Drivers of Pancreatic Cancer: Beyond the Big 4
Simple Summary
Abstract
1. Introduction
2. Genetics of Pancreatic Ductal Adenocarcinoma
3. Can PDAC Genetics and Stratification Inform Successful Therapy?
4. The Frequency of PTEN Protein Loss in PDAC Greatly Exceeds That of Reported Changes in the PTEN Gene
5. Diverse Drivers of PDAC Are Dysregulated at the Protein Level
5.1. KDM6A/UTX Histone Demethylase
5.2. ARID1A
5.3. MAP2K4
5.4. ATM
5.5. GATA6
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistics, 2023. CA A Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Partensky, C.; Bray, F. More Deaths from Pancreatic Cancer Than Breast Cancer in the EU by 2017. Acta Oncol. 2016, 55, 1158–1160. [Google Scholar] [CrossRef] [PubMed]
- Kleeff, J.; Korc, M.; Apte, M.; La Vecchia, C.; Johnson, C.D.; Biankin, A.V.; Neale, R.E.; Tempero, M.; Tuveson, D.A.; Hruban, R.H.; et al. Pancreatic Cancer. Nat. Rev. Dis. Primers 2016, 2, 16022. [Google Scholar] [CrossRef] [PubMed]
- Karamitopoulou, E. Tumour Microenvironment of Pancreatic Cancer: Immune landscape is Dictated by Molecular and Histopathological Features. Br. J. Cancer 2019, 121, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Erkan, M.; Hausmann, S.; Michalski, C.W.; Fingerle, A.A.; Dobritz, M.; Kleeff, J.; Friess, H. The Role of Stroma in Pancreatic Cancer: Diagnostic and Therapeutic Implications. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 454–467. [Google Scholar] [CrossRef] [PubMed]
- Notta, F.; Hahn, S.A.; Real, F.X. A Genetic Roadmap of Pancreatic Cancer: Still Evolving. Gut 2017, 66, 2170–2178. [Google Scholar] [CrossRef] [PubMed]
- Biankin, A.V.; Waddell, N.; Kassahn, K.S.; Gingras, M.C.; Muthuswamy, L.B.; Johns, A.L.; Miller, D.K.; Wilson, P.J.; Patch, A.M.; Wu, J.; et al. Pancreatic Cancer Genomes Reveal Aberrations in Axon Guidance Pathway Genes. Nature 2012, 491, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Waddell, N.; Pajic, M.; Patch, A.M.; Chang, D.K.; Kassahn, K.S.; Bailey, P.; Johns, A.L.; Miller, D.; Nones, K.; Quek, K.; et al. Whole Genomes Redefine the Mutational Landscape of Pancreatic Cancer. Nature 2015, 518, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Ying, H.; Dey, P.; Yao, W.; Kimmelman, A.C.; Draetta, G.F.; Maitra, A.; DePinho, R.A. Genetics and Biology of Pancreatic Ductal Adenocarcinoma. Genes Dev. 2016, 30, 355–385. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.; Zhang, X.; Parsons, D.W.; Lin, J.C.; Leary, R.J.; Angenendt, P.; Mankoo, P.; Carter, H.; Kamiyama, H.; Jimeno, A.; et al. Core Signaling Pathways in Human Pancreatic Cancers Revealed by Global Genomic Analyses. Science 2008, 321, 1801–1806. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Yu, R.; Liu, R.; Liang, X.; Sun, J.; Zhang, H.; Wu, H.; Zhang, Z.; Shao, Y.W.; Guo, J.; et al. Genetic Aberrations in Chinese Pancreatic Cancer Patients and Their Association with Anatomic Location and Disease Outcomes. Cancer Med. 2021, 10, 933–943. [Google Scholar] [CrossRef] [PubMed]
- Takano, S.; Fukasawa, M.; Shindo, H.; Takahashi, E.; Hirose, S.; Fukasawa, Y.; Kawakami, S.; Hayakawa, H.; Kuratomi, N.; Kadokura, M.; et al. Clinical Significance of Genetic Alterations in Endoscopically Obtained Pancreatic Cancer Specimens. Cancer Med. 2021, 10, 1264–1274. [Google Scholar] [CrossRef] [PubMed]
- Bailey, P.; Chang, D.K.; Nones, K.; Johns, A.L.; Patch, A.M.; Gingras, M.C.; Miller, D.K.; Christ, A.N.; Bruxner, T.J.; Quinn, M.C.; et al. Genomic Analyses Identify Molecular Subtypes of Pancreatic Cancer. Nature 2016, 531, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Biankin, A.V.; Maitra, A. Subtyping Pancreatic Cancer. Cancer Cell 2015, 28, 411–413. [Google Scholar] [CrossRef] [PubMed]
- Sausen, M.; Phallen, J.; Adleff, V.; Jones, S.; Leary, R.J.; Barrett, M.T.; Anagnostou, V.; Parpart-Li, S.; Murphy, D.; Kay Li, Q.; et al. Clinical Implications of Genomic Alterations in the Tumour and Circulation of Pancreatic Cancer Patients. Nat. Commun. 2015, 6, 7686. [Google Scholar] [CrossRef] [PubMed]
- Kanda, M.; Matthaei, H.; Wu, J.; Hong, S.M.; Yu, J.; Borges, M.; Hruban, R.H.; Maitra, A.; Kinzler, K.; Vogelstein, B.; et al. Presence of Somatic Mutations in Most Early-Stage Pancreatic Intraepithelial Neoplasia. Gastroenterology 2012, 142, 730–733.e9. [Google Scholar] [CrossRef] [PubMed]
- Vincent, A.; Herman, J.; Schulick, R.; Hruban, R.H.; Goggins, M. Pancreatic cancer. Lancet 2011, 378, 607–620. [Google Scholar] [CrossRef] [PubMed]
- Connor, A.A.; Gallinger, S. Pancreatic Cancer Evolution and Heterogeneity: Integrating Omics and Clinical Data. Nat. Rev. Cancer 2022, 22, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Buday, L.; Downward, J. Many Faces of Ras Activation. Biochim. Biophys. Acta 2008, 1786, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Uprety, D.; Adjei, A.A. KRAS: From Undruggable to a Druggable Cancer Target. Cancer Treat. Rev. 2020, 89, 102070. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Su, Z.; Tavana, O.; Gu, W. Understanding the Complexity of p53 in a New Era of Tumor Suppression. Cancer Cell 2024, 42, 946–967. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.Y.; Sharpless, N.E. The Regulation of INK4/ARF in Cancer and Aging. Cell 2006, 127, 265–275. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, A.J.; Chetty, R. Smad4/DPC4. J. Clin. Pathol. 2018, 71, 661–664. [Google Scholar] [CrossRef] [PubMed]
