The Role of Genomic Scores in the Management of Prostate Cancer Patients: A Comprehensive Narrative Review
Simple Summary
Abstract
1. Introduction
2. Review
3. Polygenic Risk Scores
3.1. From Monogenic Testing to PRSs
3.2. Clinical Applications and Validation of PRSs
3.3. Scientific Gap
4. Tumor-Derived Genomic Classifiers
4.1. Prolaris
4.2. Oncotype DX GPS
4.3. Decipher
4.4. Scientific Gap
5. Current Guidelines Recommendations
GC | Setting and Tissue Type | Objective | Study |
---|---|---|---|
Prolaris | Post-treatment (RP tissue) | BCR and PCSM | Cuzick et al., Lancet Oncol 2011 [42] |
BCR | Cooperberg et al., JCO 2013 [41] | ||
Guidance for RT decision with/without ADT | Tward et al., Clin Genitourin Cancer 2021 [43] | ||
Response to dose-escalated RT | Tward et al., Int J Radiat Oncol Biol Phys 2022 [44] | ||
BCR and PCSM | Sommariva et al., Eur Urol 2016 [45] | ||
Pre-treatment (biopsy tissue) | AS eligibility | Cuzick et al., Br J Cancer 2012 [29] | |
Long-term mortality | Cuzick et al., Br J Cancer 2015 [30] | ||
Support for the initial treatment decision | Hu et al., JCO PO 2018 [47] | ||
Metastatic risk | Hutten et al., JCO PO 2024 [31] | ||
Oncotype DX GPS | Post-treatment (RP tissue) | Metastasis and PCSM | Brooks et al., JCO PO 2021 [51] |
Metastasis and PCSM | Van den Eeden et al., Eur Urol 2018 [52] | ||
Pre-treatment (biopsy tissue) | Adverse pathology | Cooperberg et al., J Urol 2013 [49] | |
Adverse pathology | Klein et al., Eur Urol 2014 [33] | ||
AS eligibility | Badani et al., Urol Pract 2015 [32] | ||
Decipher | Post-treatment (RP tissue) | Metastasis | Erho et al., PLoS ONE 2013 [36] |
Metastatic risk | Karnes et al., J Urol 2013 [38] | ||
Prognostic stratification | Ross et al., Eur Urol 2016 [59] | ||
BCR and metastasis post-RP RT | Den et al., Int J Radiat Oncol Biol Phys 2014 [55] | ||
Post-RP RT intensification benefit | Pollack et al., JCO 2025 [39] | ||
Pre-treatment (biopsy tissue) | Metastasis post-RP | Klein et al., Eur Urol 2015 [37] | |
Metastasis post-RP | Klein et al., Urology 2016 [28] | ||
Metastatic risk post-RT+ADT | Nguyen et al., Prostate Cancer Prostatic Dis 2017 [56] | ||
AS selection | Zhu et al., Eur Urol Oncol 2024 [34] |
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Eeles, R.A.; Olama, A.A.A.; Benlloch, S.; Saunders, E.J.; Leongamornlert, D.A.; Tymrakiewicz, M.; Ghoussaini, M.; Luccarini, C.; Dennis, J.; Jugurnauth-Little, S.; et al. Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. Nat. Genet. 2013, 45, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, F.R.; Olama, A.A.A.; Berndt, S.I.; Benlloch, S.; Ahmed, M.; Saunders, E.J.; Dadaev, T.; Leongamornlert, D.; Anokian, E.; Cieza-Borrella, C.; et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat. Genet. 2018, 50, 928–936. [Google Scholar] [CrossRef] [PubMed]
- Conti, D.V.; Darst, B.F.; Moss, L.C.; Saunders, E.J.; Sheng, X.; Chou, A.; Fredrick, R.S.; Olama, A.A.A.; Benlloch, S.; Dadaev, T.; et al. Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nat. Genet. 2021, 53, 65–75. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Roy, H.K.; Lynch, H.T. Lynch syndrome in the 21st century: Clinical perspectives. QJM Int. J. Med. 2016, 109, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Torkamani, A.; Wineinger, N.E.; Topol, E.J. The personal and clinical utility of polygenic risk scores. Nat. Rev. Genet. 2018, 19, 581–590. [Google Scholar] [CrossRef]
- Evans, D.M.; Visscher, P.M.; Wray, N.R. Harnessing the information contained within genome-wide association studies to improve individual prediction of complex disease risk. Hum. Mol. Genet. 2009, 18, 3525–3531. [Google Scholar] [CrossRef]
- Wang, Y.; Tsuo, K.; Kanai, M.; Neale, B.M.; Martin, A.R. Challenges and Opportunities for Developing More Generalizable Polygenic Risk Scores. Annu. Rev. Biomed. Data Sci. 2022, 5, 293–320. [Google Scholar] [CrossRef]
- Chatterjee, N.; Shi, J.; García-Closas, M. Developing and evaluating polygenic risk prediction models for stratified disease prevention. Nat. Rev. Genet. 2016, 17, 392–406. [Google Scholar] [CrossRef]
