Ex Vivo Drug Sensitivity of Pleural Effusion-Derived Cells from Lung Cancer and Pleural Mesothelioma Patients Is Linked to Clinical Response
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Population, Study Design and Specimen Collection
2.2. Assessment of Clinical Outcome
2.3. Preparation of Specimens and Experimental Design
2.4. Cell Culture
2.5. Ex Vivo Drug Treatment
2.6. Design of the Drug Library
2.7. Drug Screening Data Analysis
2.8. DNA Extraction and Targeted Sequencing Panel
2.9. Network Enrichment Analysis and Prediction of Cancer Driver Genes
2.10. Correlation Analyses
2.11. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Patient Outcomes
3.3. Adaptation of the Ex Vivo Drug Sensitivity Profiling Platform for Pleural Effusions
3.4. Functional Drug Testing of Pleural Effusions Demonstrated Feasibility and Clinically Relevant Patient-Specific Responses
3.5. Correlations Between Clinical Outcomes and Drug Sensitivity Score
3.6. Ranking the Mutated Genes According to Potential Driver Roles in Cancer
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Travis, W.D.; Brambilla, E.; Nicholson, A.G.; Yatabe, Y.; Austin, J.H.M.; Beasley, M.B.; Chirieac, L.R.; Dacic, S.; Duhig, E.; Flieder, D.B.; et al. The 2015 World Health Organization Classification of Lung Tumors: Impact of Genetic, Clinical and Radiologic Advances Since the 2004 Classification. J. Thorac. Oncol. 2015, 10, 1243–1260. [Google Scholar] [CrossRef] [PubMed]
- Zappa, C.; Mousa, S.A. Non-small cell lung cancer: Current treatment and future advances. Transl. Lung Cancer Res. 2016, 5, 288–300. [Google Scholar] [CrossRef]
- Cerbone, L.; Orecchia, S.; Bertino, P.; Delfanti, S.; de Angelis, A.M.; Grosso, F. Clinical Next Generation Sequencing Application in Mesothelioma: Finding a Golden Needle in the Haystack. Cancers 2023, 15, 5716. [Google Scholar] [CrossRef]
- Chen, X.; Wang, K.; Liao, Y.; Zheng, C.; Yang, D.; Li, Z.; Zhai, L. Safety and efficacy of rechallenge with immune checkpoint inhibitors and anlotinib in advanced non-small cell lung cancer without targetable driver mutations: A retrospective analysis. BMC Cancer 2025, 25, 862. [Google Scholar] [CrossRef]
- Mazzocchi, A.; Devarasetty, M.; Herberg, S.; Petty, W.J.; Marini, F.; Miller, L.; Kucera, G.; Dukes, D.K.; Ruiz, J.; Skardal, A.; et al. Pleural Effusion Aspirate for use in 3D Lung Cancer Modeling and Chemotherapy Screening. ACS Biomater. Sci. Eng. 2019, 5, 1937–1943. [Google Scholar] [CrossRef]
- Szulkin, A.; Otvos, R.; Hillerdal, C.O.; Celep, A.; Yousef-Fadhel, E.; Skribek, H.; Hjerpe, A.; Szekely, L.; Dobra, K. Characterization and drug sensitivity profiling of primary malignant mesothelioma cells from pleural effusions. BMC Cancer 2014, 14, 709. [Google Scholar] [CrossRef]
- Gunti, S.; Hoke, A.T.K.; Vu, K.P.; London, N.R., Jr. Organoid and Spheroid Tumor Models: Techniques and Applications. Cancers 2021, 13, 874. [Google Scholar] [CrossRef] [PubMed]