- Singhi, A.D.; George, B.; Greenbowe, J.R.; Chung, J.; Suh, J.; Maitra, A.; Klempner, S.J.; Hendifar, A.; Milind, J.M.; Golan, T.; et al. Real-Time Targeted Genome Profile Analysis of Pancreatic Ductal Adenocarcinomas Identifies Genetic Alterations That Might Be Targeted With Existing Drugs or Used as Biomarkers. Gastroenterology 2019, 156, 2242–2253.e4. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.Z.; Wang, W.Q.; Zhang, W.H.; Xu, H.X.; Gao, H.L.; Zhang, S.R.; Wu, C.T.; Li, S.; Li, H.; Xu, J.; et al. The Loss of SMAD4/DPC4 Expression Associated with a Strongly Activated Hedgehog Signaling Pathway Predicts Poor Prognosis in Resected Pancreatic Cancer. J. Cancer 2019, 10, 4123–4131. [Google Scholar] [CrossRef] [PubMed]
- Masugi, Y.; Takamatsu, M.; Tanaka, M.; Hara, K.; Inoue, Y.; Hamada, T.; Suzuki, T.; Arita, J.; Hirose, Y.; Kawaguchi, Y.; et al. Post-Operative Mortality and Recurrence Patterns in Pancreatic Cancer According to KRAS Mutation and CDKN2A, p53, and SMAD4 Expression. J. Pathol. Clin. Res. 2023, 9, 339–353. [Google Scholar] [CrossRef] [PubMed]
- Biankin, A.V.; Morey, A.L.; Lee, C.S.; Kench, J.G.; Biankin, S.A.; Hook, H.C.; Head, D.R.; Hugh, T.B.; Sutherland, R.L.; Henshall, S.M. DPC4/Smad4 Expression and Outcome in Pancreatic Ductal Adenocarcinoma. J. Clin. Oncol. 2002, 20, 4531–4542. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Park, Y.N.; Park, J.S.; Yoon, D.S.; Chi, H.S.; Kim, B.R. Clinical Significance of P16 Protein Expression Loss and Aberrant P53 Protein Expression in Pancreatic Cancer. Yonsei Med. J. 2005, 46, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Geradts, J.; Wilentz, R.E.; Roberts, H. Immunohistochemical [Corrected] Detection of the Alternate INK4a-Encoded Tumor Suppressor Protein p14(ARF) in Archival Human Cancers and Cell Lines Using Commercial Antibodies: Correlation with P16(INK4a) Expression. Mod. Pathol. 2001, 14, 1162–1168. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.Z.; Zhu, M.H.; Ni, C.R.; Li, F.M.; Zheng, J.M.; Gong, Z.J. Expression of Proteins in P53 (P14arf-Mdm2-P53-P21waf/Cip1) Pathway and Their Significance in Exocrine Pancreatic Carcinoma. Zhonghua Bing Li Xue Za Zhi 2004, 33, 130–134. [Google Scholar] [PubMed]
- Iwatate, Y.; Hoshino, I.; Ishige, F.; Itami, M.; Chiba, S.; Arimitsu, H.; Yanagibashi, H.; Nagase, H.; Yokota, H.; Takayama, W. Prognostic Significance of P16 Protein in Pancreatic Ductal Adenocarcinoma. Mol. Clin. Oncol. 2020, 13, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Oshima, M.; Okano, K.; Muraki, S.; Haba, R.; Maeba, T.; Suzuki, Y.; Yachida, S. Immunohistochemically Detected Expression of 3 Major Genes (CDKN2A/p16, TP53, and SMAD4/DPC4) Strongly Predicts Survival in Patients with Resectable Pancreatic Cancer. Ann. Surg. 2013, 258, 336–346. [Google Scholar] [CrossRef] [PubMed]
- Buckley, C.W.; O’Reilly, E.M. Next-Generation Therapies for Pancreatic Cancer. Expert Rev. Gastroenterol. Hepatol. 2024, 18, 55–72. [Google Scholar] [CrossRef] [PubMed]
- Golan, T.; Hammel, P.; Reni, M.; Van Cutsem, E.; Macarulla, T.; Hall, M.J.; Park, J.O.; Hochhauser, D.; Arnold, D.; Oh, D.Y.; et al. Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer. N. Engl. J. Med. 2019, 381, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Vaishampayan, U.N. An Evaluation of Olaparib for the Treatment of Pancreatic Cancer. Expert Opin. Pharmacother. 2021, 22, 521–526. [Google Scholar] [CrossRef] [PubMed]
- M’Baloula, J.; Tougeron, D.; Boileve, A.; Jeanbert, E.; Guimbaud, R.; Ben Abdelghani, M.; Durand, A.; Turpin, A.; Quesada, S.; Blanc, J.F.; et al. Olaparib as Maintenance Therapy in Non Resectable Pancreatic Adenocarcinoma Associated with Homologous Recombination Deficiency Profile: A French Retrospective Multicentric AGEO Real-World Study. Eur. J. Cancer 2024, 212, 115051. [Google Scholar] [CrossRef] [PubMed]
- Mehra, T.; Lupatsch, J.E.; Kossler, T.; Dedes, K.; Siebenhuner, A.R.; von Moos, R.; Wicki, A.; Schwenkglenks, M.E. Olaparib Not Cost-Effective as Maintenance Therapy for Platinum-Sensitive, BRCA1/2 Germline-Mutated Metastatic Pancreatic Cancer. PLoS ONE 2024, 19, e0301271. [Google Scholar] [CrossRef]
- Hong, D.S.; Fakih, M.G.; Strickler, J.H.; Desai, J.; Durm, G.A.; Shapiro, G.I.; Falchook, G.S.; Price, T.J.; Sacher, A.; Denlinger, C.S.; et al. KRAS(G12C) Inhibition with Sotorasib in Advanced Solid Tumors. N. Engl. J. Med. 2020, 383, 1207–1217. [Google Scholar] [CrossRef] [PubMed]
- Skoulidis, F.; Li, B.T.; Dy, G.K.; Price, T.J.; Falchook, G.S.; Wolf, J.; Italiano, A.; Schuler, M.; Borghaei, H.; Barlesi, F.; et al. Sotorasib for Lung Cancers with KRAS p.G12C Mutation. N. Engl. J. Med. 2021, 384, 2371–2381. [Google Scholar] [CrossRef] [PubMed]