- Purcell, S.M.; Wray, N.R.; Stone, J.L.; Visscher, P.M.; O’Donovan, M.C.; Sullivan, P.F.; Sklar, P. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009, 460, 748–752. [Google Scholar]
- Lambert, J.C.; Ibrahim-Verbaas, C.A.; Harold, D.; Naj, A.C.; Sims, R.; Bellenguez, C.; DeStafano, A.L.; Bis, J.C.; Beecham, G.W.; Grenier-Boley, B.; et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 2013, 45, 1452–1458. [Google Scholar] [CrossRef]
- Lambert, S.A.; Gil, L.; Jupp, S.; Ritchie, S.C.; Xu, Y.; Buniello, A.; McMahon, A.; Abraham, G.; Chapman, M.; Parkinson, H.; et al. The Polygenic Score Catalog as an open database for reproducibility and systematic evaluation. Nat. Genet. 2021, 53, 420–425. [Google Scholar] [CrossRef]
- Sharp, S.A.; Rich, S.S.; Wood, A.R.; Jones, S.E.; Beaumont, R.N.; Harrison, J.W.; Schneider, D.A.; Locke, J.M.; Tyrrell, J.; Weedon, M.N.; et al. Development and Standardization of an Improved Type 1 Diabetes Genetic Risk Score for Use in Newborn Screening and Incident Diagnosis. Diabetes Care 2019, 42, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.J.; Kim, E.; Woo, E.; Song, S.H.; Kim, J.K.; Lee, H.; Lee, S.; Hong, S.K.; Byun, S.-S. Evaluation of Polygenic Risk Scores for Prediction of Prostate Cancer in Korean Men. Front. Oncol. 2020, 10, 583625. [Google Scholar] [CrossRef] [PubMed]
- Mars, N.; Koskela, J.T.; Ripatti, P.; Kiiskinen, T.T.J.; Havulinna, A.S.; Lindbohm, J.V.; Ahola-Olli, A.; Kurki, M.; Karjalainen, J.; Palta, P.; et al. Polygenic and clinical risk scores and their impact on age at onset and prediction of cardiometabolic diseases and common cancers. Nat. Med. 2020, 26, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Aly, M.; Wiklund, F.; Xu, J.; Isaacs, W.B.; Eklund, M.; D’Amato, M.; Adolfsson, J.; Grönberg, H. Polygenic Risk Score Improves Prostate Cancer Risk Prediction: Results from the Stockholm-1 Cohort Study. Eur. Urol. 2011, 60, 21–28. [Google Scholar] [CrossRef]
- Schaffer, K.R.; Shi, M.; Shelley, J.P.; Tosoian, J.J.; Kachuri, L.; Witte, J.S.; Mosley, J.D. A Polygenic Risk Score for Prostate Cancer Risk Prediction. JAMA Intern. Med. 2023, 183, 386–388. [Google Scholar] [CrossRef] [PubMed]
- McHugh, J.K.; Bancroft, E.K.; Saunders, E.; Brook, M.N.; McGrowder, E.; Wakerell, S.; James, D.; Rageevakumar, M.; Benton, B.; Taylor, N.; et al. Assessment of a Polygenic Risk Score in Screening for Prostate Cancer. N. Engl. J. Med. 2025, 392, 1406–1417. [Google Scholar] [CrossRef]
- Goss, L.B.; Liu, M.; Zheng, Y.; Guo, B.; Conti, D.V.; Haiman, C.A.; Kachuri, L.; Catalona, W.J.; Witte, J.S.; Lin, D.W.; et al. Polygenic Risk Score and Upgrading in Patients With Prostate Cancer Receiving Active Surveillance. JAMA Oncol. 2025, 11, 168–171. [Google Scholar] [CrossRef]
- Eastham, J.A.; Auffenberg, G.B.; Barocas, D.A.; Chou, R.; Crispino, T.; Davis, J.W.; Eggener, S.; Horwitz, E.M.; Kane, C.J.; Kirkby, E.; et al. Clinically Localized Prostate Cancer: AUA/ASTRO Guideline, Part I: Introduction, Risk Assessment, Staging, and Risk-Based Management. J. Urol. 2022, 208, 10–18. [Google Scholar] [CrossRef]
- Fizazi, K.; Gillessen, S. Updated treatment recommendations for prostate cancer from the ESMO Clinical Practice Guideline considering treatment intensification and use of novel systemic agents. Ann. Oncol. 2023, 34, 557–563. [Google Scholar] [CrossRef]
- Cornford, P.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Brunckhorst, O.; Darraugh, J.; Eberli, D.; Meerleer, G.D.; Santis, M.D.; Farolfi, A.; et al. EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer—2024 Update. Part I: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2024, 86, 148–163. [Google Scholar] [CrossRef] [PubMed]
- Daly, M.B.; Pal, T.; Maxwell, K.N.; Churpek, J.; Kohlmann, W.; AlHilli, Z.; Arun, B.; Buys, S.S.; Cheng, H.; Domchek, S.M.; et al. NCCN Guidelines® Insights: Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, Version 2.2024: Featured Updates to the NCCN Guidelines. J. Natl. Compr. Cancer Netw. 2023, 21, 1000–1010. [Google Scholar] [CrossRef] [PubMed]
- Allelica. Available online: https://eu.allelica.com/ (accessed on 22 May 2025).
