Integrating 68Ga-PSMA-11 PET/CT with Clinical Risk Factors for Enhanced Prostate Cancer Progression Prediction
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Imaging Protocol and Evaluation
2.3. Patient Characteristics and Follow-Up
2.4. Input Variable Assessment
2.5. Input Variable Selection
2.6. Outcome Definition
2.7. Model Development
2.8. Model Comparison
2.9. Decision Tree
3. Results
3.1. Input Variable Assessment
3.2. Input Variable Selection
3.3. Model Comparison
3.4. Decision Tree Development
4. Discussion
4.1. Model Comparison
4.2. The Impact of Molecular Imaging for Predictive Models
4.3. Comparison of PGM to Other PSMA-PET Risk Calculators
4.4. Limitations
5. Conclusions and Further Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Feature Engineering
Appendix A.2. Integration of Imaging-Derived Biomarkers and Input Variables Selection
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Cornford, P.; Bergh, R.; Briers, E.; Van den Broeck, T.; Brunckhorst, O.; Darraugh, J.; Eberli, D.; Meerleer, G.; Santis, M.; Farolfi, A.; et al. EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer—2024 Update. Part I: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2024, 86, 148–163. [Google Scholar] [CrossRef] [PubMed]
- Cornford, P.; Bergh, R.; Briers, E.; Van den Broeck, T.; Cumberbatch, M.; Santis, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S.; et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer. Part II-2020 Update: Treatment of Relapsing and Metastatic Prostate Cancer. Eur. Urol. 2020, 79, 263–282. [Google Scholar] [CrossRef]
- Schaeffer, E.; Srinivas, S.; Adra, N.; An, Y.; Barocas, D.; Bitting, R.; Bryce, A.; Chapin, B.; Cheng, H.; D’Amico, A.; et al. Prostate Cancer, Version 4.2023, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2023, 21, 1067–1096. [Google Scholar] [CrossRef]
- Sanda, G.; Cadeddu, J.; Kirkby, E.; Chen, R.; Crispino, T.; Fontanarosa, J.; Freedland, S.; Greene, K.; Klotz, L.; Makarov, D.; et al. Clinically Localized Prostate Cancer: AUA/ASTRO/SUO Guideline. Part II: Recommended Approaches and Details of Specific Care Options. J. Urol. 2018, 199, 990–997. [Google Scholar] [CrossRef]
- Cooperberg, M.; Pasta, D.; Elkin, E.; Litwin, M.; Latini, D.; Chane, J.; Carroll, P. The UCSF Cancer of the Prostate Risk Assessment (CAPRA) Score: A straightforward and reliable preoperative predictor of disease recurrence after radical prostatectomy. J. Urol. 2005, 173, 1938–1942. [Google Scholar] [CrossRef]
- Cooperberg, M.R.; Hilton, J.F.; Carroll, P.R. The CAPRA-S score. Cancer 2011, 117, 5039–5046. [Google Scholar] [CrossRef]
- Shiota, M.; Yokomizo, A.; Takeuchi, A.; Imada, K.; Kiyoshima, K.; Inokuchi, J.; Tatsugami, K.; Naito, S. The oncological outcome and validation of Japan Cancer of the Prostate Risk Assessment score among men treated with primary androgen-deprivation therapy. J. Cancer Res. Clin. Oncol. 2014, 141, 495–503. [Google Scholar] [CrossRef]
- Mattana, F.; Muraglia, L.; Rajwa, P.; Zattoni, F.; Marra, G.; Chiu, P.; Heidegger, I.; Kasivisvanathan, V.; Kesch, C.; Olivier, J.; et al. Metastatic Sites’ Location and Impact on Patient Management After the Introduction of Prostate-specific Membrane Antigen Positron Emission Tomography in Newly Diagnosed and Biochemically Recurrent Prostate Cancer: A Critical Review. Eur. Urol. Oncol. 2023, 6, 128–136. [Google Scholar] [CrossRef]
