Challenges in the Diagnosis of Biliary Stricture and Cholangiocarcinoma and Perspectives on the Future Applications of Advanced Technologies
Simple Summary
Abstract
1. Introduction
2. Diagnostic Techniques
3. Surgical Treatment Options
- •
- Extrahepatic tumours may be treated through the Whipple procedure which removes the pancreatic head, parts of the duodenum and bile duct, and the gallbladder.
- •
- Intrahepatic tumours may be treated by surgical liver resection.
- •
- Hilar tumours (at the Y-junction/bifurcation where the left and right hepatic ducts merge) require complex procedures that involve major hepatic resection.
4. Histopathology
5. Oncology
6. A Perspective on Next Generation Technologies
7. Improving Stenting
8. Ethically Obtaining Samples for Molecular Mapping and Research
9. Discussion: Engineering Life for Advancing Care
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Blechacz, B.; Komuta, M.; Roskams, T.; Gores, G.J. Clinical diagnosis and staging of cholangiocarcinoma. Nat. Rev. Gastroenterol. Hepatol. 2011, 8, 512–522. [Google Scholar] [CrossRef] [PubMed]
- Valle, J.W.; Borbath, I.; Khan, S.A.; Huguet, F.; Gruenberger, T.; Arnold, D.; Committee, E.G. Biliary cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2016, 27 (Suppl. 5), v28–v37. [Google Scholar] [CrossRef] [PubMed]
- Rushbrook, S.M.; Kendall, T.J.; Zen, Y.; Albazaz, R.; Manoharan, P.; Pereira, S.P.; Sturgess, R.; Davidson, B.R.; Malik, H.Z.; Manas, D.; et al. British Society of Gastroenterology guidelines for the diagnosis and management of cholangiocarcinoma. Gut 2023, 73, 16–46. [Google Scholar] [CrossRef]
- Saluja, S.S.; Sharma, R.; Pal, S.; Sahni, P.; Chattopadhyay, T.K. Differentiation between benign and malignant hilar obstructions using laboratory and radiological investigations: A prospective study. HPB 2007, 9, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Rosch, T.; Meining, A.; Fruhmorgen, S.; Zillinger, C.; Schusdziarra, V.; Hellerhoff, K.; Classen, M.; Helmberger, H. A prospective comparison of the diagnostic accuracy of ERCP, MRCP, CT, and EUS in biliary strictures. Gastrointest. Endosc. 2002, 55, 870–876. [Google Scholar] [CrossRef]
- Roos, E.; Soer, E.C.; Klompmaker, S.; Meijer, L.L.; Besselink, M.G.; Giovannetti, E.; Heger, M.; Kazemier, G.; Klumpen, H.J.; Takkenberg, R.B.; et al. Crossing borders: A systematic review with quantitative analysis of genetic mutations of carcinomas of the biliary tract. Crit. Rev. Oncol. Hematol. 2019, 140, 8–16. [Google Scholar] [CrossRef]
- Arai, Y.; Totoki, Y.; Hosoda, F.; Shirota, T.; Hama, N.; Nakamura, H.; Ojima, H.; Furuta, K.; Shimada, K.; Okusaka, T.; et al. Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma. Hepatology 2014, 59, 1427–1434. [Google Scholar] [CrossRef]
- Graham, R.P.; Barr Fritcher, E.G.; Pestova, E.; Schulz, J.; Sitailo, L.A.; Vasmatzis, G.; Murphy, S.J.; McWilliams, R.R.; Hart, S.N.; Halling, K.C.; et al. Fibroblast growth factor receptor 2 translocations in intrahepatic cholangiocarcinoma. Hum. Pathol. 2014, 45, 1630–1638. [Google Scholar] [CrossRef]
- Vardar, B.U.; Dupuis, C.S.; Goldstein, A.J.; Vardar, Z.; Kim, Y.H. Ultrasonographic evaluation of patients with abnormal liver function tests in the emergency department. Ultrasonography 2022, 41, 243–262. [Google Scholar] [CrossRef]
- Romagnuolo, J.; Bardou, M.; Rahme, E.; Joseph, L.; Reinhold, C.; Barkun, A.N. Magnetic resonance cholangiopancreatography: A meta-analysis of test performance in suspected biliary disease. Ann. Intern. Med. 2003, 139, 547–557. [Google Scholar] [CrossRef]