- Shie, M.Y.; Fang, H.Y.; Kan, K.W.; Ho, C.C.; Tu, C.Y.; Lee, P.C.; Hsueh, P.R.; Chen, C.H.; Lee, A.K.; Tien, N.; et al. Highly Mimetic Ex Vivo Lung-Cancer Spheroid-Based Physiological Model for Clinical Precision Therapeutics. Adv. Sci. 2023, 10, e2206603. [Google Scholar] [CrossRef] [PubMed]
- Peterziel, H.; Jamaladdin, N.; ElHarouni, D.; Gerloff, X.F.; Herter, S.; Fiesel, P.; Berker, Y.; Blattner-Johnson, M.; Schramm, K.; Jones, B.C.; et al. Drug sensitivity profiling of 3D tumor tissue cultures in the pediatric precision oncology program INFORM. npj Precis. Oncol. 2022, 6, 94. [Google Scholar] [CrossRef]
- Talwelkar, S.S.; Mayranpaa, M.I.; Soraas, L.; Potdar, S.; Bao, J.; Hemmes, A.; Linnavirta, N.; Lomo, J.; Rasanen, J.; Knuuttila, A.; et al. Functional diagnostics using fresh uncultured lung tumor cells to guide personalized treatments. Cell Rep. Med. 2021, 2, 100373. [Google Scholar] [CrossRef]
- Papp, E.; Steib, A.; Abdelwahab, E.M.; Meggyes-Rapp, J.; Jakab, L.; Smuk, G.; Schlegl, E.; Moldvay, J.; Sarosi, V.; Pongracz, J.E. Feasibility study of in vitro drug sensitivity assay of advanced non-small cell lung adenocarcinomas. BMJ Open Respir. Res. 2020, 7, e000505. [Google Scholar] [CrossRef] [PubMed]
- Zipprick, J.; Demir, E.; Krynska, H.; Kopruluoglu, S.; Strauss, K.; Skribek, M.; Hutyra-Gram Otvos, R.; Gad, A.K.B.; Dobra, K. Ex-Vivo Drug-Sensitivity Testing to Predict Clinical Response in Non-Small Cell Lung Cancer and Pleural Mesothelioma: A Systematic Review and Narrative Synthesis. Cancers 2025, 17, 986. [Google Scholar] [CrossRef] [PubMed]
- Supplitt, S.; Karpinski, P.; Sasiadek, M.; Laczmanska, I. Current Achievements and Applications of Transcriptomics in Personalized Cancer Medicine. Int. J. Mol. Sci. 2021, 22, 1422. [Google Scholar] [CrossRef]
- Akerlund, E.; Gudoityte, G.; Moussaud-Lamodiere, E.; Lind, O.; Bwanika, H.C.; Lehti, K.; Salehi, S.; Carlson, J.; Wallin, E.; Fernebro, J.; et al. The drug efficacy testing in 3D cultures platform identifies effective drugs for ovarian cancer patients. npj Precis. Oncol. 2023, 7, 111. [Google Scholar] [CrossRef]
- Gudoityte, G.; Sharma, O.; Leuenberger, L.; Wallin, E.; Fernebro, J.; Östling, P.; Bergström, R.; Lindberg, J.; Joneborg, U.; Kallioniemi, O.; et al. Systematic Profiling of Cancer-Fibroblast Interactions Reveals Drug Combinations in Ovarian Cancer. Mol. Oncol. 2025. [Google Scholar] [CrossRef]
- Potdar, S.; Ianevski, F.; Ianevski, A.; Tanoli, Z.; Wennerberg, K.; Seashore-Ludlow, B.; Kallioniemi, O.; Östling, P.; Aittokallio, T.; Saarela, J. Breeze 2.0: An Interactive Web-Tool for Visual Analysis and Comparison of Drug Response Data. Nucleic Acids Res. 2023, 51, W57–W61. [Google Scholar] [CrossRef]
- Merid, S.K.; Goranskaya, D.; Alexeyenko, A. Distinguishing between Driver and Passenger Mutations in Individual Cancer Genomes by Network Enrichment Analysis. BMC Bioinform. 2014, 15, 308. [Google Scholar] [CrossRef] [PubMed]