- Delve into Your DNA: Uncover Cancer Risks with Vitall’s Polygenic Risk Scoring Tests|Vitall.co.uk. Available online: https://vitall.co.uk/health-tests-blog/delve-into-your-dna-uncover-cancer-risks-with-vitalls-polygenic-risk-scoring-tests (accessed on 22 May 2025).
- Zhu, M.; Zhu, X.; Han, Y.; Ma, Z.; Ji, C.; Wang, T.; Yan, C.W.; Song, C.; Yu, C.Q.; Sun, D.J.Y.; et al. Polygenic risk scores for pan-cancer risk prediction in the Chinese population: A population-based cohort study based on the China Kadoorie Biobank. PLoS Med. 2025, 22, e1004534. [Google Scholar] [CrossRef]
- Eggener, S.E.; Rumble, R.B.; Armstrong, A.J.; Morgan, T.M.; Crispino, T.; Cornford, P.; van der Kwast, T.; Grignon, D.J.; Rai, A.J.; Agarwal, N.; et al. Molecular biomarkers in localized prostate cancer: ASCO guideline. J. Clin. Oncol. 2020, 38, 1474–1494. [Google Scholar] [CrossRef]
- Schaeffer, E.M.; Srinivas, S.; Adra, N.; An, Y.; Bitting, R.; Chapin, B.; Cheng, H.H.; D’Amico, A.V.; Desai, N.; Dorff, T.; et al. Prostate Cancer, Version 3.2024 Featured Updates to the NCCN Guidelines. JNCCN J. Natl. Compr. Cancer Netw. 2024, 22, 140–150. [Google Scholar] [CrossRef]
- Klein, E.A.; Haddad, Z.; Yousefi, K.; Lam, L.L.C.; Wang, Q.; Choeurng, V.; Palmer-Aronsten, B.; Buerki, C.; Davicioni, E.; Li, J.B.; et al. Decipher Genomic Classifier Measured on Prostate Biopsy Predicts Metastasis Risk. Urology 2016, 90, 148–152. [Google Scholar] [CrossRef]
- Cuzick, J.; Berney, D.M.; Fisher, G.; Mesher, D.; Møller, H.; Reid, J.E.; Perry, M.; Park, J.; Younus, A.; Gutin, A.; et al. Prognostic value of a cell cycle progression signature for prostate cancer death in a conservatively managed needle biopsy cohort. Br. J. Cancer 2012, 106, 1095–1099. [Google Scholar] [CrossRef]
- Cuzick, J.; Stone, S.; Fisher, G.; Yang, Z.H.; North, B.V.; Berney, D.M.; Beltran, L.; Greenberg, D.; Møller, H.; Reid, J.E.; et al. Validation of an RNA cell cycle progression score for predicting death from prostate cancer in a conservatively managed needle biopsy cohort. Br. J. Cancer 2015, 113, 382–389. [Google Scholar] [CrossRef]
- Hutten, R.J.; Odei, B.; Johnson, S.B.; Tward, J.D. Validation of the Combined Clinical Cell-Cycle Risk Score to Prognosticate Early Prostate Cancer Metastasis From Biopsy Specimens and Comparison With Other Routinely Used Risk Classifiers. JCO Precis. Oncol. 2024, 8, e2300364. [Google Scholar] [CrossRef]
- Badani, K.K.; Kemeter, M.J.; Febbo, P.G.; Lawrence, H.J.; Denes, B.S.; Rothney, M.P.; Rothberg, M.B.; Brown, G.A. The Impact of a Biopsy Based 17-Gene Genomic Prostate Score on Treatment Recommendations in Men with Newly Diagnosed Clinically Prostate Cancer Who are Candidates for Active Surveillance. Urol. Pract. 2015, 2, 181–189. [Google Scholar] [CrossRef]
