Correlations Between Mammographic Breast Density and Outcomes After Neoadjuvant Chemotherapy in Patients with Locally Advanced Breast Cancer
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Mammographic Breast Density Assessment
3. Results
3.1. Included Population
3.2. Response Rates and Survival
3.2.1. Overall Population Outcomes
3.2.2. Interaction of Mammographic Breast Density with Response and Survival
3.2.3. The Impact of Body Mass Index
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMI | Body mass index |
BC | Breast cancer |
BCSS | Breast cancer-specific survival |
cCR | Clinical complete response |
cPR | Clinical partial response |
CC | Craniocaudal |
DA | Dense area |
EBC | Early breast cancer |
EMT | Epithelial–mesenchymal transition |
ER | Estrogen receptor |
HER2 | Human epidermal growth factor receptor 2 |
MBD | Mammographic breast density |
NAC | Neoadjuvant chemotherapy |
NDA | Non-dense area |
pCR | Pathologic complete response |
PDA | Percentage dense area |
PR | Progesterone receptor |
RFS | Relapse-free survival |
RPH | Royal Perth Hospital |
SD | Stable disease |
TNBC | Triple-negative breast cancer |
WA PACS | Western Australian Picture Archiving and Communication System |
References
- Hopper, J.L. Odds per Adjusted Standard Deviation: Comparing Strengths of Associations for Risk Factors Measured on Different Scales and Across Diseases and Populations. Am. J. Epidemiol. 2015, 182, 863–867. [Google Scholar] [CrossRef] [PubMed]
- McCormack, V.A.; dos Santos Silva, I. Breast density and parenchymal patterns as markers of breast cancer risk: A meta-analysis. Cancer Epidemiol. Biomark. Prev. 2006, 15, 1159–1169. [Google Scholar] [CrossRef] [PubMed]
- Sprague, B.L.; Gangnon, R.E.; Burt, V.; Trentham-Dietz, A.; Hampton, J.M.; Wellman, R.D.; Kerlikowske, K.; Miglioretti, D.L. Prevalence of mammographically dense breasts in the United States. J. Natl. Cancer Inst. 2014, 106, dju255. [Google Scholar] [CrossRef] [PubMed]
- Shawky, M.S.; Huo, C.W.; Henderson, M.A.; Redfern, A.; Britt, K.; Thompson, E.W. A review of the influence of mammographic density on breast cancer clinical and pathological phenotype. Breast Cancer Res. Treat. 2019, 177, 251–276. [Google Scholar] [CrossRef]
- Shawky, M.S.; Martin, H.; Hugo, H.J.; Lloyd, T.; Britt, K.L.; Redfern, A.; Thompson, E.E.W. Mammographic density: A potential monitoring biomarker for adjuvant and preventative breast cancer endocrine therapies. Oncotarget 2017, 8, 5578–5591. [Google Scholar] [CrossRef]
- Abe, O.; Abe, R.; Enomoto, K.; Kikuchi, K.; Koyama, H.; Masuda, H.; Nomura, Y.; Sakai, K.; Sugimachi, K.; Tominaga, T.; et al. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: An overview of the randomised trials. Lancet 2005, 365, 1687–1717. [Google Scholar] [CrossRef]
- von Minckwitz, G.; Huang, C.-S.; Mano, M.S.; Loibl, S.; Mamounas, E.P.; Untch, M.; Wolmark, N.; Rastogi, P.; Schneeweiss, A.; Redondo, A.; et al. Trastuzumab Emtansine for Residual Invasive HER2-Positive Breast Cancer. N. Engl. J. Med. 2019, 380, 617–628. [Google Scholar] [CrossRef]
- Masuda, N.; Lee, S.-J.; Ohtani, S.; Im, Y.-H.; Lee, E.-S.; Yokota, I.; Kuroi, K.; Im, S.-A.; Park, B.-W.; Kim, S.-B.; et al. Adjuvant Capecitabine for Breast Cancer after Preoperative Chemotherapy. N. Engl. J. Med. 2017, 376, 2147–2159. [Google Scholar] [CrossRef]
