Immunohistological Examination of HEATR1 and SLC27A2 Expression in ccRCC Samples to Evaluate Their Potential as Prognostic Markers—A Preliminary Study
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Cohorts
2.2. Immunohistochemistry and Pathology Evaluation
2.3. Digital Image Acquisition and Archiving
2.4. Statistical Analysis
2.5. Reactome Pathway Enrichment Analysis
3. Results
3.1. Protein Expression Values in CPTAC ccRCC
3.2. Immunohistochemical Analysis of HEATR1 and SLC27A2 Reveals Potential Prognostic Markers
3.3. HEATR1 and SLC27A2 Expression as Measured by IHC
3.4. HEATR1 and SLC27A2 Expression Correlated with Clinical Outcomes
3.5. Reactome Pathway Enrichment Analysis of HEATR1 and SLC27A2
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bukavina, L.; Bensalah, K.; Bray, F.; Carlo, M.; Challacombe, B.; Karam, J.A.; Kassouf, W.; Mitchell, T.; Montironi, R.; O’BRien, T.; et al. Epidemiology of Renal Cell Carcinoma: 2022 Update. Eur. Urol. 2022, 82, 529–542. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- DeCastro, G.J.; McKiernan, J.M. Epidemiology, Clinical Staging, and Presentation of Renal Cell Carcinoma. Urol. Clin. N. Am. 2008, 35, 581–592. [Google Scholar] [CrossRef]
- Chevrier, S.; Levine, J.H.; Zanotelli, V.R.T.; Silina, K.; Schulz, D.; Bacac, M.; Ries, C.H.; Ailles, L.; Jewett, M.A.S.; Moch, H.; et al. An Immune Atlas of Clear Cell Renal Cell Carcinoma. Cell 2017, 169, 736–749.e18. [Google Scholar] [CrossRef] [PubMed]
- Creighton, C.J.; Hernandez-Herrera, A.; Jacobsen, A.; Levine, D.A.; Mankoo, P.; Schultz, N.; Du, Y.; Zhang, Y.; Larsson, E.; Sheridan, R.; et al. Integrated analyses of microRNAs demonstrate their widespread influence on gene expression in high-grade serous ovarian carcinoma. PLoS ONE 2012, 7, e34546. [Google Scholar] [CrossRef]
- Scelo, G.; Larose, T.L. Epidemiology and risk factors for kidney cancer. J. Clin. Oncol. 2018, 36, 3574–3581. [Google Scholar] [CrossRef] [PubMed]
- Howlader, N.; Noone, A.M.; Krapcho, M.; Miller, D.; Brest, A.; Yu, M. SEER Cancer Statistics Review (CSR) 1975–2017; National Cancer Institute: Bethesda, MA, USA, 2020. [Google Scholar]
- Kase, A.M.; George, D.J.; Ramalingam, S. Clear Cell Renal Cell Carcinoma: From Biology to Treatment. Cancers 2023, 15, 665. [Google Scholar] [CrossRef] [PubMed]
- Klümper, N.; Ralser, D.J.; Bawden, E.G.; Landsberg, J.; Zarbl, R.; Kristiansen, G.; Toma, M.; Ritter, M.; Hölzel, M.; Ellinger, J.; et al. LAG3(LAG-3,CD223) DNA methylation correlates with LAG3 expression by tumor and immune cells, immune cell infiltration, and overall survival in clear cell renal cell carcinoma. J. Immunother. Cancer 2020, 8, e000552. [Google Scholar] [CrossRef]
- Chen, D.S.; Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature 2017, 541, 321–330. [Google Scholar] [CrossRef]
- Prieto, J.-L.; McStay, B. Recruitment of factors linking transcription and processing of pre-rRNA to NOR chromatin is UBF-dependent and occurs independent of transcription in human cells. Genes Dev. 2007, 21, 2041–2054. [Google Scholar] [CrossRef]
- Wu, Z.B.; Qiu, C.; Zhang, A.L.; Cai, L.; Lin, S.J.; Yao, Y.; Tang, Q.S.; Xu, M.; Hua, W.; Chu, Y.W.; et al. Glioma-associated antigen HEATR1 induces functional cytotoxic T lymphocytes in patients with glioma. J. Immunol. Res. 2014, 2014, 131494. [Google Scholar] [CrossRef] [PubMed]