- Klein, E.A.; Cooperberg, M.R.; Magi-Galluzzi, C.; Simko, J.P.; Falzarano, S.M.; Maddala, T.; Chan, J.M.; Li, J.B.; Cowan, J.E.; Tsiatis, A.C.; et al. A 17-gene Assay to Predict Prostate Cancer Aggressiveness in the Context of Gleason Grade Heterogeneity, Tumor Multifocality, and Biopsy Undersampling. Eur. Urol. 2014, 66, 550–560. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.; Proudfoot, J.A.; Davicioni, E.; Ross, A.E.; Petkov, V.I.; Bonds, S.; Schussler, N.; Zaorsky, N.G.; Jia, A.Y.; Spratt, D.E.; et al. Use of Decipher Prostate Biopsy Test in Patients with Favorable-risk Disease Undergoing Conservative Management or Radical Prostatectomy in the Surveillance, Epidemiology, and End Results Registry. Eur. Urol. Oncol. 2024, 7, 1504–1512. [Google Scholar] [CrossRef] [PubMed]
- Zaorsky, N.G.; Proudfoot, J.A.; Jia, A.Y.; Zuhour, R.; Vince, R.; Liu, Y.; Zhao, X.; Hu, J.; Schussler, N.C.; Stevens, J.L.; et al. Use of the Decipher genomic classifier among men with prostate cancer in the United States. JNCI Cancer Spectr. 2023, 7, pkad052. [Google Scholar] [CrossRef] [PubMed]
- Erho, N.; Crisan, A.; Vergara, I.A.; Mitra, A.P.; Ghadessi, M.; Buerki, C.; Bergstralh, E.J.; Kollmeyer, T.; Fink, S.; Haddad, Z.; et al. Discovery and Validation of a Prostate Cancer Genomic Classifier that Predicts Early Metastasis Following Radical Prostatectomy. PLoS ONE 2013, 8, e66855. [Google Scholar] [CrossRef]
- Klein, E.A.; Yousefi, K.; Haddad, Z.; Choeurng, V.; Buerki, C.; Stephenson, A.J.; Li, J.B.; Kattan, M.W.; Magi-Galluzzi, C.; Davicioni, E. A Genomic Classifier Improves Prediction of Metastatic Disease Within 5 Years After Surgery in Node-negative High-risk Prostate Cancer Patients Managed by Radical Prostatectomy Without Adjuvant Therapy. Eur. Urol. 2015, 67, 778–786. [Google Scholar]
- Jeffrey Karnes, R.; Bergstralh, E.J.; Davicioni, E.; Ghadessi, M.; Buerki, C.; Mitra, A.P.; Crisan, A.; Erho, N.; Vergara, I.A.; Lam, L.L.; et al. Validation of a genomic classifier that predicts metastasis following radical prostatectomy in an at risk Patient population. J. Urol. 2013, 190, 2047–2053. [Google Scholar] [CrossRef]
- Pollack, A.; Johnson, M.; Proudfoot, J.; Davicioni, E.; Dal Pra, A.; Simko, J.; Martin, A.G.; Lukka, H.; Angyalfi, S.; Michalski, J.M.; et al. Decipher score as a predictor of response to treatment intensification in the NRG Oncology-RTOG 0534 (SPPORT) phase III randomized post-prostatectomy salvage radiotherapy trial. J. Clin. Oncol. 2025, 43, 399. [Google Scholar] [CrossRef]
- Grist, E.; Dutey-Magni, P.; Mendes, L.; Parry, M.A.; Sachdeva, A.; Proudfoot, J.; Hamid, A.A.; Amos, C.L.; Cross, W.; Gillessen, S.; et al. 1596O Decipher mRNA score for prediction of survival benefit from docetaxel at start of androgen deprivation therapy (ADT) for advanced prostate cancer (PC): An ancillary study of the STAMPEDE docetaxel trials. Ann. Oncol. 2024, 35, 961–962. [Google Scholar] [CrossRef]
- Cooperberg, M.R.; Simko, J.P.; Cowan, J.E.; Reid, J.E.; Djalilvand, A.; Bhatnagar, S.; Gutin, A.; Lanchbury, J.S.; Swanson, G.P.; Stone, P.; et al. Validation of a cell-cycle progression gene panel to improve risk stratification in a contemporary prostatectomy cohort. J. Clin. Oncol. 2013, 31, 1428–1434. [Google Scholar] [CrossRef]