- Hori, Y.; Chari, S.T.; Tsuji, Y.; Takahashi, N.; Inoue, D.; Hart, P.A.; Uehara, T.; Horibe, M.; Yamamoto, S.; Satou, A.; et al. Diagnosing Biliary Strictures: Distinguishing IgG4-Related Sclerosing Cholangitis From Cholangiocarcinoma and Primary Sclerosing Cholangitis. Mayo Clin. Proc. Innov. Qual. Outcomes 2021, 5, 535–541. [Google Scholar] [CrossRef]
- Raza, D.; Singh, S.; Crino, S.F.; Boskoski, I.; Spada, C.; Fuccio, L.; Samanta, J.; Dhar, J.; Spadaccini, M.; Gkolfakis, P.; et al. Diagnostic Approach to Biliary Strictures. Diagnostics 2025, 15, 325. [Google Scholar] [CrossRef]
- Dumonceau, J.M.; Tringali, A.; Papanikolaou, I.S.; Blero, D.; Mangiavillano, B.; Schmidt, A.; Vanbiervliet, G.; Costamagna, G.; Deviere, J.; Garcia-Cano, J.; et al. Endoscopic biliary stenting: Indications, choice of stents, and results: European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline-Updated October 2017. Endoscopy 2018, 50, 910–930. [Google Scholar] [CrossRef] [PubMed]
- Venkatachalapathy, S.V.; James, M.W.; Huggett, M.T.; Paranandi, B.; Pereira, S.P.; Johnson, G.; Aravinthan, A.D.; Aithal, G.P. Utility of palliative EUS-guided biliary drainage using lumen-apposing metal stents: A prospective multicenter feasibility study (with video). Gastrointest. Endosc. 2021, 94, 321–328. [Google Scholar] [CrossRef]
- Field, K.M.; Michael, M. Part II: Liver function in oncology: Towards safer chemotherapy use. Lancet Oncol. 2008, 9, 1181–1190. [Google Scholar] [CrossRef]
- Stassen, P.M.C.; Goodchild, G.; de Jonge, P.J.F.; Erler, N.S.; Anderloni, A.; Cennamo, V.; Church, N.I.; Fernandez-Urien Sainz, I.; Huggett, M.T.; James, M.W.; et al. Diagnostic accuracy and interobserver agreement of digital single-operator cholangioscopy for indeterminate biliary strictures. Gastrointest. Endosc. 2021, 94, 1059–1068. [Google Scholar] [CrossRef] [PubMed]
- Subhash, A.; Abadir, A.; Iskander, J.M.; Tabibian, J.H. Applications, Limitations, and Expansion of Cholangioscopy in Clinical Practice. Gastroenterol. Hepatol. 2021, 17, 110–120. [Google Scholar]
- Skorepa, P.; Ford, K.L.; Alsuwaylihi, A.; O’Connor, D.; Prado, C.M.; Gomez, D.; Lobo, D.N. The impact of prehabilitation on outcomes in frail and high-risk patients undergoing major abdominal surgery: A systematic review and meta-analysis. Clin. Nutr. 2024, 43, 629–648. [Google Scholar] [CrossRef] [PubMed]
- McClements, J.; Valle, J.W.; Blackburn, L.; Brooks, A.; Prachalias, A.; Dasari, B.V.M.; Jones, C.; Harrison, E.; Malik, H.; Prasad, K.R.; et al. Variation in treatment of intrahepatic cholangiocarcinoma: A nationwide multicentre study. Br. J. Surg. 2023, 110, 1673–1676. [Google Scholar] [CrossRef]
- Hewitt, D.B.; Brown, Z.J.; Pawlik, T.M. Current Perspectives on the Surgical Management of Perihilar Cholangiocarcinoma. Cancers 2022, 14, 2208. [Google Scholar] [CrossRef]
- Franken, L.C.; Schreuder, A.M.; Roos, E.; van Dieren, S.; Busch, O.R.; Besselink, M.G.; van Gulik, T.M. Morbidity and mortality after major liver resection in patients with perihilar cholangiocarcinoma: A systematic review and meta-analysis. Surgery 2019, 165, 918–928. [Google Scholar] [CrossRef] [PubMed]
- Mueller, M.; Breuer, E.; Mizuno, T.; Bartsch, F.; Ratti, F.; Benzing, C.; Ammar-Khodja, N.; Sugiura, T.; Takayashiki, T.; Hessheimer, A.; et al. Perihilar Cholangiocarcinoma-Novel Benchmark Values for Surgical and Oncological Outcomes From 24 Expert Centers. Ann. Surg. 2021, 274, 780–788. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.F.; Beal, E.W.; Chakedis, J.; Chen, Q.; Lv, Y.; Ethun, C.G.; Salem, A.; Weber, S.M.; Tran, T.; Poultsides, G.; et al. Defining Early Recurrence of Hilar Cholangiocarcinoma After Curative-intent Surgery: A Multi-institutional Study from the US Extrahepatic Biliary Malignancy Consortium. World J. Surg. 2018, 42, 2919–2929. [Google Scholar] [CrossRef] [PubMed]