- Petrov, I.; Alexeyenko, A. Individualized Discovery of Rare Cancer Drivers in Global Network Context. eLife 2022, 11, e74010. [Google Scholar] [CrossRef]
- Cerami, E.G.; Gross, B.E.; Demir, E.; Rodchenkov, I.; Babur, O.; Anwar, N.; Schultz, N.; Bader, G.D.; Sander, C. Pathway Commons, a Web Resource for Biological Pathway Data. Nucleic Acids Res. 2011, 39, D685–D690. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; et al. STRING V10: Protein-Protein Interaction Networks, Integrated over the Tree of Life. Nucleic Acids Res. 2015, 43, D447–D452. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S.; Furumichi, M.; Tanabe, M.; Hirakawa, M. KEGG for Representation and Analysis of Molecular Networks Involving Diseases and Drugs. Nucleic Acids Res. 2010, 38, D355–D360. [Google Scholar] [CrossRef] [PubMed]
- The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 2020, 578, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Kodack, D.P.; Farago, A.F.; Dastur, A.; Held, M.A.; Dardaei, L.; Friboulet, L.; von Flotow, F.; Damon, L.J.; Lee, D.; Parks, M.; et al. Primary Patient-Derived Cancer Cells and Their Potential for Personalized Cancer Patient Care. Cell Rep. 2017, 21, 3298–3309. [Google Scholar] [CrossRef] [PubMed]
- Amann, J.; Kalyankrishna, S.; Massion, P.P.; Ohm, J.E.; Girard, L.; Shigematsu, H.; Peyton, M.; Juroske, D.; Huang, Y.; Stuart Salmon, J.; et al. Aberrant Epidermal Growth Factor Receptor Signaling and Enhanced Sensitivity to EGFR Inhibitors in Lung Cancer. Cancer Res. 2005, 65, 226–235. [Google Scholar] [CrossRef]
- Ko, J.-C.; Ciou, S.-C.; Jhan, J.-Y.; Cheng, C.-M.; Su, Y.-J.; Chuang, S.-M.; Lin, S.-T.; Chang, C.-C.; Lin, Y.-W. Roles of MKK1/2-ERK1/2 and Phosphoinositide 3-Kinase-AKT Signaling Pathways in Erlotinib-Induced Rad51 Suppression and Cytotoxicity in Human Non-Small Cell Lung Cancer Cells. Mol. Cancer Res. 2009, 7, 1378–1389. [Google Scholar] [CrossRef]
- Arrieta, O.; Escamilla-López, I.; Lyra-González, I.; Barrón, F.; Ramírez-Tirado, L.A.; Vergara, E.; Corona-Cruz, J.F.; Maldonado, F.; Jiménez-Fuentes, E. Radical Aggressive Treatment among Non-Small Cell Lung Cancer Patients with Malignant Pleural Effusion without Extra-Thoracic Disease. J. Thorac. Dis. 2019, 11, 595–601. [Google Scholar] [CrossRef]
- Iorio, F.; Knijnenburg, T.A.; Vis, D.J.; Bignell, G.R.; Menden, M.P.; Schubert, M.; Aben, N.; Gonçalves, E.; Barthorpe, S.; Lightfoot, H.; et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 2016, 166, 740–754. [Google Scholar] [CrossRef]
- Ghandi, M.; Huang, F.W.; Jané-Valbuena, J.; Kryukov, G.V.; Lo, C.C.; McDonald, E.R.; Barretina, J.; Gelfand, E.T.; Bielski, C.M.; Li, H.; et al. Next-Generation Characterization of the Cancer Cell Line Encyclopedia. Nature 2019, 569, 503–508. [Google Scholar] [CrossRef]
- Garvey, C.M.; Lau, R.; Sanchez, A.; Sun, R.X.; Fong, E.J.; Doche, M.E.; Chen, O.; Jusuf, A.; Lenz, H.-J.; Larson, B.; et al. Anti-EGFR Therapy Induces EGF Secretion by Cancer-Associated Fibroblasts to Confer Colorectal Cancer Chemoresistance. Cancers 2020, 12, 1393. [Google Scholar] [CrossRef]