- Cuzick, J.; Swanson, G.P.; Fisher, G.; Brothman, A.R.; Berney, D.M.; Reid, J.E.; Mesher, D.; Speights, V.; Stankiewicz, E.; Foster, C.S.; et al. Prognostic value of an RNA expression signature derived from cell cycle proliferation genes in patients with prostate cancer: A retrospective study. Lancet Oncol. 2011, 12, 245–255. [Google Scholar] [CrossRef]
- Tward, J.D.; Schlomm, T.; Bardot, S.; Canter, D.J.; Scroggins, T.; Freedland, S.J.; Lenz, L.; Flake, D.D.; Cohen, T.; Brawer, M.K.; et al. Personalizing Localized Prostate Cancer: Validation of a Combined Clinical Cell-cycle Risk (CCR) Score Threshold for Prognosticating Benefit From Multimodality Therapy. Clin. Genitourin. Cancer 2021, 19, 296–304.e3. [Google Scholar] [CrossRef] [PubMed]
- Tward, J.; Lenz, L.; Flake, D.D.; Rajamani, S.; Yonover, P.; Olsson, C.; Kapoor, D.A.; Mantz, C.; Liauw, S.L.; Antic, T.; et al. The Clinical Cell-Cycle Risk (CCR) Score Is Associated With Metastasis After Radiation Therapy and Provides Guidance on When to Forgo Combined Androgen Deprivation Therapy With Dose-Escalated Radiation. Int. J. Radiat. Oncol. Biol. Phys. 2022, 113, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Sommariva, S.; Tarricone, R.; Lazzeri, M.; Ricciardi, W.; Montorsi, F. Prognostic Value of the Cell Cycle Progression Score in Patients with Prostate Cancer: A Systematic Review and Meta-analysis. Eur. Urol. 2016, 69, 107–115. [Google Scholar] [CrossRef]
- Tward, J.D.; Schlomm, T.; Bardot, S.; Freedland, S.J.; Lenz, L.; Cohen, T.; Stone, S.; Bishoff, J. Ability of the combined clinical cell-cycle risk score to identify patients that benefit from multi versus single modality therapy in NCCN intermediate and high-risk prostate cancer. J. Clin. Oncol. 2020, 38, 346. [Google Scholar] [CrossRef]
- Hu, J.C.; Tosoian, J.J.; Qi, J.; Kaye, D.; Johnson, A.; Linsell, S.; Montie, J.E.; Ghani, K.R.; Miller, D.C.; Wojno, K.; et al. Clinical Utility of Gene Expression Classifiers in Men with Newly Diagnosed Prostate Cancer. JCO Precis. Oncol. 2018, 2, 1–15. [Google Scholar] [CrossRef]
- Understanding My Prolaris Results|Myriad Urology. Available online: https://myriad.com/urology/understanding-my-prolaris-results/ (accessed on 22 May 2025).
- Cooperberg, M.; Simko, J.; Falzarano, S.; Maddala, T.; Chan, J.; Cowan, J.; Magi-Galluzzi, C.; Tsiatis, A.; Tenggara-Hunte, I.; Knezevic, D.; et al. Development and validation of the biopsy-based genomic prostate score (GPS) as a predictor of high grade or extracapsular prostate cancer to improve patient selection for active surveillance. J. Urol. 2013, 189, e873. [Google Scholar] [CrossRef]
- Knezevic, D.; Goddard, A.D.; Natraj, N.; Cherbavaz, D.B.; Clark-Langone, K.M.; Snable, J.; Watson, D.; Falzarano, S.M.; Magi-Galluzzi, C.; Klein, E.A.; et al. Analytical validation of the Oncotype DX prostate cancer assay—A clinical RT-PCR assay optimized for prostate needle biopsies. BMC Genom. 2013, 14, 690. [Google Scholar] [CrossRef]
- Brooks, M.A.; Thomas, L.; Magi-Galluzzi, C.; Li, J.; Crager, M.R.; Lu, R.; Abran, J.; Aboushwareb, T.; Klein, E.A. GPS Assay Association With Long-Term Cancer Outcomes: Twenty-Year Risk of Distant Metastasis and Prostate Cancer–Specific Mortality. JCO Precis. Oncol. 2021, 5, 442–449. [Google Scholar] [CrossRef]