- Luiting, H.; Leeuwen, P.; Busstra, M.; Brabander, T.; Poel, H.; Donswijk, M.; Vis, A.; Emmett, L.; Stricker, P.; Roobol, M. Use of gallium-68 prostate-specific membrane antigen positron-emission tomography for detecting lymph node metastases in primary and recurrent prostate cancer and location of recurrence after radical prostatectomy: An overview of the current literature. BJU Int. 2019, 125, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Perera, M.; Papa, N.; Roberts, M.; Williams, M.; Udovicich, C.; Vela, I.; Christidis, D.; Bolton, D.; Hofman, M.; Murphy, D. Gallium-68 Prostate-specific Membrane Antigen Positron Emission Tomography in Advanced Prostate Cancer—Updated Diagnostic Utility, Sensitivity, Specificity, and Distribution of Prostate-specific Membrane Antigen-avid Lesions: A Systematic Review and Meta-analysis. Eur. Urol. 2019, 77, 403–417. [Google Scholar] [CrossRef] [PubMed]
- Soeterik, T.; Wu, X.; Bergh, R.; Kesch, C.; Zattoni, F.; Falagario, U.; Martini, A.; Miszczyk, M.; Fasulo, V.; Maggi, M.; et al. Personalised Prostate Cancer Diagnosis: Evaluating Biomarker-based Approaches to Reduce Unnecessary Magnetic Resonance Imaging and Biopsy Procedures. Eur. Urol. Open Sci. 2025, 75, 106–119. [Google Scholar] [CrossRef] [PubMed]
- Karpinski, M.; Hüsing, J.; Claassen, K.; Möller, L.; Kajüter, H.; Oesterling, F.; Grünwald, V.; Umutlu, L.; Kleesiek, J.; Telli, T.; et al. Combining PSMA-PET and PROMISE to re-define disease stage and risk in patients with prostate cancer: A multicentre retrospective study. Lancet Oncol. 2024, 25, 1188–1201. [Google Scholar] [CrossRef]
- Djaïleb, L.; Armstrong, W.; Thompson, D.; Gafita, A.; Farolfi, A.; Rajagopal, A.; Grogan, T.; Nguyen, K.; Benz, M.; Hotta, M.; et al. Presurgical 68Ga-PSMA-11 Positron Emission Tomography for Biochemical Recurrence Risk Assessment: A Follow-up Analysis of a Multicenter Prospective Phase 3 Imaging Trial. Eur. Urol. 2023, 84, 588–596. [Google Scholar] [CrossRef]
- Langarizadeh, M.; Moghbeli, F. Applying Naive Bayesian Networks to Disease Prediction: A Systematic Review. Acta Inform. Medica 2016, 24, 364. [Google Scholar] [CrossRef]
- Christodoulou, E.; Ma, J.; Collins, G.; Steyerberg, E.; Verbakel, J.; Van Calster, B. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J. Clin. Epidemiol. 2019, 110, 12–22. [Google Scholar] [CrossRef]
- The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of grading patterns and proposal for a new grading system. Am. J. Surg. Pathol. 2016, 40, 244–252.
- Collins, G.; Reitsma, J.; Altman, D.; Moons, K. Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): The TRIPOD Statement. Eur. J. Clin. Investig. 2015, 32, g7594. [Google Scholar] [CrossRef]
- Tomczak, A.; Mortensen, J.; Winnenburg, R.; Liu, C.; Alessi, D.; Swamy, V.; Vallania, F.; Lofgren, S.; Haynes, W.; Shah, N.; et al. Interpretation of biological experiments changes with evolution of the Gene Ontology and its annotations. Sci. Rep. 2018, 8, 5115. [Google Scholar] [CrossRef]
- Lin, W.J.; Chen, J. Class-imbalanced classifiers for high-dimensional data. Briefings Bioinform. 2012, 14, 13–26. [Google Scholar] [CrossRef]
- Hanselle, J.; Kornowicz, J.; Heid, S.; Thommes, K.; Hüllermeier, E. Comparing Humans and Algorithms in Feature Ranking: A Case-Study in the Medical Domain; CEUR Workshop Proceedings: Marburg, Germany, 2023. [Google Scholar]