- Groot Koerkamp, B.; Wiggers, J.K.; Allen, P.J.; Besselink, M.G.; Blumgart, L.H.; Busch, O.R.; Coelen, R.J.; D’Angelica, M.I.; DeMatteo, R.P.; Gouma, D.J.; et al. Recurrence Rate and Pattern of Perihilar Cholangiocarcinoma after Curative Intent Resection. J. Am. Coll. Surg. 2015, 221, 1041–1049. [Google Scholar] [CrossRef]
- Labib, P.L.; Russell, T.B.; Denson, J.L.; Puckett, M.A.; Ausania, F.; Pando, E.; Roberts, K.J.; Kausar, A.; Mavroeidis, V.K.; Bhogal, R.H.; et al. Patterns, timing and predictors of recurrence following pancreaticoduodenectomy for distal cholangiocarcinoma: An international multicentre retrospective cohort study. Eur. J. Surg. Oncol. 2024, 50, 108353. [Google Scholar] [CrossRef]
- Tan, E.K.; Taner, T.; Heimbach, J.K.; Gores, G.J.; Rosen, C.B. Liver Transplantation for Peri-hilar Cholangiocarcinoma. J. Gastrointest. Surg. 2020, 24, 2679–2685. [Google Scholar] [CrossRef]
- De Vreede, I.; Steers, J.L.; Burch, P.A.; Rosen, C.B.; Gunderson, L.L.; Haddock, M.G.; Burgart, L.; Gores, G.J. Prolonged disease-free survival after orthotopic liver transplantation plus adjuvant chemoirradiation for cholangiocarcinoma. Liver Transpl. 2000, 6, 309–316. [Google Scholar] [CrossRef]
- Sudan, D.; DeRoover, A.; Chinnakotla, S.; Fox, I.; Shaw, B., Jr.; McCashland, T.; Sorrell, M.; Tempero, M.; Langnas, A. Radiochemotherapy and transplantation allow long-term survival for nonresectable hilar cholangiocarcinoma. Am. J. Transplant. 2002, 2, 774–779. [Google Scholar] [CrossRef]
- Ahmed, O.; Vachharajani, N.; Chang, S.H.; Park, Y.; Khan, A.S.; Chapman, W.C.; Doyle, M.B.M. Single-center experience of liver transplantation for perihilar cholangiocarcinoma. HPB 2022, 24, 461–469. [Google Scholar] [CrossRef]
- Darwish Murad, S.; Kim, W.R.; Harnois, D.M.; Douglas, D.D.; Burton, J.; Kulik, L.M.; Botha, J.F.; Mezrich, J.D.; Chapman, W.C.; Schwartz, J.J.; et al. Efficacy of neoadjuvant chemoradiation, followed by liver transplantation, for perihilar cholangiocarcinoma at 12 US centers. Gastroenterology 2012, 143, 88–98 e83, quiz e14. [Google Scholar] [CrossRef]
- Mendiratta-Lala, M.; Wiggermann, P.; Pech, M.; Serres-Creixams, X.; White, S.B.; Davis, C.; Ahmed, O.; Parikh, N.D.; Planert, M.; Thormann, M.; et al. The #HOPE4LIVER Single-Arm Pivotal Trial for Histotripsy of Primary and Metastatic Liver Tumors. Radiology 2024, 312, e233051. [Google Scholar] [CrossRef] [PubMed]
- Wehrle, C.J.; Burns, K.; Ong, E.; Couillard, A.; Parikh, N.D.; Caoili, E.; Kim, J.; Aucejo, F.; Schlegel, A.; Knott, E.; et al. The first international experience with histotripsy: A safety analysis of 230 cases. J. Gastrointest. Surg. 2025, 29, 102000. [Google Scholar] [CrossRef] [PubMed]
- de Jong, D.M.; de Jonge, P.J.F.; Stassen, P.M.C.; Karagyozov, P.; Vila, J.J.; Fernandez-Urien, I.; James, M.W.; Venkatachalapathy, S.V.; Oppong, K.W.; Anderloni, A.; et al. The value of cholangioscopy-guided bite-on-bite (-on bite) biopsies in indeterminate biliary duct strictures. 2025; Endoscopy, online ahead of print. [Google Scholar]