- Ostrem, J.M.; Peters, U.; Sos, M.L.; Wells, J.A.; Shokat, K.M. K-Ras(G12C) Inhibitors Allosterically Control GTP Affinity and Effector Interactions. Nature 2013, 503, 548–551. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.C.; Li, C.Y.; Luo, L.B.; Li, X.; Jia, K.Y.; He, N.; Mao, S.Q.; Wang, W.Y.; Shao, C.C.; Liu, X.Y.; et al. Anti-tumor Efficacy of HRS-4642 and Its Potential Combination with Proteasome Inhibition in KRAS-Mutant Cancer. Cancer Cell 2024, 42, 1286–1300.e8. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, J.F.; Li, Y.T. New exploration of KRAS Inhibitors and the Mechanisms of Resistance. Exp. Hematol. Oncol. 2025, 14, 39. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research Network. Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell 2017, 32, 185–203.e13. [Google Scholar] [CrossRef] [PubMed]
- Collisson, E.A.; Sadanandam, A.; Olson, P.; Gibb, W.J.; Truitt, M.; Gu, S.; Cooc, J.; Weinkle, J.; Kim, G.E.; Jakkula, L.; et al. Subtypes of Pancreatic Ductal Adenocarcinoma and Their Differing Responses to Therapy. Nat. Med. 2011, 17, 500–503. [Google Scholar] [CrossRef] [PubMed]
- Moffitt, R.A.; Marayati, R.; Flate, E.L.; Volmar, K.E.; Loeza, S.G.; Hoadley, K.A.; Rashid, N.U.; Williams, L.A.; Eaton, S.C.; Chung, A.H.; et al. Virtual Microdissection Identifies Distinct Tumor- and Stroma-Specific Subtypes of Pancreatic Ductal Adenocarcinoma. Nat. Genet. 2015, 47, 1168–1178. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhang, G.; Liang, T. Subtyping for Pancreatic Cancer Precision Therapy. Trends Pharmacol. Sci. 2022, 43, 482–494. [Google Scholar] [CrossRef] [PubMed]
- Ruff, S.M.; Pawlik, T.M. Molecular Classification and Pathogenesis of Pancreatic Adenocarcinoma and Targeted Therapies: A Review. Front. Biosci. (Landmark Ed) 2024, 29, 101. [Google Scholar] [CrossRef] [PubMed]
- Waldman, A.D.; Fritz, J.M.; Lenardo, M.J. A Guide to Cancer Immunotherapy: From T Cell Basic Science to Clinical Practice. Nat. Rev. Immunol. 2020, 20, 651–668. [Google Scholar] [CrossRef] [PubMed]
- Ho, W.J.; Jaffee, E.M.; Zheng, L. The Tumour Microenvironment in Pancreatic Cancer—Clinical Challenges and Opportunities. Nat. Rev. Clin. Oncol. 2020, 17, 527–540. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Torphy, R.J.; Steiger, K.; Hongo, H.; Ritchie, A.J.; Kriegsmann, M.; Horst, D.; Umetsu, S.E.; Joseph, N.M.; McGregor, K.; et al. Pancreatic Ductal Adenocarcinoma Progression is Restrained by Stromal Matrix. J. Clin. Investig. 2020, 130, 4704–4709. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Liu, X.; Knolhoff, B.L.; Hegde, S.; Lee, K.B.; Jiang, H.; Fields, R.C.; Pachter, J.A.; Lim, K.H.; DeNardo, D.G. Development of Resistance to FAK Inhibition in Pancreatic Cancer is Linked to Stromal Depletion. Gut 2020, 69, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Grunwald, B.T.; Devisme, A.; Andrieux, G.; Vyas, F.; Aliar, K.; McCloskey, C.W.; Macklin, A.; Jang, G.H.; Denroche, R.; Romero, J.M.; et al. Spatially Confined Sub-Tumor Microenvironments in Pancreatic Cancer. Cell 2021, 184, 5577–5592.e18. [Google Scholar] [CrossRef] [PubMed]
- Raghavan, S.; Winter, P.S.; Navia, A.W.; Williams, H.L.; DenAdel, A.; Lowder, K.E.; Galvez-Reyes, J.; Kalekar, R.L.; Mulugeta, N.; Kapner, K.S.; et al. Microenvironment Drives Cell State, Plasticity, and Drug Response in Pancreatic Cancer. Cell 2021, 184, 6119–6137.e26. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Cheng, S.; Xu, Q.; Wang, Z. Management of Advanced Pancreatic Cancer through Stromal Depletion and Immune Modulation. Medicina 2022, 58, 1298. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Garcia, V.; Tawil, Y.; Wise, H.M.; Leslie, N.R. Mechanisms of PTEN Loss in Cancer: It’s All About Diversity. Semin. Cancer Biol. 2019, 59, 66–79. [Google Scholar] [CrossRef] [PubMed]
- Worby, C.A.; Dixon, J.E. Pten. Annu. Rev. Biochem. 2014, 83, 641–669. [Google Scholar] [CrossRef] [PubMed]
- Bignell, G.R.; Greenman, C.D.; Davies, H.; Butler, A.P.; Edkins, S.; Andrews, J.M.; Buck, G.; Chen, L.; Beare, D.; Latimer, C.; et al. Signatures of Mutation and Selection in the Cancer Genome. Nature 2010, 463, 893–898. [Google Scholar] [CrossRef] [PubMed]
- Leslie, N.R.; Foti, M. Non-Genomic Loss of PTEN Function in Cancer: Not in My Genes. Trends Pharmacol. Sci. 2011, 32, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Song, M.S.; Salmena, L.; Pandolfi, P.P. The Functions and Regulation of the PTEN Tumour Suppressor. Nat. Rev. Mol. Cell Biol. 2012, 13, 283–296. [Google Scholar] [CrossRef] [PubMed]
- Vanhaesebroeck, B.; Stephens, L.; Hawkins, P. PI3K signalling: The Path to Discovery and Understanding. Nat. Rev. Mol. Cell Biol. 2012, 13, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Fruman, D.A.; Chiu, H.; Hopkins, B.D.; Bagrodia, S.; Cantley, L.C.; Abraham, R.T. The PI3K Pathway in Human Disease. Cell 2017, 170, 605–635. [Google Scholar] [CrossRef] [PubMed]
- Malek, M.; Kielkowska, A.; Chessa, T.; Anderson, K.E.; Barneda, D.; Pir, P.; Nakanishi, H.; Eguchi, S.; Koizumi, A.; Sasaki, J.; et al. PTEN Regulates PI(3,4)P(2) Signaling Downstream of Class I PI3K. Mol. Cell 2017, 68, 566–580.e10. [Google Scholar] [CrossRef] [PubMed]