- Ghassemi, M.; Naumann, T.; Schulam, P.; Beam, A.; Chen, I.; Ranganath, R. A Review of Challenges and Opportunities in Machine Learning for Health. AMIA Jt. Summits Transl. Sci. Proceedings. AMIA Jt. Summits Transl. Sci. 2020, 2020, 191–200. [Google Scholar]
- Groves, W. Using Domain Knowledge to Systematically Guide Feature Selection. In Proceedings of the IJCAI International Joint Conference on Artificial Intelligence, Beijing, China, 3–9 August 2013. [Google Scholar]
- Björneld, O.; Hammar, T.; Nilsson, D.; Lincke, A.; Löwe, W. Evaluation of the impact of expert knowledge: How decision support scores impact the effectiveness of automatic knowledge-driven feature engineering (aKDFE). arXiv 2025, arXiv:2504.05928. [Google Scholar] [CrossRef]
- Lynam, A.; Ferrat, L.; Dennis, J. Logistic regression has similar performance to optimised machine learning algorithms in a clinical setting: Application to the discrimination between type 1 and type 2 diabetes in young adults. Diagn. Progn. Res. 2020, 4, 6. [Google Scholar] [CrossRef]
- Rajih, E.; Alenizi, A.; Zorn, K.; Zimmermann, M.; Delouya, G.; Taussky, D. CAPRA-S predicts outcome for adjuvant and salvage external beam radiotherapy after radical prostatectomy. Can. Urol. Assoc. J. J. L’Assoc. Urol. Can. 2016, 10, 132. [Google Scholar] [CrossRef]
- Roberts, M.; Yaxley, J.; Stranne, J.; van Oort, I.; Tilki, D. Is extended pelvic lymph node dissection REALLY required for staging of prostate cancer in the PSMA-PET era? Prostate Cancer Prostatic Dis. 2024, 28, 345–347. [Google Scholar] [CrossRef]
- Diaz, G.; Palencia, P.; Leapman, M. Delivering on the Promise of Precision Oncology in Prostate Cancer: Prediagnostic Strategies, Postdiagnostic Applications, and Future Directions. A Narrative Review. J. Urol. Oncol. 2025, 23, 4–13. [Google Scholar] [CrossRef]
- Zhou, X.; Shi, Q.; Jin, K.; Yuan, Q.; Jin, D.; Zhang, Z.; Zheng, X.; Li, J.; Wei, Q.; Yang, L. Predicting Cancer-Specific Survival Among Patients With Prostate Cancer After Radical Prostatectomy Based on the Competing Risk Model: Population-Based Study. Front. Surg. 2021, 8, 770169. [Google Scholar] [CrossRef]
- Cooperberg, M. Clinical risk stratification for prostate cancer: Where are we, and where do we need to go? Can. Urol. Assoc. J. 2017, 11, 101. [Google Scholar] [CrossRef]
- Porten, S.; Cooperberg, M.; Carroll, P. The independent value of tumour volume in a contemporary cohort of men treated with radical prostatectomy for clinically localized disease. BJU Int. 2009, 105, 472–475. [Google Scholar] [CrossRef]
- Madendere, S.; Turkkan, G.; Arda, E.; Yurut Caloglu, V.; Kuyumcuoğlu, U. Evaluation of Risk Groups for the Prediction of Biochemical Progression in Patients Undergoing Radical Prostatectomy. J. Urol. Surg. 2022, 9, 159–164. [Google Scholar] [CrossRef]
- Ong, S.; Pascoe, C.; Kelly, B.; Ballok, Z.; Webb, D.; Bolton, D.; Murphy, D.; Sengupta, S.; Bowden, P. Distant Nodes Seen on PSMA PET-CT Staging Predicts Post-Treatment Progression in Men with Newly Diagnosed Prostate Cancer—A Prospective Cohort Study. Cancers 2022, 14, 6134. [Google Scholar] [CrossRef]
- Trapp, C.; Oliinyk, D.; Rogowski, P.; Bestenbostel, R.; Ganswindt, U.; Li, M.; Eze, C.; Bartenstein, P.; Beyer, L.; Ilhan, H.; et al. An analysis of PSMA-PET/CT-positive lymph node distribution and their coverage by different elective nodal radiation volumes in postoperative prostate cancer patients. J. Nucl. Med. 2023, 64, 918–923. [Google Scholar] [CrossRef] [PubMed]