- Kamashev, D.; Shaban, N.; Lebedev, T.; Prassolov, V.; Suntsova, M.; Raevskiy, M.; Gaifullin, N.; Sekacheva, M.; Garazha, A.; Poddubskaya, E.; et al. Human Blood Serum Can Diminish EGFR-Targeted Inhibition of Squamous Carcinoma Cell Growth through Reactivation of MAPK and EGFR Pathways. Cells 2023, 12, 2022. [Google Scholar] [CrossRef]
- Bell, E.H.; Chakraborty, A.R.; Mo, X.; Liu, Z.; Shilo, K.; Kirste, S.; Stegmaier, P.; McNulty, M.; Karachaliou, N.; Rosell, R.; et al. SMARCA4/BRG1 Is a Novel Prognostic Biomarker Predictive of Cisplatin-Based Chemotherapy Outcomes in Resected Non-Small Cell Lung Cancer. Clin. Cancer Res. 2016, 22, 2396–2404. [Google Scholar] [CrossRef] [PubMed]
- Weng, C.-H.; Chen, L.-Y.; Lin, Y.-C.; Shih, J.-Y.; Lin, Y.-C.; Tseng, R.-Y.; Chiu, A.-C.; Yeh, Y.-H.; Liu, C.; Lin, Y.-T.; et al. Epithelial-Mesenchymal Transition (EMT) beyond EGFR Mutations per Se Is a Common Mechanism for Acquired Resistance to EGFR TKI. Oncogene 2019, 38, 455–468. [Google Scholar] [CrossRef] [PubMed]
- McGranahan, N.; Swanton, C. Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future. Cell 2017, 168, 613–628. [Google Scholar] [CrossRef]
- Park, C.C.; Zhang, H.; Pallavicini, M.; Gray, J.W.; Baehner, F.; Park, C.J.; Bissell, M.J. Beta1 Integrin Inhibitory Antibody Induces Apoptosis of Breast Cancer Cells, Inhibits Growth, and Distinguishes Malignant from Normal Phenotype in Three Dimensional Cultures and In Vivo. Cancer Res. 2006, 66, 1526–1535. [Google Scholar] [CrossRef]
- Pontiggia, O.; Sampayo, R.; Raffo, D.; Motter, A.; Xu, R.; Bissell, M.J.; de Kier Joffé, E.B.; Simian, M. The Tumor Microenvironment Modulates Tamoxifen Resistance in Breast Cancer: A Role for Soluble Stromal Factors and Fibronectin through Β1 Integrin. Breast Cancer Res. Treat. 2012, 133, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Miglino, N.; Toussaint, N.C.; Ring, A.; Bonilla, X.; Tusup, M.; Gosztonyi, B.; Mehra, T.; Gut, G.; Jacob, F.; Chevrier, S.; et al. Feasibility of Multiomics Tumor Profiling for Guiding Treatment of Melanoma. Nat. Med. 2025. [Google Scholar] [CrossRef]
- Ferris, R.L.; Lenz, H.-J.; Trotta, A.M.; García-Foncillas, J.; Schulten, J.; Audhuy, F.; Merlano, M.; Milano, G. Rationale for Combination of Therapeutic Antibodies Targeting Tumor Cells and Immune Checkpoint Receptors: Harnessing Innate and Adaptive Immunity through IgG1 Isotype Immune Effector Stimulation. Cancer Treat. Rev. 2018, 63, 48–60. [Google Scholar] [CrossRef]
- Vincken, R.; Ruiz-Saenz, A. A Co-Culture Model System to Quantify Antibody-Dependent Cellular Cytotoxicity in Human Breast Cancer Cells Using an Engineered Natural Killer Cell Line. STAR Protoc. 2023, 4, 102224. [Google Scholar] [CrossRef]
- Mu, P.; Zhou, S.; Lv, T.; Xia, F.; Shen, L.; Wan, J.; Wang, Y.; Zhang, H.; Cai, S.; Peng, J.; et al. Newly Developed 3D in Vitro Models to Study Tumor–Immune Interaction. J. Exp. Clin. Cancer Res. 2023, 42, 81. [Google Scholar] [CrossRef]
