Velázquez, T.; Arnán, M.; Vives, S.; Serrano, J.; Bernal, T.; Martínez-Sánchez, P.; et al. A phase 2, multicenter, clinical trial of CPX-351 in older patients with secondary or high-risk acute myeloid leukemia: PETHEMA-LAMVYX. Cancer 2025, 131, e35618. [Google Scholar] [CrossRef] [PubMed]
- Cortes, J.E.; Lin, T.L.; Asubonteng, K.; Faderl, S.; Lancet, J.E.; Prebet, T. Efficacy and safety of CPX-351 versus 7 + 3 chemotherapy by European LeukemiaNet 2017 risk subgroups in older adults with newly diagnosed, high-risk/secondary AML: Post hoc analysis of a randomized, phase 3 trial. J. Hematol. Oncol. 2022, 15, 155. [Google Scholar] [CrossRef] [PubMed]
- de Botton, S.; Cluzeau, T.; Vigil, C.; Cook, R.J.; Rousselot, P.; Rizzieri, D.A.; Liesveld, J.L.; Fenaux, P.; Braun, T.; Banos, A.; et al. Targeting RARA overexpression with tamibarotene, a potent and selective RARalpha agonist, is a novel approach in AML. Blood Adv. 2023, 7, 1858–1870. [Google Scholar] [CrossRef]
- DeZern, A.E.; Thepot, S.; De Botton, S.; Patriarca, A.; Deeren, D.; Torregrose Diaz, J.M.; Marconi, G.; Bernal Del Castillo, T.; Bergua Burgues, J.M.; Xicoy, B.; et al. Pivotal Results of SELECT-MDS-1 Phase 3 Study of Tamibarotene with Azacitidine in Newly Diagnosed Higher-Risk MDS. Blood Adv. 2025, Online ahead of print. [Google Scholar] [CrossRef]
- Rungjirajittranon, T.; Siriwannangkul, T.; Kungwankiattichai, S.; Leelakanok, N.; Rotchanapanya, W.; Vittayawacharin, P.; Mekrakseree, B.; Kulchutisin, K.; Owattanapanich, W. Clinical Outcomes of Acute Myeloid Leukemia Patients Harboring the RUNX1 Mutation: Is It Still an Unfavorable Prognosis? A Cohort Study and Meta-Analysis. Cancers 2022, 14, 5239. [Google Scholar] [CrossRef]
- Schlenk, R.F.; Kayser, S.; Bullinger, L.; Kobbe, G.; Casper, J.; Ringhoffer, M.; Held, G.; Brossart, P.; Lübbert, M.; Salih, H.R.; et al. Differential impact of allelic ratio and insertion site in FLT3-ITD-positive AML with respect to allogeneic transplantation. Blood 2014, 124, 3441–3449. [Google Scholar] [CrossRef]
- Small, D. FLT3 mutations: Biology and treatment. Hematol. Am. Soc. Hematol. Educ. Program. 2006, 2006, 178–184. [Google Scholar] [CrossRef]
- Bazarbachi, A.; Bug, G.; Baron, F.; Brissot, E.; Ciceri, F.; Dalle, I.A.; Döhner, H.; Esteve, J.; Floisand, Y.; Giebel, S.; et al. Clinical practice recommendation on hematopoietic stem cell transplantation for acute myeloid leukemia patients with FLT3-internal tandem duplication: A position statement from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Haematologica 2020, 105, 1507–1516. [Google Scholar] [CrossRef]
- Capria, S.; Trisolini, S.M.; Torrieri, L.; Amabile, E.; Marsili, G.; Piciocchi, A.; Barberi, W.; Iori, A.P.; Diverio, D.; Carmini, D.; et al. Real-Life Management of FLT3-Mutated AML: Single-Centre Experience over 24 Years. Cancers 2024, 16, 2864. [Google Scholar] [CrossRef]
- Pratz, K.W.; Cherry, M.; Altman, J.K.; Cooper, B.W.; Podoltsev, N.A.; Cruz, J.C.; Lin, T.L.; Schiller, G.J.; Jurcic, J.G.; Asch, A.; et al. Gilteritinib in Combination With Induction and Consolidation Chemotherapy and as Maintenance Therapy: A Phase IB Study in Patients With Newly Diagnosed AML. J. Clin. Oncol. 2023, 41, 4236–4246. [Google Scholar] [CrossRef]
- Fan, S.; Hong, H.; Lu, S.; Wen, Q.; Hong, S.; Zhang, X.; Xu, L.; Wang, Y.; Yan, C.; Chen, H.; et al. Artificial intelligence-based predictive model for relapse in acute myeloid leukemia patients following haploidentical hematopoietic cell transplantation. J. Transl. Intern. Med. 2025, 13, 253–266. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lanza, F.; Rondoni, M.; Marconi, G. Acute Myeloid Leukemia: Updates on Diagnosis, Treatment and Management. Cancers 2025, 17, 2387. https://doi.org/10.3390/cancers17142387
Lanza F, Rondoni M, Marconi G. Acute Myeloid Leukemia: Updates on Diagnosis, Treatment and Management. Cancers. 2025; 17(14):2387. https://doi.org/10.3390/cancers17142387
Chicago/Turabian StyleLanza, Francesco, Michela Rondoni, and Giovanni Marconi. 2025. "Acute Myeloid Leukemia: Updates on Diagnosis, Treatment and Management" Cancers 17, no. 14: 2387. https://doi.org/10.3390/cancers17142387
APA StyleLanza, F., Rondoni, M., & Marconi, G. (2025). Acute Myeloid Leukemia: Updates on Diagnosis, Treatment and Management. Cancers, 17(14), 2387. https://doi.org/10.3390/cancers17142387