- von Minckwitz, G.; Untch, M.; Blohmer, J.U.; Costa, S.D.; Eidtmann, H.; Fasching, P.A.; Gerber, B.; Eiermann, W.; Hilfrich, J.; Huober, J.; et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J. Clin. Oncol. 2012, 30, 1796–1804. [Google Scholar] [CrossRef]
- Earl, H.M.; Hiller, L.; Dunn, J.A.; Blenkinsop, C.; Grybowicz, L.; Vallier, A.L.; Gounaris, I.; Abraham, J.E.; Hughes-Davies, L.; McAdam, K.; et al. Disease-free and overall survival at 3.5 years for neoadjuvant bevacizumab added to docetaxel followed by fluorouracil, epirubicin and cyclophosphamide, for women with HER2 negative early breast cancer: ARTemis Trial. Ann. Oncol. 2017, 28, 1817–1824. [Google Scholar] [CrossRef]
- Conforti, F.; Pala, L.; Sala, I.; Oriecuia, C.; de Pas, T.; Specchia, C.; Graffeo, R.; Pagan, E.; Queirolo, P.; Pennacchioli, E.; et al. Evaluation of pathological complete response as surrogate endpoint in neoadjuvant randomised clinical trials of early stage breast cancer: Systematic review and meta-analysis. BMJ 2021, 375, e066381. [Google Scholar] [CrossRef] [PubMed]
- Castaneda, C.A.; Flores, R.; Rojas, K.; Flores, C.; Castillo, M.; Milla, E. Association between mammographic features and response to neoadjuvant chemotherapy in locally advanced breast carcinoma. Hematol./Oncol. Stem Cell Ther. 2014, 7, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Skarping, I.; Förnvik, D.; Sartor, H.; Heide-Jørgensen, U.; Zackrisson, S.; Borgquist, S. Mammographic density is a potential predictive marker of pathological response after neoadjuvant chemotherapy in breast cancer. BMC Cancer 2019, 19, 1272. [Google Scholar] [CrossRef]
- Skarping, I.; Förnvik, D.; Heide-Jørgensen, U.; Sartor, H.; Hall, P.; Zackrisson, S.; Borgquist, S. Mammographic density as an image-based biomarker of therapy response in neoadjuvant-treated breast cancer patients. Cancer Causes Control 2021, 32, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Elsamany, S.; Alzahrani, A.; Abozeed, W.N.; Rasmy, A.; Farooq, M.U.; Elbiomy, M.A.; Rawah, E.; Alsaleh, K.; Abdel-Aziz, N.M. Mammographic breast density: Predictive value for pathological response to neoadjuvant chemotherapy in breast cancer patients. Breast 2015, 24, 576–581. [Google Scholar] [CrossRef]
- Cullinane, C.; Brien, A.O.; Shrestha, A.; Hanlon, E.O.; Walshe, J.; Geraghty, J.; Evoy, D.; McCartan, D.; McDermott, E.; Prichard, R. The association between breast density and breast cancer pathological response to neoadjuvant chemotherapy. Breast Cancer Res. Treat. 2022, 194, 385–392. [Google Scholar] [CrossRef]
- di Cosimo, S.; Depretto, C.; Miceli, R.; Baili, P.; Ljevar, S.; Sant, M.; Cappelletti, V.; Folli, S.; Gennaro, M.; de Braud, F.G.; et al. Mammographic density to predict response to neoadjuvant systemic breast cancer therapy. J. Cancer Res. Clin. Oncol. 2022, 148, 775–781. [Google Scholar] [CrossRef]
- Miller, A.B.; Hoogstraten, B.; Staquet, M.; Winkler, A. Reporting results of cancer treatment. Cancer 1981, 47, 207–214. [Google Scholar] [CrossRef]
- D’orsi, C.J.; Bassett, L.; Berg, W.A.; Feig, S.A.; Jackson, V.; Kopans, D.B. Breast Imaging Reporting and Data System: ACR BI-RADS-Mammography; American College of Radiology (ACR): Reston, VA, USA, 2003; pp. 230–234. [Google Scholar]
- Hart, V.; Reeves, K.W.; Sturgeon, S.R.; Reich, N.G.; Sievert, L.L.; Kerlikowske, K.; Ma, L.; Shepherd, J.; Tice, J.A.; Mahmoudzadeh, A.P.; et al. The effect of change in body mass index on volumetric measures of mammographic density. Cancer Epidemiol. Biomark. Prev. 2015, 24, 1724–1730. [Google Scholar] [CrossRef]