- Borger, D.R.; Tanabe, K.K.; Fan, K.C.; Lopez, H.U.; Fantin, V.R.; Straley, K.S.; Schenkein, D.P.; Hezel, A.F.; Ancukiewicz, M.; Liebman, H.M.; et al. Frequent mutation of isocitrate dehydrogenase (IDH)1 and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping. Oncologist 2012, 17, 72–79. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Macarulla, T.; Javle, M.M.; Kelley, R.K.; Lubner, S.J.; Adeva, J.; Cleary, J.M.; Catenacci, D.V.; Borad, M.J.; Bridgewater, J.; et al. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): A multicentre, randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 2020, 21, 796–807. [Google Scholar] [CrossRef] [PubMed]
- Lowery, M.A.; Burris, H.A., 3rd; Janku, F.; Shroff, R.T.; Cleary, J.M.; Azad, N.S.; Goyal, L.; Maher, E.A.; Gore, L.; Hollebecque, A.; et al. Safety and activity of ivosidenib in patients with IDH1-mutant advanced cholangiocarcinoma: A phase 1 study. Lancet Gastroenterol. Hepatol. 2019, 4, 711–720. [Google Scholar] [CrossRef]
- Goyal, L.; Meric-Bernstam, F.; Hollebecque, A.; Valle, J.W.; Morizane, C.; Karasic, T.B.; Abrams, T.A.; Furuse, J.; Kelley, R.K.; Cassier, P.A.; et al. Futibatinib for FGFR2-Rearranged Intrahepatic Cholangiocarcinoma. N. Engl. J. Med. 2023, 388, 228–239. [Google Scholar] [CrossRef]
- Maio, M.; Ascierto, P.A.; Manzyuk, L.; Motola-Kuba, D.; Penel, N.; Cassier, P.A.; Bariani, G.M.; De Jesus Acosta, A.; Doi, T.; Longo, F.; et al. Pembrolizumab in microsatellite instability high or mismatch repair deficient cancers: Updated analysis from the phase II KEYNOTE-158 study. Ann. Oncol. 2022, 33, 929–938. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Sahai, V.; Hollebecque, A.; Vaccaro, G.; Melisi, D.; Al-Rajabi, R.; Paulson, A.S.; Borad, M.J.; Gallinson, D.; Murphy, A.G.; et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: A multicentre, open-label, phase 2 study. Lancet Oncol. 2020, 21, 671–684. [Google Scholar] [CrossRef]
- Bekaii-Saab, T.S.; Valle, J.W.; Van Cutsem, E.; Rimassa, L.; Furuse, J.; Ioka, T.; Melisi, D.; Macarulla, T.; Bridgewater, J.; Wasan, H.; et al. FIGHT-302: First-line pemigatinib vs gemcitabine plus cisplatin for advanced cholangiocarcinoma with FGFR2 rearrangements. Future Oncol. 2020, 16, 2385–2399. [Google Scholar] [CrossRef]
- Javle, M.; Roychowdhury, S.; Kelley, R.K.; Sadeghi, S.; Macarulla, T.; Weiss, K.H.; Waldschmidt, D.T.; Goyal, L.; Borbath, I.; El-Khoueiry, A.; et al. Infigratinib (BGJ398) in previously treated patients with advanced or metastatic cholangiocarcinoma with FGFR2 fusions or rearrangements: Mature results from a multicentre, open-label, single-arm, phase 2 study. Lancet Gastroenterol. Hepatol. 2021, 6, 803–815. [Google Scholar] [CrossRef]
- Qi, C.; Shen, L.; Andre, T.; Chung, H.C.; Cannon, T.L.; Garralda, E.; Italiano, A.; Rieke, D.T.; Liu, T.; Burcoveanu, D.I.; et al. Efficacy and safety of larotrectinib in patients with TRK fusion gastrointestinal cancer. Eur. J. Cancer 2025, 220, 115338. [Google Scholar] [CrossRef]
- Doebele, R.C.; Drilon, A.; Paz-Ares, L.; Siena, S.; Shaw, A.T.; Farago, A.F.; Blakely, C.M.; Seto, T.; Cho, B.C.; Tosi, D.; et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: Integrated analysis of three phase 1–2 trials. Lancet Oncol. 2020, 21, 271–282. [Google Scholar] [CrossRef]
- Subbiah, V.; Kreitman, R.J.; Wainberg, Z.A.; Gazzah, A.; Lassen, U.; Stein, A.; Wen, P.Y.; Dietrich, S.; de Jonge, M.J.A.; Blay, J.Y.; et al. Dabrafenib plus trametinib in BRAFV600E-mutated rare cancers: The phase 2 ROAR trial. Nat. Med. 2023, 29, 1103–1112. [Google Scholar] [CrossRef]