- Van Den Eeden, S.K.; Lu, R.; Zhang, N.; Quesenberry, C.P.; Shan, J.; Han, J.S.; Tsiatis, A.C.; Leimpeter, A.D.; Lawrence, H.J.; Febbo, P.G. A Biopsy-based 17-gene Genomic Prostate Score as a Predictor of Metastases and Prostate Cancer Death in Surgically Treated Men with Clinically Localized Disease. Eur. Urol. 2018, 73, 129–138. [Google Scholar] [CrossRef]
- Albala, D.; Kemeter, M.J.; Febbo, P.G.; Lu, R.; John, V.; Stoy, D.; Denes, B.; McCall, M.; Shindel, A.W.; Dubeck, F. Health Economic Impact and Prospective Clinical Utility of Oncotype DX® Genomic Prostate Score. Rev. Urol. 2016, 18, 123. [Google Scholar]
- Kornberg, Z.; Cooperberg, M.R.; Spratt, D.E.; Feng, F.Y. Genomic biomarkers in prostate cancer. Transl. Androl. Urol. 2018, 7, 459. [Google Scholar] [CrossRef] [PubMed]
- Den, R.B.; Feng, F.Y.; Showalter, T.N.; Mishra, M.V.; Trabulsi, E.J.; Lallas, C.D.; Gomella, L.G.; Kelly, W.K.; Birbe, W.K.; McCue, P.A.; et al. Genomic prostate cancer classifier predicts biochemical failure and metastases in patients after postoperative radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 1038–1046. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.L.; Martin, N.E.; Choeurng, V.; Palmer-Aronsten, B.; Kolisnik, T.; Beard, C.J.; Orio, P.F.; Nezolosky, M.D.; Chen, Y.W.; Shin, H.; et al. Utilization of biopsy-based genomic classifier to predict distant metastasis after definitive radiation and short-course ADT for intermediate and high-risk prostate cancer. Prostate Cancer Prostatic Dis. 2017, 20, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Physicians—Biopsy Test Report|Decipher® Prostate. Available online: https://decipherbio.com/decipher-prostate/physicians/biopsy-test-report/ (accessed on 22 May 2025).
- Spratt, D.E.; Zhang, J.; Santiago-Jiḿenez, M.; Dess, R.T.; Davis, J.W.; Den, R.B.; Dicker, A.P.; Kane, C.J.; Pollack, A.; Stoyanova, R.; et al. Development and validation of a novel integrated clinical-genomic risk group classification for localized prostate cancer. J. Clin. Oncol. 2018, 36, 581–590. [Google Scholar] [CrossRef]
- Ross, A.E.; Johnson, M.H.; Yousefi, K.; Davicioni, E.; Netto, G.J.; Marchionni, L.; Fedor, H.L.; Glavaris, S.; Choeurng, V.; Buerki, S.; et al. Tissue-based Genomics Augments Post-prostatectomy Risk Stratification in a Natural History Cohort of Intermediate-and High-Risk Men. Eur. Urol. 2016, 69, 157–165. [Google Scholar] [CrossRef]
- Press, B.H.; Jones, T.; Olawoyin, O.; Lokeshwar, S.D.; Rahman, S.N.; Khajir, G.; Lin, D.W.; Cooperberg, M.R.; Loeb, S.; Darst, B.F.; et al. Association Between a 22-feature Genomic Classifier and Biopsy Gleason Upgrade During Active Surveillance for Prostate Cancer. Eur. Urol. Open Sci. 2022, 37, 113–119. [Google Scholar] [CrossRef]
- Decipher GRID—Research-Use-Only Tool|Decipher® Prostate. Available online: https://decipherbio.com/decipher-prostate/physicians/decipher-grid/ (accessed on 22 May 2025).