- Fritsch, R.; de Krijger, I.; Fritsch, K.; George, R.; Reason, B.; Kumar, M.S.; Diefenbacher, M.; Stamp, G.; Downward, J. RAS and RHO Families of GTPases Directly Regulate Distinct Phosphoinositide 3-Kinase Isoforms. Cell 2013, 153, 1050–1063. [Google Scholar] [CrossRef] [PubMed]
- Alimonti, A.; Carracedo, A.; Clohessy, J.G.; Trotman, L.C.; Nardella, C.; Egia, A.; Salmena, L.; Sampieri, K.; Haveman, W.J.; Brogi, E.; et al. Subtle Variations in Pten Dose Determine Cancer Susceptibility. Nat. Genet. 2010, 42, 454–458. [Google Scholar] [CrossRef] [PubMed]
- Berger, A.H.; Knudson, A.G.; Pandolfi, P.P. A Continuum Model for Tumour Suppression. Nature 2011, 476, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Escudero, I.; Oliver, M.D.; Andres-Pons, A.; Molina, M.; Cid, V.J.; Pulido, R. A comprehensive functional analysis of PTEN mutations: Implications in Tumor- and Autism-Related Syndromes. Hum. Mol. Genet. 2011, 20, 4132–4142. [Google Scholar] [CrossRef] [PubMed]
- Spinelli, L.; Black, F.M.; Berg, J.N.; Eickholt, B.J.; Leslie, N.R. Functionally Distinct Groups of Inherited PTEN Mutations in Autism and Tumour Syndromes. J. Med. Genet. 2015, 52, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Mighell, T.L.; Evans-Dutson, S.; O’Roak, B.J. A Saturation Mutagenesis Approach to Understanding PTEN Lipid Phosphatase Activity and Genotype-Phenotype Relationships. Am. J. Hum. Genet. 2018, 102, 943–955. [Google Scholar] [CrossRef] [PubMed]
- Carbonnier, V.; Leroy, B.; Rosenberg, S.; Soussi, T. Comprehensive Assessment of TP53 Loss of Function Using Multiple Combinatorial Mutagenesis Libraries. Sci. Rep. 2020, 10, 20368. [Google Scholar] [CrossRef] [PubMed]
- Christodoulou, E.; Nell, R.J.; Verdijk, R.M.; Gruis, N.A.; van der Velden, P.A.; van Doorn, R. Loss of Wild-Type CDKN2A Is an Early Event in the Development of Melanoma in FAMMM Syndrome. J. Investig. Dermatol. 2020, 140, 2298–2301.e3. [Google Scholar] [CrossRef] [PubMed]
- Shetzer, Y.; Kagan, S.; Koifman, G.; Sarig, R.; Kogan-Sakin, I.; Charni, M.; Kaufman, T.; Zapatka, M.; Molchadsky, A.; Rivlin, N.; et al. The Onset of P53 Loss of Heterozygosity is Differentially Induced in Various Stem Cell Types and May Involve the loss of Either Allele. Cell Death Differ. 2014, 21, 1419–1431. [Google Scholar] [CrossRef] [PubMed]
- Leslie, N.R.; Longy, M. Inherited PTEN Mutations and the Prediction of Phenotype. Semin. Cell Dev. Biol. 2016, 52, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Ying, H.; Elpek, K.G.; Vinjamoori, A.; Zimmerman, S.M.; Chu, G.C.; Yan, H.; Fletcher-Sananikone, E.; Zhang, H.; Liu, Y.; Wang, W.; et al. PTEN is a Major Tumor Suppressor in Pancreatic Ductal Adenocarcinoma and Regulates an NF-Kappab-Cytokine Network. Cancer Discov. 2011, 1, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Vidotto, T.; Melo, C.M.; Lautert-Dutra, W.; Chaves, L.P.; Reis, R.B.; Squire, J.A. Pan-Cancer Genomic Analysis Shows Hemizygous PTEN Loss Tumors are Associated with Immune Evasion and Poor Outcome. Sci. Rep. 2023, 13, 5049. [Google Scholar] [CrossRef] [PubMed]
- Boeck, S.; Jung, A.; Laubender, R.P.; Neumann, J.; Egg, R.; Goritschan, C.; Vehling-Kaiser, U.; Winkelmann, C.; Fischer von Weikersthal, L.; Clemens, M.R.; et al. EGFR Pathway Biomarkers in Erlotinib-Treated Patients with Advanced Pancreatic Cancer: Translational Results from the Randomised, Crossover Phase 3 Trial AIO-PK0104. Br. J. Cancer 2013, 108, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Yao, R.; Huang, F.; Liu, X.; Nie, W. High Level of PTEN Expression is Associated with Low-Grade Liver Metastasis and Satisfactory Patient Survival in Pancreatic Cancer. Arch. Med. Res. 2011, 42, 584–588. [Google Scholar] [CrossRef] [PubMed]
- Foo, W.C.; Rashid, A.; Wang, H.; Katz, M.H.; Lee, J.E.; Pisters, P.W.; Wolff, R.A.; Abbruzzese, J.L.; Fleming, J.B.; Wang, H. Loss of Phosphatase and Tensin Homolog Expression is Associated with Recurrence and Poor Prognosis in Patients with Pancreatic Ductal Adenocarcinoma. Hum. Pathol. 2013, 44, 1024–1030. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Yang, J.; Ren, J.; Tang, J. Expression of PTEN and KAI1 Tumor Suppressor Genes in Pancreatic Carcinoma and its Association with Different Pathological Factors. Oncol. Lett. 2016, 11, 559–562. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Lawson, D.; Cohen, C.; Siddiqui, M.T. Galectin-3 and PTEN Expression in Pancreatic Ductal Adenocarcinoma, Pancreatic Neuroendocrine Neoplasms and Gastrointestinal Tumors on Fine-Needle Aspiration Cytology. Acta Cytol. 2014, 58, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Pham, N.A.; Schwock, J.; Iakovlev, V.; Pond, G.; Hedley, D.W.; Tsao, M.S. Immunohistochemical Analysis of Changes in Signaling Pathway Activation Downstream of Growth Factor Receptors in Pancreatic Duct Cell Carcinogenesis. BMC Cancer 2008, 8, 43. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Xiong, J.; Li, T.; Yang, Z.; Li, X.; Li, K.; Wu, H.; Wang, C. Correlation Between Protein Expression of PTEN in Human Pancreatic Cancer and the Proliferation, Infiltration, Metastasis and Prognosis. J. Huazhong Univ. Sci. Technolog. Med. Sci. 2006, 26, 444–447. [Google Scholar] [CrossRef] [PubMed]