- Subbiah, V.; Velcheti, V.; Tuch, B.B.; Ebata, K.; Busaidy, N.L.; Cabanillas, M.E.; Wirth, L.J.; Stock, S.; Smith, S.; Lauriault, V.; et al. Selective RET kinase inhibition for patients with RET-altered cancers. Ann. Oncol. 2018, 29, 1869–1876. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, V.A.-O.; Cassier, P.A.; Siena, S.A.-O.; Garralda, E.; Paz-Ares, L.; Garrido, P.A.-O.; Nadal, E.A.-O.; Vuky, J.; Lopes, G.; Kalemkerian, G.P.; et al. Pan-cancer efficacy of pralsetinib in patients with RET fusion-positive solid tumors from the phase 1/2 ARROW trial. Nat. Med. 2022, 28, 1640–1645. [Google Scholar]
- Yarlagadda, B.; Kamatham, V.; Ritter, A.; Shahjehan, F.; Kasi, P.M. Trastuzumab and pertuzumab in circulating tumor DNA ERBB2-amplified HER2-positive refractory cholangiocarcinoma. NPJ Precis. Oncol. 2019, 3, 19. [Google Scholar] [CrossRef] [PubMed]
- Ten Haaft, B.H.; Pedregal, M.; Prato, J.; Klumpen, H.J.; Moreno, V.; Lamarca, A. Revolutionizing anti-HER2 therapies for extrahepatic cholangiocarcinoma and gallbladder cancer: Current advancements and future perspectives. Eur. J. Cancer 2024, 199, 113564. [Google Scholar] [CrossRef] [PubMed]
- Harding, J.J.; Fan, J.; Oh, D.-Y.; Choi, H.J.; Kim, J.W.; Chang, H.-M.; Bao, L.; Sun, H.-C.; Macarulla, T.; Xie, F.; et al. Zanidatamab for HER2-amplified, unresectable, locally advanced or metastatic biliary tract cancer (HERIZON-BTC-01): A multicentre, single-arm, phase 2b study. Lancet Oncol. 2023, 24, 772–782. [Google Scholar] [CrossRef]
- Primrose, J.N.; Fox, R.P.; Palmer, D.H.; Malik, H.Z.; Prasad, R.; Mirza, D.; Anthony, A.; Corrie, P.; Falk, S.; Finch-Jones, M.; et al. Capecitabine compared with observation in resected biliary tract cancer (BILCAP): A randomised, controlled, multicentre, phase 3 study. Lancet Oncol. 2019, 20, 663–673. [Google Scholar] [CrossRef]
- Kelley, R.K.; Ueno, M.; Yoo, C.; Finn, R.S.; Furuse, J.; Ren, Z.; Yau, T.; Klumpen, H.J.; Chan, S.L.; Ozaka, M.; et al. Pembrolizumab in combination with gemcitabine and cisplatin compared with gemcitabine and cisplatin alone for patients with advanced biliary tract cancer (KEYNOTE-966): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2023, 401, 1853–1865. [Google Scholar] [CrossRef]
- Lamarca, A.; Palmer, D.H.; Wasan, H.S.; Ross, P.J.; Ma, Y.T.; Arora, A.; Falk, S.; Gillmore, R.; Wadsley, J.; Patel, K.; et al. Second-line FOLFOX chemotherapy versus active symptom control for advanced biliary tract cancer (ABC-06): A phase 3, open-label, randomised, controlled trial. Lancet Oncol. 2021, 22, 690–701. [Google Scholar] [CrossRef] [PubMed]
- Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; De Jesus-Acosta, A.; Delord, J.P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R.; et al. Efficacy of Pembrolizumab in Patients With Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results From the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2020, 38, 1–10. [Google Scholar] [CrossRef]
- de Scordilli, M.; Bortolot, M.; Torresan, S.; Noto, C.; Rota, S.; Di Nardo, P.; Fumagalli, A.; Guardascione, M.; Ongaro, E.; Foltran, L.; et al. Precision oncology in biliary tract cancer: The emerging role of liquid biopsy. ESMO Open 2025, 10, 105079. [Google Scholar] [CrossRef] [PubMed]
- Moritz v, W.; Markus, K.; Eduard, R. On the development of a flexible borescope fringe projection system. In Proceedings of the SPIE, Online, 21–25 June 2021; p. 1178215. [Google Scholar]
- Wei-Hung, S.; Tzu-Chien, H.; Cho-Yo, K. Three-dimensional shape measurements using endoscopes. In Proceedings of the SPIE, San Diego, CA, USA, 9–13 August 2015; p. 95861H. [Google Scholar]
- Suksuratin, P.; Rodpai, R.; Luvira, V.; Intapan, P.M.; Maleewong, W.; Chuchuen, O. Rapid label-free detection of cholangiocarcinoma from human serum using Raman spectroscopy. PLoS ONE 2022, 17, e0275362. [Google Scholar] [CrossRef]