- Zhao, S.G.; Chang, S.L.; Spratt, D.E.; Erho, N.; Yu, M.; Ashab, H.A.D.; Alshalalfa, M.; Speers, C.; Tomlins, S.A.; Davicioni, E.; et al. Development and validation of a 24-gene predictor of response to postoperative radiotherapy in prostate cancer: A matched, retrospective analysis. Lancet Oncol. 2016, 17, 1612–1620. [Google Scholar] [CrossRef]
- Pra, A.D.; Zwahlen, D.R.; Liu, V.Y.; Hayoz, S.; Spratt, D.E.; Davicioni, E.; Liu, Y.; Proudfoot, J.; Schär, C.; Hölscher, T.; et al. Prognostic and Predictive Performance of a 24-Gene Post-Operative Radiation Therapy Outcomes Score (PORTOS) in a Phase 3 Randomized Trial of Dose-Intensified Salvage Radiotherapy after Radical Prostatectomy (SAKK 09/10). Int. J. Radiat. Oncol. Biol. Phys. 2022, 114, S37–S38. [Google Scholar] [CrossRef]
- Zhao, S.; Ryu, H.M.; Proudfoot, J.A.; Davicioni, E.; Michalski, J.M.; Spratt, D.E.; Hayoz, S.; Simko, J.; Sandler, H.M.; Pollack, A.; et al. Gene signature predictor of dose-response to prostate radiation: Validation of PORTOS in phase III trials. J. Clin. Oncol. 2025, 43, 308. [Google Scholar] [CrossRef]
- Patel, P.; Nallandhighal, S.; Scoville, D.; Cotta, B.; Knuth, Z.; Triner, D.; Tran, L.; Udager, A.M.; Rao, A.; Morgan, T.M.; et al. Spatial Transcriptomic Profiling to Characterize the Nature of Peripheral- Versus Transition-zone Prostate Cancer. Eur. Urol. Focus 2024. [Google Scholar] [CrossRef]
- Li, S.; Berg, S.A.; Sayan, M. The Clinical Impact of the Decipher Genomic Classifier in Prostate Cancer. Eurasian J. Med. 2025, 57, e25828. [Google Scholar] [CrossRef] [PubMed]
- Ling, A.S.Y.; Hakansson, A.K.; Ong, E.H.W.; Lau, A.S.Y.; Low, K.P.; Wong, T.R.; Tan, N.; Tan, J.S.H.; Tuan, J.K.L.; Tan, T.W.K.; et al. Comparative genomic analyses between Asian and Caucasian prostate cancers in an 80,829 patient cohort. J. Clin. Oncol. 2022, 40, 273. [Google Scholar] [CrossRef]
- Mahase, E. Prostate cancer: Could polygenic risk scores make national screening a reality? BMJ 2025, 389, r763. [Google Scholar] [CrossRef]
- Callender, T.; Emberton, M.; Morris, S.; Eeles, R.; Kote-Jarai, Z.; Pharoah, P.D.P.; Pashayan, N. Polygenic risk-tailored screening for prostate cancer: A benefit-harm and cost-effectiveness modelling study. PLoS Med. 2019, 16, e1002998. [Google Scholar] [CrossRef]
- Lobo, J.M.; Trifiletti, D.M.; Sturz, V.N.; Dicker, A.P.; Buerki, C.; Davicioni, E.; Cooperberg, M.R.; Karnes, R.J.; Jenkins, R.B.; Den, R.B.; et al. Cost-effectiveness of the Decipher Genomic Classifier to Guide Individualized Decisions for Early Radiation Therapy After Prostatectomy for Prostate Cancer. Clin. Genitourin. Cancer 2017, 15, e299–e309. [Google Scholar] [CrossRef]
- Gustavsen, G.; Taylor, K.; Cole, D.; Gullet, L.; Lewine, N. Health Economic Impact of a Biopsy-Based Cell Cycle Gene Expression Assay in Localized Prostate Cancer. Future Oncol. 2020, 16, 3061–3074. [Google Scholar] [CrossRef]
- Turnbull, C.; Firth, H.V.; Wilkie, A.O.M.; Newman, W.; Raymond, F.L.; Tomlinson, I.; Lachmann, R.; Wright, C.F.; Wordsworth, S.; George, A.; et al. Population screening requires robust evidence—Genomics is no exception. Lancet 2024, 403, 583–586. [Google Scholar] [CrossRef]
- Wu, H.; Wu, Y.; He, P.; Liang, J.; Xu, X.; Ji, C. A meta-analysis for the diagnostic accuracy of SelectMDx in prostate cancer. PLoS ONE 2024, 19, e0285745. [Google Scholar] [CrossRef]
- Sari Motlagh, R.; Yanagisawa, T.; Kawada, T.; Laukhtina, E.; Rajwa, P.; Aydh, A.; König, F.; Pallauf, M.; Huebner, N.A.; Baltzer, P.A.; et al. Accuracy of SelectMDx compared to mpMRI in the diagnosis of prostate cancer: A systematic review and diagnostic meta-analysis. Prostate Cancer Prostatic Dis. 2022, 25, 187–198. [Google Scholar] [CrossRef]