- Medes, G.; Thomas, A.; Weinhouse, S. Metabolism of Neoplastic Tissue. IV. A Study of Lipid Synthesis in Neoplastic Tissue Slices in Vitro. Cancer Res. 1953, 13, 27–29. [Google Scholar]
- Gao, Q.; Zhang, G.; Zheng, Y.; Yang, Y.; Chen, C.; Xia, J.; Liang, L.; Lei, C.; Hu, Y.; Cai, X.; et al. SLC27A5 deficiency activates NRF2/TXNRD1 pathway by increased lipid peroxidation in HCC. Cell Death Differ. 2020, 27, 1086–1104. [Google Scholar] [CrossRef] [PubMed]
- Mashek, D.G. Hepatic fatty acid trafficking: Multiple forks in the road. Adv. Nutr. Int. Rev. J. 2013, 4, 697–710. [Google Scholar] [CrossRef]
- Qiu, P.; Wang, H.; Zhang, M.; Peng, R.; Zhao, Q.; Liu, J. FATP2-targeted therapies—A role beyond fatty liver disease. Pharmacol. Res. 2020, 161, 105228. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yan, Q.; Lv, M.; Song, K.; Dai, Y.; Huang, Y.; Zhang, L.; Zhang, C.; Gao, H. Involvement of FATP2-mediated tubular lipid metabolic reprogramming in renal fibrogenesis. Cell Death Dis. 2020, 11, 994. [Google Scholar] [CrossRef]
- Veglia, F.; Tyurin, V.A.; Blasi, M.; De Leo, A.; Kossenkov, A.V.; Donthireddy, L.; To, T.K.J.; Schug, Z.; Basu, S.; Wang, F.; et al. Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature 2019, 569, 73–78. [Google Scholar] [CrossRef]
- Clark, D.J.; Dhanasekaran, S.M.; Petralia, F.; Pan, J.; Song, X.; Hu, Y.; da Veiga Leprevost, F.; Reva, B.; Lih, T.-S.M.; Chang, H.-Y.; et al. Integrated Proteogenomic Characterization of Clear Cell Renal Cell Carcinoma. Cell 2019, 179, 964–983.e31. [Google Scholar] [CrossRef]
- Hirsch, F.R.; Varella-Garcia, M.; Bunn, P.A., Jr.; Di Maria, M.V.; Veve, R.; Bremnes, R.M.; Barón, A.E.; Zeng, C.; Franklin, W.A. Epidermal growth factor receptor in non-small-cell lung carcinomas: Correlation between gene copy number and protein expression and impact on prognosis. J. Clin. Oncol. 2003, 21, 3798–3807. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, K.; Zhou, Y.; Li, T.; Yang, M.; Wang, R.; Chen, Y.; Cao, M.; Hu, R. HEATR1 deficiency promotes pancreatic cancer proliferation and gemcitabine resistance by up-regulating Nrf2 signaling. Redox Biol. 2020, 29, 101390. [Google Scholar] [CrossRef]
- Diaz, L.R.; Gil-Ranedo, J.; Jaworek, K.J.; Nsek, N.; Marques, J.P.; Costa, E.; A Hilton, D.; Bieluczyk, H.; Warrington, O.; Hanemann, C.O.; et al. Ribogenesis boosts controlled by HEATR1-MYC interplay promote transition into brain tumour growth. EMBO Rep. 2024, 25, 168–197. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Ma, X.; Ye, Y.; Zhang, M.; Zhuang, J.; Song, Y.; Xia, W. HEATR1 modulates cell survival in non-small cell lung cancer via activation of the p53/PUMA signaling pathway. OncoTargets Ther. 2019, 12, 4001–4011. [Google Scholar] [CrossRef] [PubMed]
- Turi, Z.; Senkyrikova, M.; Mistrik, M.; Bartek, J.; Moudry, P. Perturbation of RNA Polymerase I transcription machinery by ablation of HEATR1 triggers the RPL5/RPL11-MDM2-p53 ribosome biogenesis stress checkpoint pathway in human cells. Cell Cycle 2017, 17, 92–101. [Google Scholar] [CrossRef]
- Zhao, J.; Zhu, Y.; Fu, Q.; Zhu, Y.; Zhao, G. HEATR1 promotes proliferation in gastric cancer in vitro and in vivo. Acta Biochim. Biophys. Sin. 2020, 52, 1030–1039. [Google Scholar] [CrossRef]