- Wong, C.Y.; Seshadri, P.; Parks, G.T. Automatic Borescope Damage Assessments for Gas Turbine Blades via Deep Learning. In AIAA Scitech 2021 Forum; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2021. [Google Scholar] [CrossRef]
- Troncoso, D.A.; Robles-Linares, J.A.; Russo, M.; Elbanna, M.A.; Wild, S.; Dong, X.; Mohammad, A.; Kell, J.; Norton, A.D.; Axinte, D. A Continuum Robot for Remote Applications: From Industrial to Medical Surgery With Slender Continuum Robots. IEEE Robot. Autom. Mag. 2023, 30, 94–105. [Google Scholar] [CrossRef]
- Zhang, L.; Pleskow, D.K.; Turzhitsky, V.; Yee, E.U.; Berzin, T.M.; Sawhney, M.; Shinagare, S.; Vitkin, E.; Zakharov, Y.; Khan, U.; et al. Light scattering spectroscopy identifies the malignant potential of pancreatic cysts during endoscopy. Nat. Biomed. Eng. 2017, 1, 0040. [Google Scholar] [CrossRef]
- Du, C.; Chai, N.; Linghu, E.; Li, H.; Feng, X.; Wang, X.; Tang, P. Diagnostic value of SpyGlass for pancreatic cystic lesions: Comparison of EUS-guided fine-needle aspiration and EUS-guided fine-needle aspiration combined with SpyGlass. Surg. Endosc. 2022, 36, 904–910. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Dong, Z.; Deng, Q.; Pang, C.; Kaminski, C.F.; Xu, X.; Yan, H.; Wang, L.; Liu, S.; Tang, J.; et al. Single multimode fibre for in vivo light-field-encoded endoscopic imaging. Nat. Photonics 2023, 17, 679–687. [Google Scholar] [CrossRef]
- Turtaev, S.; Leite, I.T.; Altwegg-Boussac, T.; Pakan, J.M.P.; Rochefort, N.L.; Cizmar, T. High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging. Light. Sci. Appl. 2018, 7, 92. [Google Scholar] [CrossRef]
- Stiburek, M.; Ondrackova, P.; Tuckova, T.; Turtaev, S.; Siler, M.; Pikalek, T.; Jakl, P.; Gomes, A.; Krejci, J.; Kolbabkova, P.; et al. 110 mum thin endo-microscope for deep-brain in vivo observations of neuronal connectivity, activity and blood flow dynamics. Nat. Commun. 2023, 14, 1897. [Google Scholar] [CrossRef]
- George, S.D.G.; James, J.; Maria, P.A.; Travis, S.; Calum, W.; Catherine, R.M.F.; Philip, H.J.; Massimiliano di, P.; Rebecca, C.F.; Timothy, D.W.; et al. Quantitative phase and polarization imaging through an optical fiber applied to detection of early esophageal tumorigenesis. J. Biomed. Opt. 2019, 24, 126004. [Google Scholar] [CrossRef]
- Jane, C.; George, S.D.G. Ultra-miniature dual-wavelength spatial frequency domain imaging for micro-endoscopy. J. Biomed. Opt. 2024, 29, 026002. [Google Scholar] [CrossRef]
- Sweer, J.A.; Chen, M.T.; Salimian, K.J.; Battafarano, R.J.; Durr, N.J. Wide-field optical property mapping and structured light imaging of the esophagus with spatial frequency domain imaging. J. Biophotonics 2019, 12, e201900005. [Google Scholar] [CrossRef]
- Angelo, J.P.; van de Giessen, M.; Gioux, S. Real-time endoscopic optical properties imaging. Biomed. Opt. Express 2017, 8, 5113–5126. [Google Scholar] [CrossRef]
- Awe, A.M.; Rendell, V.R.; Lubner, M.G.; Winslow, E.R. Texture Analysis: An Emerging Clinical Tool for Pancreatic Lesions. Pancreas 2020, 49, 301–312. [Google Scholar]
- Shipp, D.W.; Sinjab, F.; Notingher, I. Raman spectroscopy: Techniques and applications in the life sciences. Adv. Opt. Photon. 2017, 9, 315–428. [Google Scholar] [CrossRef]
- Kong, K.; Rowlands, C.J.; Varma, S.; Perkins, W.; Leach, I.H.; Koloydenko, A.A.; Williams, H.C.; Notingher, I. Diagnosis of tumors during tissue-conserving surgery with integrated autofluorescence and Raman scattering microscopy. Proc. Natl. Acad. Sci. USA 2013, 110, 15189–15194. [Google Scholar] [CrossRef] [PubMed]