- Cattaneo, C.M.; Dijkstra, K.K.; Fanchi, L.F.; Kelderman, S.; Kaing, S.; van Rooij, N.; van den Brink, S.; Schumacher, T.N.; Voest, E.E. Tumor Organoid—T Cell Co-Culture Systems. Nat. Protoc. 2020, 15, 15–39. [Google Scholar] [CrossRef]
Variables | Cohort (N = 21) |
---|---|
Sex | |
Male | 9 (42.9%) |
Female | 12 (57.1%) |
Smoking status | |
Non-smoker | 7 (33.3%) |
Former smoker | 11 (52.4%) |
Current smoker | 3 (14.3%) |
Histology | |
Adenocarcinoma | 19 (90.5%) |
Mesothelioma | 2 (9.5%) |
PD-L1 expression | |
Low (<1%) | 9 (42.9%) |
Intermediate (1–49%) | 6 (28.6%) |
High (≥50%) | 2 (9.5%) |
Not tested | 4 (19.0%) |
Genetic mutation status | |
No actionable mutations | 5 (23.8%) |
Actionable mutations | 12 (57.1%) |
EGFR | 7 (33.3%) |
BRAFV600E BRAFV600G | 1 (4.8%) 1 (4.8%) |
RET | 2 (9.5%) |
ALK | 1 (4.8%) |
Not tested | 3 (14.3%) |
Non-actionable mutations | 1 (4.8%) |
Age at malignant pleural effusion diagnosis (years) | |
Median (IQR; range) | 76 (36–91) |
Debut with malignant pleural effusion | 11 (52.4%) |
TNM stage at cancer diagnosis | |
Stage 1 | 6 (28.6%) |
Stage 2 | 0 (0.0%) |
Stage 3 | 2 (9.5%) |
Stage 4 | 13 (61.9%) |
Death | 14 (66.7%) |
Median follow-up time | 10.0 months (0–196) |
Variables | Cohort (N = 21) |
---|---|
Type of therapy received after malignant pleural effusion diagnosis | |
Targeted therapy | 9 (42.9%) |
Osimertinib | 5 (23.8%) |
Alectinib | 1 (4.8%) |
Selpercatinib | 1 (4.8%) |
Pralsetinib | 1 (4.8%) |
Trametinib/Dabrafenib | 1 (4.8%) |
Chemotherapy combinations | 5 (23.8%) |
Carboplatin/Pemetrexed/Bevacizumab | 2 (9.5%) |
Carboplatin/Pemetrexed/Pembrolizumab | 1 (4.8%) |
Carboplatin/Pemetrexed/Cemiplimab | 1 (4.8%) |
Carboplatin/Pemetrexed/Osimertinib | 1 (4.8%) |
No treatment | 7 (33.3%) |
ECOG PS at therapy initiation | |
0 | 3 (14.3%) |
1 | 9 (42.9%) |
2 | 1 (4.8%) |
3 | 3 (14.3%) |
Clinical benefit * | (N = 14) |
Yes | 10 (71.4%) |
No | 3 (21.4%) |
Not evaluable | 1 (7.1%) |
Median PFS * | |
Cohort | 6 months |
Patients with targetable mutations | 5 months |
Patients without targetable mutations | 6 months |
Median OS | |
Cohort | 10 months |
Patients with targetable mutations | 14 months |
Patients without targetable mutations | 8 months |
Median OS from malignant pleural effusion diagnosis | |
Cohort | 3 months |
Patients with targetable mutations | 3.5 months |
Patients without targetable mutations | 3 months |
Patient ID | Age PE | Sex | Diagnosis | Stage | Mutation | Locus | Therapy | PFS | OS | OS PE |
---|---|---|---|---|---|---|---|---|---|---|
LuCa008 | 91 | F | AC | 1A2 | 1 | EGFR (Exon 19, Glu746_Ala750del) | Osimertinib | 2 | 40 | 18 |
LuCa009 | 52 | F | AC | 4A | 0 | - | Carboplatin/Pemetrexed/Pembrolizumab | 6 | 36 | 34 |
LuCa011 | 73 | M | AC | 4B | N/A | N/A | N/A | N/A | 0 | 0 |
LuCa012 | 73 | M | PM | 4 | N/A | N/A | Carboplatin/Pemetrexed/Bevacizumab | 11 | 48 | 47 |