- Wartenberg, M.; Centeno, I.; Haemmig, S.; Vassella, E.; Zlobec, I.; Galvan, J.A.; Neuenschwander, M.; Schlup, C.; Gloor, B.; Lugli, A.; et al. PTEN Alterations of the Stromal Cells Characterise an Aggressive Subpopulation of Pancreatic Cancer with Enhanced Metastatic Potential. Eur. J. Cancer. 2016, 65, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Li, X.; Li, Y.; Chen, S.; Shen, X.; Dong, X.; Song, Y.; Zhang, X.; Huang, K. Expression of the PTEN/FOXO3a/PLZF Signalling Pathway in Pancreatic Cancer and its Significance in Tumourigenesis and Progression. Investig. New Drugs 2020, 38, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Leslie, N.R.; Yang, X.; Downes, C.P.; Weijer, C.J. PtdIns(3,4,5)P3-Dependent and -Independent Roles for PTEN in the Control of Cell Migration. Curr. Biol. 2007, 17, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Pallares, J.; Bussaglia, E.; Martinez-Guitarte, J.L.; Dolcet, X.; Llobet, D.; Rue, M.; Sanchez-Verde, L.; Palacios, J.; Prat, J.; Matias-Guiu, X. Immunohistochemical Analysis of PTEN in Endometrial Carcinoma: A Tissue Microarray Study with a Comparison of Four Commercial Antibodies in Correlation with Molecular Abnormalities. Mod. Pathol. 2005, 18, 719–727. [Google Scholar] [CrossRef] [PubMed]
- Hassin, O.; Oren, M. Drugging P53 in Cancer: One Protein, Many Targets. Nat. Rev. Drug Discov. 2023, 22, 127–144. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.R.; Rosenberg, S.C.; McCormick, F.; Malek, S. RAS-Targeted Therapies: Is the Undruggable Drugged? Nat. Rev. Drug Discov. 2020, 19, 533–552. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.C.; Oliveira, M.; Howell, S.J.; Dalenc, F.; Cortes, J.; Gomez Moreno, H.L.; Hu, X.; Jhaveri, K.; Krivorotko, P.; Loibl, S.; et al. Capivasertib in Hormone Receptor-Positive Advanced Breast Cancer. N. Engl. J. Med. 2023, 388, 2058–2070. [Google Scholar] [CrossRef] [PubMed]
- De Santis, M.C.; Gulluni, F.; Campa, C.C.; Martini, M.; Hirsch, E. Targeting PI3K Signaling in Cancer: Challenges and Advances. Biochim. Biophys. Acta Rev. Cancer 2019, 1871, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Wei, J.; Liu, P. Attacking the PI3K/Akt/mTOR Signaling Pathway for Targeted Therapeutic Treatment in Human Cancer. Semin. Cancer Biol. 2022, 85, 69–94. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Meng, L.H. Emerging Roles of Class I PI3K Inhibitors in Modulating Tumor Microenvironment and Immunity. Acta Pharmacol. Sin. 2020, 41, 1395–1402. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.; Broun, A.; Ge, K. Lysine Demethylase KDM6A in Differentiation, Development, and Cancer. Mol. Cell. Biol. 2020, 40, e00341-20. [Google Scholar] [CrossRef] [PubMed]
- van Haaften, G.; Dalgliesh, G.L.; Davies, H.; Chen, L.; Bignell, G.; Greenman, C.; Edkins, S.; Hardy, C.; O’Meara, S.; Teague, J.; et al. Somatic Mutations of the Histone H3K27 Demethylase Gene UTX in Human Cancer. Nat. Genet. 2009, 41, 521–523. [Google Scholar] [CrossRef] [PubMed]
- Andricovich, J.; Perkail, S.; Kai, Y.; Casasanta, N.; Peng, W.; Tzatsos, A. Loss of KDM6A Activates Super-Enhancers to Induce Gender-Specific Squamous-like Pancreatic Cancer and Confers Sensitivity to BET Inhibitors. Cancer Cell 2018, 33, 512–526 e518. [Google Scholar] [CrossRef] [PubMed]
- Kalisz, M.; Bernardo, E.; Beucher, A.; Maestro, M.A.; Del Pozo, N.; Millan, I.; Haeberle, L.; Schlensog, M.; Safi, S.A.; Knoefel, W.T.; et al. HNF1A Recruits KDM6A to Activate Differentiated Acinar Cell Programs that Suppress Pancreatic Cancer. EMBO J. 2020, 39, e102808. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Shimada, S.; Akiyama, Y.; Ishikawa, Y.; Ogura, T.; Ogawa, K.; Ono, H.; Mitsunori, Y.; Ban, D.; Kudo, A.; et al. Loss of KDM6A Characterizes a Poor Prognostic Subtype of Human Pancreatic Cancer and Potentiates HDAC Inhibitor Lethality. Int. J. Cancer 2019, 145, 192–205. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Jin, L.; Kim, H.S.; Tian, F.; Yi, Z.; Bedi, K.; Ljungman, M.; Pasca di Magliano, M.; Crawford, H.; Shi, J. KDM6A Loss Recruits Tumor-Associated Neutrophils and Promotes Neutrophil Extracellular Trap Formation in Pancreatic Cancer. Cancer Res. 2022, 82, 4247–4260. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Q.; Kong, F.; Kong, X.; Jiang, T.; Ma, M.; Zheng, S.; Guo, J.; Xie, K. Loss of GATA6-Mediated Up-Regulation of UTX Promotes Pancreatic Tumorigenesis and Progression. Genes Dis. 2024, 11, 921–934. [Google Scholar] [CrossRef] [PubMed]
- Mullen, J.; Kato, S.; Sicklick, J.K.; Kurzrock, R. Targeting ARID1A Mutations in Cancer. Cancer Treat. Rev. 2021, 100, 102287. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.N.; Roberts, C.W. ARID1A Mutations in Cancer: Another Epigenetic Tumor Suppressor? Cancer Discov. 2013, 3, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.C.; Nassour, I.; Xiao, S.; Zhang, S.; Luo, X.; Lee, J.; Li, L.; Sun, X.; Nguyen, L.H.; Chuang, J.C.; et al. SWI/SNF Component ARID1A Restrains Pancreatic Neoplasia Formation. Gut 2019, 68, 1259–1270. [Google Scholar] [CrossRef] [PubMed]