- Liu, T.; Fang, Y.; Zhang, H.; Deng, M.; Gao, B.; Niu, N.; Yu, J.; Lee, S.; Kim, J.; Qin, B.; et al. HEATR1 negatively regulates akt to help sensitize pancreatic cancer cells to chemotherapy. Cancer Res. 2016, 76, 572–581. [Google Scholar] [CrossRef] [PubMed]
- Temaj, G.; Chichiarelli, S.; Eufemi, M.; Altieri, F.; Hadziselimovic, R.; Farooqi, A.A.; Yaylim, I.; Saso, L. Ribosome-Directed Therapies in Cancer. Biomedicines 2022, 10, 2088. [Google Scholar] [CrossRef]
- Fang, Y.; Han, X.; Li, J.; Kuang, T.; Lou, W. HEATR1 Deficiency Promotes Chemoresistance via Upregulating ZNF185 and Downregulating SMAD4 in Pancreatic Cancer. J. Oncol. 2020, 2020, 3181596. [Google Scholar] [CrossRef]
- Caimari, A.; Oliver, P.; Rodenburg, W.; Keijer, J.; Palou, A. Slc27a2 expression in peripheral blood mononuclear cells as a molecular marker for overweight development. Int. J. Obes. 2010, 34, 831–839. [Google Scholar] [CrossRef]
- Chen, F.D.; Chen, H.H.; Ke, S.C.; Zheng, L.R.; Zheng, X.Y. SLC27A2 regulates miR-411 to affect chemo-resistance in ovarian cancer. Neoplasma 2018, 65, 915–924. [Google Scholar] [CrossRef]
- Yi, Y.; Nandana, S.; Case, T.; Nelson, C.; Radmilovic, T.; Matusik, R.J.; Tsuchiya, K.D. Candidate metastasis suppressor genes uncovered by array comparative genomic hybridization in a mouse allograft model of prostate cancer. Mol. Cytogenet. 2009, 2, 18. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Zhu, B.; Ma, L.; Xing, Q. A Novel Nine Apoptosis-Related Genes Signature Predicting Overall Survival for Kidney Renal Clear Cell Carcinoma and its Associations with Immune Infiltration. Front. Mol. Biosci. 2021, 8, 567730. [Google Scholar] [CrossRef]
- Xu, N.; Xiao, W.; Meng, X.; Li, W.; Wang, X.; Zhang, X.; Yang, H. Up-regulation of SLC27A2 suppresses the proliferation and invasion of renal cancer by down-regulating CDK3-mediated EMT. Cell Death Discov. 2022, 8, 351. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Lee, L.T.O. Membrane drug transporters in cancer: From chemoresistance mechanism to therapeutic strategies. Biochim. Biophys. Acta Rev. Cancer 2025, 1880, 189272. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Wang, X.; Lu, S.; Ou, K. Metabolic reprogramming of clear cell renal cell carcinoma. Front. Endocrinol. 2023, 14, 1195500. [Google Scholar] [CrossRef]
- Surendran, A.; Jamalkhah, M.; Poutou, J.; Birtch, R.; Lawson, C.; Dave, J.; Crupi, M.J.F.; Mayer, J.; Taylor, V.; Petryk, J.; et al. Fatty acid transport protein inhibition sensitizes breast and ovarian cancers to oncolytic virus therapy via lipid modulation of the tumor microenvironment. Front. Immunol. 2023, 14, 1099459. [Google Scholar] [CrossRef]
- Wanders, R. Peroxisomes, lipid metabolism, and peroxisomal disorders. Mol. Genet. Metab. 2004, 83, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.T.; Sengupta, T.K.; Singh, I. Intraperoxisomal localization of very-long-chain fatty acyl-CoA synthetase: Implication in X-adrenoleukodystrophy. Exp. Cell Res. 2000, 254, 309–320. [Google Scholar] [CrossRef]
- Monaco, M.E. Fatty acid metabolism in breast cancer subtypes. Oncotarget 2017, 8, 29487–29500. [Google Scholar] [CrossRef]
- Shang, K.; Ma, N.; Che, J.; Li, H.; Hu, J.; Sun, H.; Cao, B. SLC27A2 mediates FAO in colorectal cancer through nongenic crosstalk regulation of the PPARs pathway. BMC Cancer 2023, 23, 335. [Google Scholar] [CrossRef]