LuCa020 | 76 | F | AC | 4A | 1 | BRAF (V600E) | Dabrafenib/Trametinib | 21 | 23 | 23 |
Luca021 | 69 | F | AC | 4B | 1 | RET fusion | Pralsetinib | 10 | 20 | 20 |
LuCa024 | 84 | F | AC | 4A | 0 | - | N/A | N/A | 0 | 0 |
LuCa025 | 79 | F | AC | 4A | 1 | EGFR (Exon21, L858A) | Osimertinib | 9 | 18 | 18 |
LuCa054 | 84 | F | AC | 4A | 1 | EGFR (Exon21, L858A) | N/A | N/A | 0 | 2 |
LuCa055 | 75 | F | AC | 1B | 0 | - | N/A | N/A | 8 | 2 |
LuCa056 | 71 | M | AC | 1A3 | 0 | - | Carboplatin/Pemetrexed/Cemiplimab | 6 | 22 | 8 |
LuCa057 | 80 | M | AC | 1A2 | 1 | ALK fusion | Alectinib | 0 | 36 | 2 |
LuCa058 | 80 | F | AC | 3A | 2 | EGFR (Exon 18 and Exon 21) | Osimertinib | 1 | 46 | 3 |
LuCa059 | 89 | F | AC | 1A2 | 2 | EGFR (Exon 20,T790M), EGFR (Exon 21, L858A) | Osimertinib | 3 | 192 | 7 |
LuCa061 | 75 | M | AC | 4B | 0 | - | N/A | N/A | 2 | 2 |
LuCa062 | 88 | M | AC | 4A | 1 | BRAF (Exon 15, V600G) IDH1 (Exon 4, A132C) | N/A | N/A | 5 | 5 |
LuCa063 | 39 | F | AC | 4B | 1 | Fusion KIF5B(16)-RET(12) | Selpercatinib | 10 | 10 | 4 |
LuCa064 | 70 | M | AC | 3A | 1 | FGFR3 | N/A | N/A | 7 | 1 |
LuCa065 | 36 | M | AC | 4A | 1 | EGFR (Exon 19, G746_A750del) | Carboplatin/Pemetrexed/Osimertinib | 3 | 3 | 3 |
LuCa066 | 79 | M | PM | 1A | N/A | N/A | Carboplatin/Pemetrexed/Bevacizumab | 0 | 4 | 3 |
LuCa067 | 81 | F | AC | 4B | 1 | EGFR (Exon 19 del) | Osimertinib | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hutyra-Gram Ötvös, R.; Krynska, H.; Gudoityte, G.; Skribek, M.; Oniscu, A.; Berkovska, O.; Strauß, K.; Zipprick, J.; Tamborero, D.; Alexeyenko, A.; et al. Ex Vivo Drug Sensitivity of Pleural Effusion-Derived Cells from Lung Cancer and Pleural Mesothelioma Patients Is Linked to Clinical Response. Cancers 2025, 17, 2363. https://doi.org/10.3390/cancers17142363
Hutyra-Gram Ötvös R, Krynska H, Gudoityte G, Skribek M, Oniscu A, Berkovska O, Strauß K, Zipprick J, Tamborero D, Alexeyenko A, et al. Ex Vivo Drug Sensitivity of Pleural Effusion-Derived Cells from Lung Cancer and Pleural Mesothelioma Patients Is Linked to Clinical Response. Cancers. 2025; 17(14):2363. https://doi.org/10.3390/cancers17142363
Chicago/Turabian StyleHutyra-Gram Ötvös, Rita, Hanna Krynska, Greta Gudoityte, Marcus Skribek, Anca Oniscu, Olena Berkovska, Katharina Strauß, Jenny Zipprick, David Tamborero, Andrey Alexeyenko, and et al. 2025. "Ex Vivo Drug Sensitivity of Pleural Effusion-Derived Cells from Lung Cancer and Pleural Mesothelioma Patients Is Linked to Clinical Response" Cancers 17, no. 14: 2363. https://doi.org/10.3390/cancers17142363
APA StyleHutyra-Gram Ötvös, R., Krynska, H., Gudoityte, G., Skribek, M., Oniscu, A., Berkovska, O., Strauß, K., Zipprick, J., Tamborero, D., Alexeyenko, A., Gad, A. K. B., Seashore-Ludlow, B., & Dobra, K. (2025). Ex Vivo Drug Sensitivity of Pleural Effusion-Derived Cells from Lung Cancer and Pleural Mesothelioma Patients Is Linked to Clinical Response. Cancers, 17(14), 2363. https://doi.org/10.3390/cancers17142363