- Fukunaga, Y.; Fukuda, A.; Omatsu, M.; Namikawa, M.; Sono, M.; Masuda, T.; Araki, O.; Nagao, M.; Yoshikawa, T.; Ogawa, S.; et al. Loss of Arid1a and Pten in Pancreatic Ductal Cells Induces Intraductal Tubulopapillary Neoplasm via the YAP/TAZ Pathway. Gastroenterology 2022, 163, 466–480.e6. [Google Scholar] [CrossRef] [PubMed]
- Numata, M.; Morinaga, S.; Watanabe, T.; Tamagawa, H.; Yamamoto, N.; Shiozawa, M.; Nakamura, Y.; Kameda, Y.; Okawa, S.; Rino, Y.; et al. The Clinical Significance of SWI/SNF Complex in Pancreatic Cancer. Int. J. Oncol. 2013, 42, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, C.; Yu, S.; Jia, C.; Yan, J.; Lu, Z.; Chen, J. Loss of ARID1A Expression Correlates With Tumor Differentiation and Tumor Progression Stage in Pancreatic Ductal Adenocarcinoma. Technol. Cancer Res. Treat. 2018, 17, 1533034618754475. [Google Scholar] [CrossRef] [PubMed]
- Kimura, Y.; Fukuda, A.; Ogawa, S.; Maruno, T.; Takada, Y.; Tsuda, M.; Hiramatsu, Y.; Araki, O.; Nagao, M.; Yoshikawa, T.; et al. ARID1A Maintains Differentiation of Pancreatic Ductal Cells and Inhibits Development of Pancreatic Ductal Adenocarcinoma in Mice. Gastroenterology 2018, 155, 194–209.e2. [Google Scholar] [CrossRef] [PubMed]
- Haeusgen, W.; Herdegen, T.; Waetzig, V. The bottleneck of JNK signaling: Molecular and Functional Characteristics of MKK4 and MKK7. Eur. J. Cell Biol. 2011, 90, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Davies, C.C.; Harvey, E.; McMahon, R.F.; Finegan, K.G.; Connor, F.; Davis, R.J.; Tuveson, D.A.; Tournier, C. Impaired JNK Signaling Cooperates with KrasG12D Expression to Accelerate Pancreatic Ductal Adenocarcinoma. Cancer Res. 2014, 74, 3344–3356. [Google Scholar] [CrossRef] [PubMed]
- Handra-Luca, A.; Lesty, C.; Hammel, P.; Sauvanet, A.; Rebours, V.; Martin, A.; Fagard, R.; Flejou, J.F.; Faivre, S.; Bedossa, P.; et al. Biological and Prognostic Relevance of Mitogen-Activated Protein Kinases in Pancreatic Adenocarcinoma. Pancreas 2012, 41, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.D.; Zhang, Z.W.; Wu, H.W.; Liang, Z.Y. A New Prognosis Prediction Model Combining TNM stage with MAP2K4 and JNK in Postoperative Pancreatic Cancer Patients. Pathol. Res. Pract. 2021, 217, 153313. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhou, L.; Yang, G.; Liang, Z.Y.; Zhou, W.X.; You, L.; Yuan, D.; Li, B.Q.; Guo, J.C.; Zhao, Y.P. Clinicopathological and Prognostic Significance of MKK4 and MKK7 in Resectable Pancreatic Ductal Adenocarcinoma. Hum. Pathol. 2019, 86, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Xin, W.; Yun, K.J.; Ricci, F.; Zahurak, M.; Qiu, W.; Su, G.H.; Yeo, C.J.; Hruban, R.H.; Kern, S.E.; Iacobuzio-Donahue, C.A. MAP2K4/MKK4 expression in Pancreatic Cancer: Genetic Validation of Immunohistochemistry and Relationship to Disease Course. Clin. Cancer Res. 2004, 10, 8516–8520. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, S.A.; Schultz, C.W.; Azimi-Sadjadi, A.; Brody, J.R.; Pishvaian, M.J. ATM Dysfunction in Pancreatic Adenocarcinoma and Associated Therapeutic Implications. Mol. Cancer Ther. 2019, 18, 1899–1908. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Paull, T.T. Cellular Functions of the Protein Kinase ATM and Their Relevance to Human Disease. Nat. Rev. Mol. Cell Biol. 2021, 22, 796–814. [Google Scholar] [CrossRef] [PubMed]
- Drosos, Y.; Escobar, D.; Chiang, M.Y.; Roys, K.; Valentine, V.; Valentine, M.B.; Rehg, J.E.; Sahai, V.; Begley, L.A.; Ye, J.; et al. ATM-Deficiency Increases Genomic Instability and Metastatic Potential in a Mouse Model of Pancreatic Cancer. Sci. Rep. 2017, 7, 11144. [Google Scholar] [CrossRef] [PubMed]
- Russell, R.; Perkhofer, L.; Liebau, S.; Lin, Q.; Lechel, A.; Feld, F.M.; Hessmann, E.; Gaedcke, J.; Guthle, M.; Zenke, M.; et al. Loss of ATM Accelerates Pancreatic Cancer Formation and Epithelial-Mesenchymal Transition. Nat. Commun. 2015, 6, 7677. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Saka, B.; Knight, S.; Borges, M.; Childs, E.; Klein, A.; Wolfgang, C.; Herman, J.; Adsay, V.N.; Hruban, R.H.; et al. Having Pancreatic Cancer with Tumoral Loss of ATM and Normal TP53 Protein Expression is Associated with a Poorer Prognosis. Clin. Cancer Res. 2014, 20, 1865–1872. [Google Scholar] [CrossRef] [PubMed]
- Paranal, R.M.; Jiang, Z.; Hutchings, D.; Kryklyva, V.; Gauthier, C.; Fujikura, K.; Nanda, N.; Huang, B.; Skaro, M.; Wolfgang, C.L.; et al. Somatic Loss of ATM is a Late Event in Pancreatic Tumorigenesis. J. Pathol. 2023, 260, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Liang, Q.; Shi, J. Progress of ATM Inhibitors: Opportunities and Challenges. Eur. J. Med. Chem. 2024, 277, 116781. [Google Scholar] [CrossRef] [PubMed]
- Perkhofer, L.; Gout, J.; Roger, E.; Kude de Almeida, F.; Baptista Simoes, C.; Wiesmuller, L.; Seufferlein, T.; Kleger, A. DNA Damage Repair as a Target in Pancreatic Cancer: State-of-the-art and Future Perspectives. Gut 2021, 70, 606–617. [Google Scholar] [CrossRef] [PubMed]