- Kelly, B.; Ptasznik, G.; Roberts, M.; Doan, P.; Stricker, P.; Thompson, J.; Buteau, J.; Chen, K.; Alghazo, O.; O’Brien, J.; et al. A Novel Risk Calculator Incorporating Clinical Parameters, Multiparametric Magnetic Resonance Imaging, and Prostate-Specific Membrane Antigen Positron Emission Tomography for Prostate Cancer Risk Stratification Before Transperineal Prostate Biopsy. Eur. Urol. Open Sci. 2023, 53, 90–97. [Google Scholar] [CrossRef]
- Fendler, W.P.; Karpinski, M.J.; Hüsing, J.; Claassen, K.; Möller, L.; Kajüter, H.; Oesterling, F.; Grünwald, V.; Umutlu, L.; Lanzafame, H.; et al. Prognostic PSMA-PET PROMISE nomograms for patients with prostate cancer. J. Clin. Oncol. 2024, 42, 5016. [Google Scholar] [CrossRef]
- Li, T.; Xu, M.; Yang, S.; Wang, G.; Liu, Y.; Liu, K.; Zhao, K.; Su, X. Development and validation of [18 F]-PSMA-1007 PET-based radiomics model to predict biochemical recurrence-free survival following radical prostatectomy. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 2806–2818. [Google Scholar] [CrossRef]
- Mirshahvalad, S.; Dias, A.; Ortega, C.; Abreu Gomez, J.; Krishna, S.; Perlis, N.; Berlin, A.; Kwast, T.; Jhaveri, K.; Ghai, S.; et al. 18F-DCFPyL PET/MRI Radiomics for Intraprostatic Prostate Cancer Detection and Metastases Prediction Using Whole-Gland Segmentation. Br. J. Radiol. 2025, tqaf014. [Google Scholar] [CrossRef]
- Tapper, W.; Carneiro, G.; Mikropoulos, C.; Thomas, S.; Evans, P.; Boussios, S. The Application of Radiomics and AI to Molecular Imaging for Prostate Cancer. J. Pers. Med. 2024, 14, 287. [Google Scholar] [CrossRef]
- Fortunate, A.; Kampala International University IX. Precision Medicine in Prostate Cancer: Integrating Genomics, AI, and Big Data for Personalized Treatment. ROJPHM 2024, 4, 7–12. [Google Scholar] [CrossRef]
- Hoberück, S.; Löck, S.; Borkowetz, A.; Sommer, U.; Winzer, R.; Zöphel, K.; Fedders, D.; Michler, E.; Kotzerke, J.; Kopka, K.; et al. Intraindividual comparison of [68 Ga]-Ga-PSMA-11 and [18F]-F-PSMA-1007 in prostate cancer patients: A retrospective single-center analysis. EJNMMI Res. 2021, 11, 109. [Google Scholar] [CrossRef]
- Strauss, D.; Sachpekidis, C.; Kopka, K.; Pan, L.; Haberkorn, U.; Dimitrakopoulou-Strauss, A. Pharmacokinetic studies of [68 Ga]Ga-PSMA-11 in patients with biochemical recurrence of prostate cancer: Detection, differences in temporal distribution and kinetic modelling by tissue type. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 4472–4482. [Google Scholar] [CrossRef] [PubMed]
- Garba Sharifai, A.; Zainol, Z. Feature Selection for High-Dimensional and Imbalanced Biomedical Data Based on Robust Correlation Based Redundancy and Binary Grasshopper Optimization Algorithm. Genes 2020, 11, 717. [Google Scholar] [CrossRef] [PubMed]
- Luu, J.; Borisenko, E.; Przekop, V.; Patil, A.; Forrester, J.; Choi, J. Practical guide to building machine learning-based clinical prediction models using imbalanced datasets. Trauma Surg. Acute Care Open 2024, 9, e001222. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Lin, S.; Cornejo, K.; Crotty, R.; Blute, M.; Dahl, D.; Wu, C.L. Clinicopathological and oncological significance of persistent prostate-specific antigen after radical prostatectomy: A systematic review and meta-analysis. Asian J. Urol. 2022, 10, 317–328. [Google Scholar] [CrossRef]