- Boitor, R.; de Wolf, C.; Weesie, F.; Shipp, D.W.; Varma, S.; Veitch, D.; Wernham, A.; Koloydenko, A.; Puppels, G.; Nijsten, T.; et al. Clinical integration of fast Raman spectroscopy for Mohs micrographic surgery of basal cell carcinoma. Biomed. Opt. Express 2021, 12, 2015–2026. [Google Scholar] [CrossRef]
- Boitor, R.A.; Varma, S.; Sharma, A.; Odedra, S.; Elsheikh, S.; Eldib, K.; Patel, A.; Koloydenko, A.; Gran, S.; De Winne, K.; et al. Diagnostic accuracy of autofluorescence-Raman microspectroscopy for surgical margin assessment during Mohs micrographic surgery of basal cell carcinoma. Br. J. Dermatol. 2024, 191, 428–436. [Google Scholar] [CrossRef]
- Corden, C.; Boitor, R.; Dusanjh, P.K.; Harwood, A.; Mukherjee, A.; Gomez, D.; Notingher, I. Autofluorescence-Raman Spectroscopy for Ex Vivo Mapping Colorectal Liver Metastases and Liver Tissue. J. Surg. Res. 2023, 288, 10–20. [Google Scholar]
- Barkur, S.; Boitor, R.A.; Mihai, R.; Gopal, N.S.R.; Leeney, S.; Koloydenko, A.A.; Khout, H.; Rakha, E.; Notingher, I. Intraoperative spectroscopic evaluation of sentinel lymph nodes in breast cancer surgery. Breast Cancer Res. Treat. 2024, 207, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Boitor, R.; Varma, S.; Sharma, A.; Elsheikh, S.; Kulkarni, K.; Eldib, K.; Jerrom, R.; Odedra, S.; Patel, A.; Koloydenko, A.; et al. Ex vivo assessment of basal cell carcinoma surgical margins in Mohs surgery by autofluorescence-Raman spectroscopy: A pilot study. JEADV Clin. Pract. 2024, 3, 498–507. [Google Scholar] [CrossRef]
- Mangiavillano, B.; Pagano, N.; Baron, T.H.; Luigiano, C. Outcome of stenting in biliary and pancreatic benign and malignant diseases: A comprehensive review. World J. Gastroenterol. 2015, 21, 9038–9054. [Google Scholar] [CrossRef]
- Song, G.; Zhao, H.Q.; Liu, Q.; Fan, Z. A review on biodegradable biliary stents: Materials and future trends. Bioact. Mater. 2022, 17, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Lam, R.; Muniraj, T. Fully covered metal biliary stents: A review of the literature. World J. Gastroenterol. 2021, 27, 6357–6373. [Google Scholar] [CrossRef]
- Yang, K.; Sun, W.; Cui, L.; Zou, Y.; Wen, C.; Zeng, R. Advances in functional coatings on biliary stents. Regen. Biomater. 2024, 11, rbae001. [Google Scholar] [CrossRef]
- Suk, K.T.; Kim, J.W.; Kim, H.S.; Baik, S.K.; Oh, S.J.; Lee, S.J.; Kim, H.G.; Lee, D.H.; Won, Y.H.; Lee, D.K. Human application of a metallic stent covered with a paclitaxel-incorporated membrane for malignant biliary obstruction: Multicenter pilot study. Gastrointest. Endosc. 2007, 66, 798–803. [Google Scholar] [CrossRef]
- Chung, M.J.; Kim, H.; Kim, K.S.; Park, S.; Chung, J.B.; Park, S.W. Safety evaluation of self-expanding metallic biliary stents eluting gemcitabine in a porcine model. J. Gastroenterol. Hepatol. 2012, 27, 261–267. [Google Scholar] [CrossRef]
- Kim, D.H.; Jeong, Y.I.; Chung, C.W.; Kim, C.H.; Kwak, T.W.; Lee, H.M.; Kang, D.H. Preclinical evaluation of sorafenib-eluting stent for suppression of human cholangiocarcinoma cells. Int. J. Nanomed. 2013, 8, 1697–1711. [Google Scholar] [CrossRef]
- Kwak, T.W.; Lee, H.L.; Song, Y.H.; Kim, C.; Kim, J.; Seo, S.J.; Jeong, Y.I.; Kang, D.H. Vorinostat-eluting poly(DL-lactide-co-glycolide) nanofiber-coated stent for inhibition of cholangiocarcinoma cells. Int. J. Nanomed. 2017, 12, 7669–7680. [Google Scholar] [CrossRef]
- Wang, H.W.; Li, X.J.; Li, S.J.; Lu, J.R.; He, D.F. Biliary stent combined with iodine-125 seed strand implantation in malignant obstructive jaundice. World J. Clin. Cases 2021, 9, 801–811. [Google Scholar] [CrossRef]