- Feng, Y.; Li, S.; Zhang, R.; Liu, F.; Xu, Q.; Ding, H.; Teng, Y. FOXM1 as a prognostic biomarker promotes endometrial cancer progression via transactivation of SLC27A2 expression. Int. J. Clin. Exp. Pathol. 2018, 11, 3846–3857. [Google Scholar]
- Korbecki, J.; Kojder, K.; Jeżewski, D.; Simińska, D.; Tomasiak, P.; Tarnowski, M.; Chlubek, D.; Baranowska-Bosiacka, I. Reduced Expression of Very-Long-Chain Acyl-CoA Synthetases SLC27A4 and SLC27A6 in the Glioblastoma Tumor Compared to the Peritumoral Area. Brain Sci. 2023, 13, 771. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhang, Y.; Chang, K.; Hou, N.; Fan, P.; Ji, C.; Liu, L.; Wang, Z.; Li, R.; Wang, Y.; et al. Risk assessment model based on nucleotide metabolism-related genes highlights SLC27A2 as a potential therapeutic target in breast cancer. J. Cancer Res. Clin. Oncol. 2024, 150, 258. [Google Scholar] [CrossRef] [PubMed]
- Feng, K.; Ma, R.; Li, H.; Yin, K.; Du, G.; Chen, X.; Liu, Z.; Yin, D. Upregulated SLC27A2/FATP2 in differentiated thyroid carcinoma promotes tumor proliferation and migration. J. Clin. Lab. Anal. 2021, 36, e24148. [Google Scholar] [CrossRef] [PubMed]
Antibody | Source | Identifier | Clone | Dilution |
---|---|---|---|---|
Rabbit polyclonal anti-HEATR1 | Bioss (Woburn, MA, USA) | Cat# bs-15438R, RRID:AB_2934056 | Polyclonal | 1:200 |
Rabbit polyclonal anti-SLC27A2 | Atlas Antibodies (Stockholm, Sweden) | Cat# HPA026089, RRID:AB_1857060 | Polyclonal | 1:500 |
Protein | H-Score Range—High IHC Score Group | H-Score Range—Low IHC Score Group | Reaction |
---|---|---|---|
HEATR1 | 110–260, n = 25 | 0–105, n = 26 | Nuclear, cytoplasmic, membranous |
SLC27A2 | 120–260, n = 31 | 0–100, n = 21 | Cytoplasmic, membranous, nuclear |
Progression-Free Survival (PFS) | Overall Survival (OS) | |||
---|---|---|---|---|
Hazard Ratio (HR) | 95% CI of HR | Hazard Ratio (HR) | 95% CI of HR | |
HEATR1 | 5.141 | 1.689–15.64 | 5.636 | 2.018–15.74 |
SLC27A2 | 3.299 | 1.374–7.921 | 3.798 | 1.31–11.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasperczak, M.; Kołodziejczak-Guglas, I.; Pawłowska-Kasperczak, K.; Wiznerowicz, M.; Antczak, A. Immunohistological Examination of HEATR1 and SLC27A2 Expression in ccRCC Samples to Evaluate Their Potential as Prognostic Markers—A Preliminary Study. Cancers 2025, 17, 2234. https://doi.org/10.3390/cancers17132234
Kasperczak M, Kołodziejczak-Guglas I, Pawłowska-Kasperczak K, Wiznerowicz M, Antczak A. Immunohistological Examination of HEATR1 and SLC27A2 Expression in ccRCC Samples to Evaluate Their Potential as Prognostic Markers—A Preliminary Study. Cancers. 2025; 17(13):2234. https://doi.org/10.3390/cancers17132234
Chicago/Turabian StyleKasperczak, Michał, Iga Kołodziejczak-Guglas, Karolina Pawłowska-Kasperczak, Maciej Wiznerowicz, and Andrzej Antczak. 2025. "Immunohistological Examination of HEATR1 and SLC27A2 Expression in ccRCC Samples to Evaluate Their Potential as Prognostic Markers—A Preliminary Study" Cancers 17, no. 13: 2234. https://doi.org/10.3390/cancers17132234
APA StyleKasperczak, M., Kołodziejczak-Guglas, I., Pawłowska-Kasperczak, K., Wiznerowicz, M., & Antczak, A. (2025). Immunohistological Examination of HEATR1 and SLC27A2 Expression in ccRCC Samples to Evaluate Their Potential as Prognostic Markers—A Preliminary Study. Cancers, 17(13), 2234. https://doi.org/10.3390/cancers17132234