- Dinckal, M.; Ergun, K.; Kalemci, M.; Guler, E.; Tokac, R.; Ordu, S.; Ogut, N.; Ozgul, S.; Sanli, O.; Sen, S.; et al. Head-to-head comparison of GA-68 PSMA PET/CT and multiparametric MRI findings with postoperative results in preoperative locoregional staging and localization of prostate cancer. Prostate 2024, 85, 48–57. [Google Scholar] [CrossRef]
- Gossili, F.; Mogensen, A.; Konnerup, T.; Bouchelouche, K.; Alberts, I.; Afshar-Oromieh, A.; Zacho, H. The diagnostic accuracy of radiolabeled PSMA-ligand PET for tumour staging in newly diagnosed prostate cancer patients compared to histopathology: A systematic review and meta-analysis. Eur. J. Nucl. Med. Mol. Imaging 2023, 51, 281–294. [Google Scholar] [CrossRef]
- Trujillo, B.; Wu, A.; Wetterskog, D.; Attard, G. Blood-based liquid biopsies for prostate cancer: Clinical opportunities and challenges. Br. J. Cancer 2022, 127, 1394–1402. [Google Scholar] [CrossRef]
- Smith, C.; Proudfoot, J.; Boutros, P.; Reiter, R.; Valle, L.; Rettig, M.; Nickols, N.; Feng, F.; Nguyen, P.; Nagar, H.; et al. Transcriptomic Heterogeneity in High-risk Prostate Cancer and Implications for Extraprostatic Disease at Presentation on Prostate-specific Membrane Antigen Positron Emission Tomography. Eur. Urol. Oncol. 2023, 6, 224–227. [Google Scholar] [CrossRef]
- Zhang, J.; Kang, F.; Gao, J.; Jiao, J.; Quan, Z.; Ma, S.; Li, Y.; Guo, S.; Li, Z.; Jing, Y.; et al. A Prostate-Specific Membrane Antigen PET-Based Approach for Improved Diagnosis of Prostate Cancer in Gleason Grade Group 1: A Multicenter Retrospective Study. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2023, 64, 1750–1757. [Google Scholar] [CrossRef]
- Ades, A.; Holt, T.; Rhee, H.; Webb, M.; Mehdi, A.; Ratnayake, G. Prognostic value of PSMA PET in predicting long-term biochemical control following curative intent treatment for prostate cancer. J. Med. Imaging Radiat. Oncol. 2024, 69, 129–135. [Google Scholar] [CrossRef]
- Demirci, E.; Kabasakal, L.; Şahin, O.; Akgun, E.; Gultekin, M.; Doğanca, T.; Tuna, B.; Öbek, C.; Kılıç, M.; Esen, T.; et al. Can SUVmax values of Ga-68-PSMA PET/CT scan predict the clinically significant prostate cancer? Nucl. Med. Commun. 2018, 40, 86–91. [Google Scholar] [CrossRef]
- Epstein, J.; Carmichael, M.; Walsh, P. Adenocarcinoma of the Prostate Invading the Seminal Vesicle: Definition and Relation of Tumor Volume, Grade and Margins of Resection to Prognosis. J. Urol. 1993, 149, 1040–1045. [Google Scholar] [CrossRef]
- Gebrael, G.; Jo, Y.; Swami, U.; Plets, M.; Hage Chehade, C.; Narang, A.; Gupta, S.; Myint, Z.; Sayegh, N.; Tangen, C.; et al. Bone Pain and Survival Among Patients With Metastatic, Hormone-Sensitive Prostate Cancer: A Secondary Analysis of the SWOG-1216 Trial. JAMA Netw. Open 2024, 7, e2419966. [Google Scholar] [CrossRef] [PubMed]
- Küper, A.; Kersting, D.; Telli, T.; Herrmann, K.; Rominger, A.; Afshar-Oromieh, A.; Lopes, L.; Karkampouna, S.; Shi, K.; Kim, M.; et al. PSMA-PET follow-up to assess response in patients not receiving PSMA therapy: Is there value beyond localization of disease? Theranostics 2024, 14, 3623–3633. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Median | Range |
---|---|---|
Age (years) | 67.0 | 52–83 |
PSA (ng/mL) | 10.5 | 0.01–153 |
Gleason score | 8 | 6–10 |
SUVmax | 21.44 | 4.18–154.95 |
TLP | 29.35 | 1.25–3651.1 |
TTV (mL) | 5.13 | 0.35–115.15 |
Variable | Positive | Negative |
---|---|---|
Bone metastases (OS_Mx) | 12 (12.8%) | 81 (87.1%) |
LNM at common iliac bifurcation | 4 (4.3%) | 89 (95.7%) |