- Yang, F.; Ren, Z.; Chai, Q.; Cui, G.; Jiang, L.; Chen, H.; Feng, Z.; Chen, X.; Ji, J.; Zhou, L.; et al. A novel biliary stent coated with silver nanoparticles prolongs the unobstructed period and survival via anti-bacterial activity. Sci. Rep. 2016, 6, 21714. [Google Scholar] [CrossRef]
- Yamabe, A.; Irisawa, A.; Kunogi, Y.; Kashima, K.; Nagashima, K.; Minaguchi, T.; Yamamiya, A.; Izawa, N.; Takimoto, Y.; Hoshi, K.; et al. Development of biliary stent applying the antibacterial activity of silver: A literature review. Biomed. Mater. Eng. 2021, 32, 63–71. [Google Scholar] [CrossRef]
- Park, J.S.; Yim, K.H.; Jeong, S.; Lee, D.H.; Kim, D.G. A Novel High-Visibility Radiopaque Tantalum Marker for Biliary Self-Expandable Metal Stents. Gut Liver 2019, 13, 366–372. [Google Scholar] [CrossRef]
- Kobayashi, M. Development of a biliary multi-hole self-expandable metallic stent for bile tract diseases: A case report. World J. Clin. Cases 2019, 7, 1323–1328. [Google Scholar] [CrossRef]
- Chen, V.K.; Eloubeidi, M.A. Endoscopic ultrasound-guided fine-needle aspiration of intramural and extraintestinal mass lesions: Diagnostic accuracy, complication assessment, and impact on management. Endoscopy 2005, 37, 984–989. [Google Scholar] [CrossRef]
- Venkatachalapathy, S.V.; Aithal, G.P. Endoscopic Ultrasound Sampling: From Cells to Tissue. Arch. Med. Health Sci. 2020, 8, 62–67. [Google Scholar]
- Hanna, K.; Krzoska, E.; Shaaban, A.M.; Muirhead, D.; Abu-Eid, R.; Speirs, V. Raman spectroscopy: Current applications in breast cancer diagnosis, challenges and future prospects. Br. J. Cancer 2022, 126, 1125–1139. [Google Scholar] [CrossRef]
Mutated Gene(s) | Drugs | References |
---|---|---|
FGFR2 | Pemigatinib Futibatinib Infigratinib Erdafitinib | [37,39,40,41] |
IDH1 | Ivosidenib | [35,36] |
NTRK family | Larotrectinib Entrectinib Repotrectinib | [42,43] |
BRAF | Dabrafenib Trametinib | [44] |
RET | Selpercatinib Pralsetinib | [45,46] |
HER2 | Zanidatamab Trastuzumab deruxtecan | [47,48,49] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaston, K.; Mohammad, A.; Venkatachalapathy, S.V.; Notingher, I.; Gordon, G.S.D.; Arora, A.; Rawson, F.J.; Grove, J.I.; Mukherjee, A.; Gomez, D.; et al. Challenges in the Diagnosis of Biliary Stricture and Cholangiocarcinoma and Perspectives on the Future Applications of Advanced Technologies. Cancers 2025, 17, 2301. https://doi.org/10.3390/cancers17142301
Gaston K, Mohammad A, Venkatachalapathy SV, Notingher I, Gordon GSD, Arora A, Rawson FJ, Grove JI, Mukherjee A, Gomez D, et al. Challenges in the Diagnosis of Biliary Stricture and Cholangiocarcinoma and Perspectives on the Future Applications of Advanced Technologies. Cancers. 2025; 17(14):2301. https://doi.org/10.3390/cancers17142301
Chicago/Turabian StyleGaston, Kevin, Abdelkhalick Mohammad, Suresh Vasan Venkatachalapathy, Ioan Notingher, George S. D. Gordon, Arvind Arora, Frankie J. Rawson, Jane I. Grove, Abhik Mukherjee, Dhanny Gomez, and et al. 2025. "Challenges in the Diagnosis of Biliary Stricture and Cholangiocarcinoma and Perspectives on the Future Applications of Advanced Technologies" Cancers 17, no. 14: 2301. https://doi.org/10.3390/cancers17142301
APA StyleGaston, K., Mohammad, A., Venkatachalapathy, S. V., Notingher, I., Gordon, G. S. D., Arora, A., Rawson, F. J., Grove, J. I., Mukherjee, A., Gomez, D., Jayaraman, P.-S., & Aithal, G. P. (2025). Challenges in the Diagnosis of Biliary Stricture and Cholangiocarcinoma and Perspectives on the Future Applications of Advanced Technologies. Cancers, 17(14), 2301. https://doi.org/10.3390/cancers17142301