- Tutrone, R.; Lowentritt, B.; Neuman, B.; Donovan, M.J.; Hallmark, E.; Cole, T.J.; Yao, Y.Y.; Biesecker, C.; Kumar, S.; Verma, V.; et al. ExoDx prostate test as a predictor of outcomes of high-grade prostate cancer—An interim analysis. Prostate Cancer Prostatic Dis. 2023, 26, 596–601. [Google Scholar] [CrossRef]
- Franco, A.; Autorino, R. ExoDx test for prostate cancer: The future is liquid-Editorial Comment. Prostate Cancer Prostatic Dis. 2023, 26, 443–444. [Google Scholar] [CrossRef] [PubMed]
- González-Peramato, P.; Álvarez-Maestro, M.; Heredia-Soto, V.; Mendiola Sabio, M.; Linares, E.; Serrano, Á.; Álvarez-Ossorio, J.L.; Alcina, E.L.; Prieto, L.; Alonso, F.V.; et al. Comparing Prostatype P-score and traditional risk models for predicting prostate cancer outcomes in Spain. Actas Urológicas Españolas 2025, 49, 501788. [Google Scholar] [CrossRef] [PubMed]
- Pang, S.T.; Lin, P.H.; Berglund, E.; Xu, L.; Shao, I.H.; Yu, K.J.; Hsieh, C.H.; Chang, T.H.; Chen, Y.; Weng, W.H.; et al. First validation of the Prostatype® P-score in an Asian cohort: Improving risk stratification for prostate cancer. BJUI Compass 2025, 6, e70026. [Google Scholar] [CrossRef] [PubMed]
- Fridhammar, A.; Frisell, O.; Wahlberg, K.; Berglund, E.; Röbeck, P.; Persson, S. Prognostic Testing for Prostate Cancer—A Cost-Effectiveness Analysis Comparing a Prostatype P-Score Biomarker Approach to Standard Clinical Practice. Pharmacoeconomics 2025, 43, 509–520. [Google Scholar] [CrossRef]
- Our Future Health Research Programme—NHS England Digital . Available online: https://digital.nhs.uk/services/nhs-digitrials/our-future-health-research-programme (accessed on 22 May 2025).
GC | Prolaris | Oncotype DX GPS | Decipher |
---|---|---|---|
Commercial Provider | Myriad Genetics | MDxHealth | Veracyte |
Technology | RT-PCR | RT-PCR | Whole-transcriptome RNA microarray |
Number of Genes | 31 CCP genes + 15 housekeeping | 17 genes (12 cancer-related + 5 reference) | 22 genes panel + transcriptome-wide data |
Tissue Source | FFPE tissue from biopsy or RP | FFPE tissue from biopsy or RP | FFPE tissue from biopsy or RP |
Score Output | 1.8–8.7 | 0–100 | 0–1 |
Setting | Pre- and post-treatment | Pre-treatment | Pre- and post-treatment; RT, RP, ADT guidance |
NCCN Guidelines 2025 | Selective use in low/intermediate risk | Selective use in very low/low/intermediate risk | Supported for all risk groups; part of “Advanced Tools”. level 1 evidence |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viti, A.; Quarta, L.; Zaurito, P.; Santangelo, A.; Cosenza, A.; Barletta, F.; Scuderi, S.; Stabile, A.; Cucchiara, V.; Montorsi, F.; et al. The Role of Genomic Scores in the Management of Prostate Cancer Patients: A Comprehensive Narrative Review. Cancers 2025, 17, 2334. https://doi.org/10.3390/cancers17142334
Viti A, Quarta L, Zaurito P, Santangelo A, Cosenza A, Barletta F, Scuderi S, Stabile A, Cucchiara V, Montorsi F, et al. The Role of Genomic Scores in the Management of Prostate Cancer Patients: A Comprehensive Narrative Review. Cancers. 2025; 17(14):2334. https://doi.org/10.3390/cancers17142334
Chicago/Turabian StyleViti, Alessandro, Leonardo Quarta, Paolo Zaurito, Alfonso Santangelo, Andrea Cosenza, Francesco Barletta, Simone Scuderi, Armando Stabile, Vito Cucchiara, Francesco Montorsi, and et al. 2025. "The Role of Genomic Scores in the Management of Prostate Cancer Patients: A Comprehensive Narrative Review" Cancers 17, no. 14: 2334. https://doi.org/10.3390/cancers17142334
APA StyleViti, A., Quarta, L., Zaurito, P., Santangelo, A., Cosenza, A., Barletta, F., Scuderi, S., Stabile, A., Cucchiara, V., Montorsi, F., Gandaglia, G., & Briganti, A. (2025). The Role of Genomic Scores in the Management of Prostate Cancer Patients: A Comprehensive Narrative Review. Cancers, 17(14), 2334. https://doi.org/10.3390/cancers17142334