LNM at internal iliac artery (IIA) | 11 (11.8%) | 82 (88.2%) |
LNM at external iliac artery (EIA) | 19 (20.4%) | 74 (79.6%) |
LNM at common iliac artery (CIA) | 10 (10.7%) | 83 (89.2%) |
Seminal vesicle infiltration (SVI) | 17 (18.3%) | 76 (81.7%) |
LNM retroperitoneal | 20 (21.5%) | 59 (63.4%) |
Clinical Outcome | Number of Patients (%) |
---|---|
Complete response | 55 (59.1%) |
Stable disease | 18 (19.4%) |
Partial response | 15 (16.2%) |
Progression | 5 (5.4%) |
Category | Variable | Description |
---|---|---|
Clinical | Age | patient age at diagnosis |
PSA | baseline prostate-specific antigen level (ng/mL) | |
Gleason score | histopathologic grade group | |
CAPRA-S/J-CAPRA (capra_pred) | continuous CAPRA-derived risk score | |
Primary treatment modality | treatment type at baseline (e.g., surgery, adjuvant hormone therapy (AHT)) | |
PET Imaging Features | SUVmax | maximum standardized uptake value |
Total lesion PSMA uptake (TLP) | summed uptake volume across all lesions | |
Total tumor volume (TTV) | volumetric measure of the main tumor | |
Bone metastases (OS_Mx) | presence of PSMA-positive skeletal lesions | |
Lymph node metastasis (LNM) | nodal uptake on PSMA PET across anatomical regions | |
– Internal iliac artery (IIA) | ||
– External iliac artery (EIA) | ||
– Common iliac bifurcation (CIB) | ||
– Common iliac artery (CIA) | ||
– Retroperitoneal | ||
Seminal vesicle infiltration (SVI) | tracer uptake visible in this anatomical region | |
Periprostatic infiltration | extension of tracer uptake beyond prostate capsule |
Feature (LR, PGM) | Description | Weight (PGM) |
---|---|---|
CAPRA score (capra_pred) | Binarized recurrence risk derived from survival curves (threshold = 0.16) | 1.5 |
SUVmax | Binarized intraprostatic PSMA uptake, threshold at 12.0 (SUVmax_binned) | 1.0 |
Seminal vesicle infiltration (SVI) | Binarized (yes/no), histopathologically proven or inferred via PSMA-imaging | 0.5 |
Bone metastases (OS_Mx) | Binarized (yes/no), presence of PSMA-positive bone lesions | 0.5 |
Common iliac node involvement (CIB) | Binarized (yes/no), presence of PSMA-avid lymph nodes at common iliac bifurcation | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wybranska, J.M.; Pieper, L.; Wybranski, C.; Genseke, P.; Wuestemann, J.; Varghese, J.; Kreissl, M.C.; Mitura, J. Integrating 68Ga-PSMA-11 PET/CT with Clinical Risk Factors for Enhanced Prostate Cancer Progression Prediction. Cancers 2025, 17, 2285. https://doi.org/10.3390/cancers17142285
Wybranska JM, Pieper L, Wybranski C, Genseke P, Wuestemann J, Varghese J, Kreissl MC, Mitura J. Integrating 68Ga-PSMA-11 PET/CT with Clinical Risk Factors for Enhanced Prostate Cancer Progression Prediction. Cancers. 2025; 17(14):2285. https://doi.org/10.3390/cancers17142285
Chicago/Turabian StyleWybranska, Joanna M., Lorenz Pieper, Christian Wybranski, Philipp Genseke, Jan Wuestemann, Julian Varghese, Michael C. Kreissl, and Jakub Mitura. 2025. "Integrating 68Ga-PSMA-11 PET/CT with Clinical Risk Factors for Enhanced Prostate Cancer Progression Prediction" Cancers 17, no. 14: 2285. https://doi.org/10.3390/cancers17142285
APA StyleWybranska, J. M., Pieper, L., Wybranski, C., Genseke, P., Wuestemann, J., Varghese, J., Kreissl, M. C., & Mitura, J. (2025). Integrating 68Ga-PSMA-11 PET/CT with Clinical Risk Factors for Enhanced Prostate Cancer Progression Prediction. Cancers, 17(14), 2285. https://doi.org/10.3390/cancers17142285