- Perkhofer, L.; Schmitt, A.; Romero Carrasco, M.C.; Ihle, M.; Hampp, S.; Ruess, D.A.; Hessmann, E.; Russell, R.; Lechel, A.; Azoitei, N.; et al. ATM Deficiency Generating Genomic Instability Sensitizes Pancreatic Ductal Adenocarcinoma Cells to Therapy-Induced DNA Damage. Cancer Res. 2017, 77, 5576–5590. [Google Scholar] [CrossRef] [PubMed]
- van Eijck, C.W.F.; Real, F.X.; Malats, N.; Vadgama, D.; van den Bosch, T.P.P.; Doukas, M.; van Eijck, C.H.J.; Mustafa, D.A.M.; Dutch Pancreatic Cancer, G. GATA6 Identifies An Immune-Enriched Phenotype Linked to Favorable Outcomes in Patients with Pancreatic Cancer Undergoing Upfront Surgery. Cell Rep. Med. 2024, 5, 101557. [Google Scholar] [CrossRef] [PubMed]
- Kwei, K.A.; Bashyam, M.D.; Kao, J.; Ratheesh, R.; Reddy, E.C.; Kim, Y.H.; Montgomery, K.; Giacomini, C.P.; Choi, Y.L.; Chatterjee, S.; et al. Genomic Profiling Identifies GATA6 as a Candidate Oncogene Amplified In Pancreatobiliary Cancer. PLoS Genet. 2008, 4, e1000081. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Luo, M.; Lakkur, S.; Lucito, R.; Iacobuzio-Donahue, C.A. Frequent Genomic Copy Number Gain and Overexpression of GATA-6 in Pancreatic Carcinoma. Cancer Biol. Ther. 2008, 7, 1593–1601. [Google Scholar] [CrossRef] [PubMed]
- Kokumai, T.; Omori, Y.; Ishida, M.; Ohtsuka, H.; Mizuma, M.; Nakagawa, K.; Maeda, C.; Ono, Y.; Mizukami, Y.; Miura, S.; et al. GATA6 and CK5 Stratify the Survival of Patients With Pancreatic Cancer Undergoing Neoadjuvant Chemotherapy. Mod. Pathol. 2023, 36, 100102. [Google Scholar] [CrossRef] [PubMed]
- Shibayama, T.; Hayashi, A.; Toki, M.; Kitahama, K.; Ho, Y.J.; Kato, K.; Yamada, T.; Kawamoto, S.; Kambayashi, K.; Ochiai, K.; et al. Combination Immunohistochemistry for CK5/6, p63, GATA6, and HNF4a Predicts Clinical Outcome In Treatment-Naive Pancreatic Ductal Adenocarcinoma. Sci. Rep. 2024, 14, 15598. [Google Scholar] [CrossRef] [PubMed]
- Tu, B.; Yao, J.; Ferri-Borgogno, S.; Zhao, J.; Chen, S.J.; Wang, Q.Y.; Yan, L.; Zhou, X.; Zhu, C.H.; Bang, S.M.; et al. YAP1 Oncogene is a Context-Specific Driver for Pancreatic Ductal Adenocarcinoma. JCI Insight 2019, 4, e130811. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, A.; Yao, W.T.; Ying, H.Q.; Hua, S.J.; Liewen, A.; Wang, Q.Y.; Zhong, Y.; Wu, C.J.; Sadanandam, A.; Hu, B.L.; et al. Yap1 Activation Enables Bypass of Oncogenic Kras Addiction in Pancreatic Cancer. Cell 2014, 158, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, S.; Huang, H.Y.; Lin, Z.Y.; Ranieri, M.; Li, S.; Sahu, S.; Liu, Y.Z.; Ban, Y.; Guidry, K.; Hu, H.; et al. Genome-Wide CRISPR Screens Identify Multiple Synthetic Lethal Targets That Enhance KRAS Inhibitor Efficacy. Cancer Res. 2023, 83, 4095–4111. [Google Scholar] [CrossRef] [PubMed]
- Tamagawa, H.; Fujii, M.; Togasaki, K.; Seino, T.; Kawasaki, S.; Takano, A.; Toshimitsu, K.; Takahashi, S.; Ohta, Y.; Matano, M.; et al. Wnt-deficient and Hypoxic Environment Orchestrates Squamous Reprogramming of human Pancreatic Ductal Adenocarcinoma. Nat. Cell Biol. 2024, 26, 1759–1772. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Luo, L.; Li, R.; Zhao, Y.; Zhang, L.; Pesic, M.; Cai, L.; Li, L. New Insight into the Role of SMAD4 Mutation/Deficiency in the Prognosis and Therapeutic Resistance of Pancreatic Ductal Adenocarcinomas. Biochim. Biophys. Acta Rev. Cancer 2024, 1879, 189220. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Kobayashi, S.; Qiao, W.; Li, C.; Xiao, C.; Radaeva, S.; Stiles, B.; Wang, R.H.; Ohara, N.; Yoshino, T.; et al. Induction of Intrahepatic Cholangiocellular Carcinoma by Liver-Specific Disruption of Smad4 and Pten in Mice. J. Clin. Investig. 2006, 116, 1843–1852. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.C.; Wang, T.L.; Shih Ie, M. The Emerging Roles of ARID1A in Tumor Suppression. Cancer Biol. Ther. 2014, 15, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Trotman, L.C.; Pandolfi, P.P. PTEN and p53: Who will Get the Upper Hand? Cancer Cell 2003, 3, 97–99. [Google Scholar] [CrossRef] [PubMed]
- Pappas, K.; Xu, J.; Zairis, S.; Resnick-Silverman, L.; Abate, F.; Steinbach, N.; Ozturk, S.; Saal, L.H.; Su, T.; Cheung, P.; et al. p53 Maintains Baseline Expression of Multiple Tumor Suppressor Genes. Mol. Cancer Res. 2017, 15, 1051–1062. [Google Scholar] [CrossRef] [PubMed]
- Morran, D.C.; Wu, J.; Jamieson, N.B.; Mrowinska, A.; Kalna, G.; Karim, S.A.; Au, A.Y.; Scarlett, C.J.; Chang, D.K.; Pajak, M.Z.; et al. Targeting mTOR Dependency in Pancreatic Cancer. Gut 2014, 63, 1481–1489. [Google Scholar] [CrossRef] [PubMed]
- Revia, S.; Seretny, A.; Wendler, L.; Banito, A.; Eckert, C.; Breuer, K.; Mayakonda, A.; Lutsik, P.; Evert, M.; Ribback, S.; et al. Histone H3K27 Demethylase KDM6A is an Epigenetic Gatekeeper of mTORC1 Signalling in Cancer. Gut 2022, 71, 1613–1628. [Google Scholar] [CrossRef] [PubMed]
- Hassan, Z.; Schneeweis, C.; Wirth, M.; Veltkamp, C.; Dantes, Z.; Feuerecker, B.; Ceyhan, G.O.; Knauer, S.K.; Weichert, W.; Schmid, R.M.; et al. MTOR Inhibitor-Based Combination Therapies for Pancreatic Cancer. Br. J. Cancer 2018, 118, 366–377. [Google Scholar] [CrossRef] [PubMed]
- Belli, C.; Repetto, M.; Anand, S.; Porta, C.; Subbiah, V.; Curigliano, G. The Emerging Role of PI3K inhibitors For Solid Tumour Treatment And Beyond. Br. J. Cancer 2023, 128, 2150–2162. [Google Scholar] [CrossRef] [PubMed]
- Pervanidis, K.A.; D’Angelo, G.D.; Weisner, J.; Brandherm, S.; Rauh, D. Akt Inhibitor Advancements: From Capivasertib Approval to Covalent-Allosteric Promises. J. Med. Chem. 2024, 67, 6052–6063. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.J.; Xu, X.Y.; Zhong, X.D.; Liu, Y.J.; Zhu, M.H.; Tao, F.; Li, C.Y.; She, Q.S.; Yang, G.J.; Chen, J. The Role of Lysine-Specific Demethylase 6A (KDM6A) in Tumorigenesis and its Therapeutic Potentials in Cancer therapy. Bioorg. Chem. 2023, 133, 106409. [Google Scholar] [CrossRef] [PubMed]
- Hirt, C.K.; Booij, T.H.; Grob, L.; Simmler, P.; Toussaint, N.C.; Keller, D.; Taube, D.; Ludwig, V.; Goryachkin, A.; Pauli, C.; et al. Drug Screening and Genome Editing in Human Pancreatic Cancer Organoids Identifies Drug-Gene Interactions and Candidates for Off-Label Treatment. Cell Genom. 2022, 2, 100095. [Google Scholar] [CrossRef] [PubMed]
- Botta, G.P.; Kato, S.; Patel, H.; Fanta, P.; Lee, S.; Okamura, R.; Kurzrock, R. SWI/SNF complex alterations as a biomarker of immunotherapy efficacy in pancreatic cancer. JCI Insight 2021, 6, e150453. [Google Scholar] [CrossRef] [PubMed]
- Tomihara, H.; Carbone, F.; Perelli, L.; Huang, J.K.; Soeung, M.; Rose, J.L.; Robinson, F.S.; Lissanu Deribe, Y.; Feng, N.; Takeda, M.; et al. Loss of ARID1A Promotes Epithelial-Mesenchymal Transition and Sensitizes Pancreatic Tumors to Proteotoxic Stress. Cancer Res. 2021, 81, 332–343. [Google Scholar] [CrossRef] [PubMed]
Study Reference | Xu et al. 2019 [25] | Masugi et al. 2023 [26] | Biankin et al. 2002 [27] | Jeong et al. 2005 [28] | Geradts et al. 2001 [29] | Yu et al. 2004 [30] | Iwatate et al. 2020 [31] | Oshima et al. 2013 [32] |
---|---|---|---|---|---|---|---|---|
SMAD4 loss (% of samples) | 71 | 55 | 53 | 60 | ||||
p16/INK4A loss (% of samples) | 75 | 85 | 69 | 46 | 100 | 61 | 53 | 67 |
p14/ARF loss (% of samples) | 68 | 65 |
Study Reference | Sample Size | Number of Samples with Stated PTEN Expression | % Patients with Low/Negative Expression | ||
---|---|---|---|---|---|
Positive/High | Low | Negative/<10% | |||
Ying et al. 2011 [73] | 54 | 16 | 38 | 70% | |
Boeck et al. 2013 [75] | 171 | 141 | 30 | 17.5% | |
Feng et al. 2011 [76] | 172 | 78 | 94 | 55% | |
Foo et al. 2013 [77] | 133 | 99/56 | 43 | 34 | 58% |
Huang et al. 2016 [78] | 50 | 19 | 31 | 62% | |
Jiang et al. 2014 [79] | 33 | 7 | 26 | 79% | |
Pham et al. 2008 [80] | 26 | 11 | 15 | 58% | |
Tao et al. 2006 [81] | 41 | 16/7 | 9 | 25 | 61% |
Wartenberg et al. 2016 [82] | 117 | 47 | 70 | 60% | |
Zhang et al. 2020 [83] | 69 | 11 | 58 | 84% |
Study Reference | Sample Size | Number of Samples with Stated KDM6A Expression | % Patients with Low/Negative Expression | |
---|---|---|---|---|
Positive/High | Low/Negative/<10% | |||
Kalisz et al. 2020 [95] | 208 | 46 | 162 | 78% |
Watanabe et al. 2018 [96] | 103 | 77 | 26 | 25% |
Yang et al. 2022 [97] | 13 | 4 | 9 | 69% |
Zhang et al. 2024 [98] | 60 | 42 | 18 | 30% |
Study Reference | Sample Size | Number of Samples with stated ARID1A Expression | % Patients with Low/Negative Expression | |
---|---|---|---|---|
Positive/High | Low/Negative/<10% | |||
Numata et al. 2013 [103] | 39 | 19 | 20 | 51% |
Zhang et al. 2018 [104] | 73 | 54 | 19 | 26% |
Kimura et al. 2018 [105] | 44 | 28 | 16 | 36% |
Trial | Phase | Therapeutic Drug(s) | Target(s) | Details |
---|---|---|---|---|
NCT06078800 | 1 | YL-17231 | KRAS | Non-mutation-specific inhibitor |
NCT06607185 | 1 | LY4066434 | KRAS | Non-mutation-specific inhibitor. Estimated 750 participants |
NCT05057013 | 1/2a | HMBD001 | HER3 | MAb |
NCT03065062 | 1 | Palbociclib and Gedatolisib | CDK4/6 PI3K/mTOR | |
NCT02433626 | 1 | COTI-2 | p53 and PI3K | Re-activator of mutant p53 also activates PI3K signalling |
NCT03682289 | 2 | Ceralasertib | ATR | Combined with PARP and PDL1 inhibitors. Informed by ARID1A IHC status |
NCT05068752 | 2 | Vemurafenib | BRAF | Combined with Sorafenib multikinase inhibitor |
NCT06770452 | 2 | HRS-4642 | KRAS G12D | Patients with KRAS G12D mutation. Combined with EGFR MAb Nimotuzumab |
NCT07026916 | 2 | GFH375 | KRAS G12D | Patients with KRAS G12D mutation |
NCT06998940 | 3 | Panitumumab | EGFR | PDAC without KRAS mutation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porcza, L.M.; Ballesteros-Cillero, R.; Lam, L.T.; Maiello, C.; Leslie, N.R. Drivers of Pancreatic Cancer: Beyond the Big 4. Cancers 2025, 17, 2354. https://doi.org/10.3390/cancers17142354
Porcza LM, Ballesteros-Cillero R, Lam LT, Maiello C, Leslie NR. Drivers of Pancreatic Cancer: Beyond the Big 4. Cancers. 2025; 17(14):2354. https://doi.org/10.3390/cancers17142354
Chicago/Turabian StylePorcza, Laura M., Rafael Ballesteros-Cillero, Lok To Lam, Cristina Maiello, and Nicholas R. Leslie. 2025. "Drivers of Pancreatic Cancer: Beyond the Big 4" Cancers 17, no. 14: 2354. https://doi.org/10.3390/cancers17142354
APA StylePorcza, L. M., Ballesteros-Cillero, R., Lam, L. T., Maiello, C., & Leslie, N. R. (2025). Drivers of Pancreatic Cancer: Beyond the Big 4. Cancers, 17(14), 2354. https://doi.org/10.3390/cancers17142354