- D’Orsi, C.J.; Sickles, E.; Bassett, L.W. 2013 ACR BI-RADS Atlas: Breast Imaging Reporting and Data System; American College of Radiology (ACR): Reston, VA, USA, 2013. [Google Scholar]
- Chan, D.S.M.; Vieira, A.R.; Aune, D.; Bandera, E.V.; Greenwood, D.C.; McTiernan, A.; Navarro Rosenblatt, D.; Thune, I.; Vieira, R.; Norat, T. Body mass index and survival in women with breast cancer-systematic literature review and meta-analysis of 82 follow-up studies. Ann. Oncol. 2014, 25, 1901–1914. [Google Scholar] [CrossRef]
- Trayhurn, P. Hypoxia and adipose tissue function and dysfunction in obesity. Physiol. Rev. 2013, 93, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Redfern, A.; Agarwal, V.; Thompson, E.W.E.W. Hypoxia as a signal for prison breakout in cancer. Curr. Opin. Clin. Nutr. Metab. Care 2019, 22, 250–263. [Google Scholar] [CrossRef] [PubMed]
- Huo, C.W.; Hill, P.; Chew, G.; Neeson, P.J.; Halse, H.; Williams, E.D.; Henderson, M.A.; Thompson, E.W.; Britt, K.L. High mammographic density in women is associated with protumor inflammation. Breast Cancer Res. 2018, 20, 92. [Google Scholar] [CrossRef]
- DeNardo, D.G.; Brennan, D.J.; Rexhepaj, E.; Ruffell, B.; Shiao, S.L.; Madden, S.F.; Gallagher, W.M.; Wadhwani, N.; Keil, S.D.; Junaid, S.A.; et al. Leukocyte Complexity Predicts Breast Cancer Survival and Functionally Regulates Response to Chemotherapy. Cancer Discov. 2011, 1, 54–67. [Google Scholar] [CrossRef]
- Pinto, C.A.; Widodo, E.; Waltham, M.; Thompson, E.W. Breast cancer stem cells and epithelial mesenchymal plasticity-Implications for chemoresistance. Cancer Lett. 2013, 341, 56–62. [Google Scholar] [CrossRef]
- Redfern, A.D.; Spalding, L.J.; Thompson, E.W. The Kraken Wakes: Induced EMT as a driver of tumour aggression and poor outcome. Clin. Exp. Metastasis 2018, 35, 285–308. [Google Scholar] [CrossRef]
- Raviraj, V.; Zhang, H.; Chien, H.Y.; Cole, L.; Thompson, E.W.; Soon, L. Dormant but migratory tumour cells in desmoplastic stroma of invasive ductal carcinomas. Clin. Exp. Metastasis 2012, 29, 273–292. [Google Scholar] [CrossRef]
All Patients | Patients Divided by Mammogram Type | |||||||
---|---|---|---|---|---|---|---|---|
Film | Digital | |||||||
n | % | n | % | n | % | p diff | ||
Total | 127 | (100.0) | 68 | (53.4) | 59 | (46.6) | ||
Age | Range (yrs) | 28–97 | 28–97 | 29–92 | 0.865 ** | |||
Median (yrs) | 48 | 47 | 51 | |||||
BMI | Range (kg/m2) | 15.6–46.7 | 19.2–44.8 | 15.6–46.7 | 0.281 ** | |||
Median (kg/m2) | 27.1 | 26.6 | 28.7 | |||||
<18.5 | 2 | (1.7) | 0 | (0) | 2 | (3.6) | 0.390 ** | |
18.5–24.9 | 40 | (33.9) | 26 | (41.3) | 14 | (25.5) | ||
25.0–29.9 | 35 | (29.7) | 17 | (27.0) | 18 | (32.7) | ||
30.0 + | 41 | (34.7) | 20 | (31.7) | 21 | (38.2) | ||
Size | Range (mm) | 3–140 | 3–140 | 10–135 | 0.072 ** | |||
Median (mm) | 60 | 63 | 52 | |||||
T stage | T1 | 3 | (2.5) | 2 | (3.0) | 1 | (1.9) | 0.44 * |
T2 | 48 | (40.7) | 23 | (34.8) | 25 | (48.1) | ||
T3 | 48 | (40.7) | 28 | (42.4) | 20 | (38.4) | ||
T4 | 19 | (16.1) | 13 | (19.7) | 6 | (11.5) | ||
LN positive | No | 57 | (48.7) | 31 | (47.7) | 26 | (50.0) | 0.950 *** |
Yes | 60 | (51.3) | 34 | (52.3) | 26 | (50.0) | ||
Grade | 1 | 10 | (8.0) | 7 | (10.4) | 3 | (5.2) | |
2 | 57 | (45.0) | 32 | (47.8) | 25 | (43.1) | 0.390 *** | |
3 | 58 | (46.4) | 28 | (41.8) | 30 | (51.7) | ||
Receptors | ER/PR positive | 84 | (66.1) | 45 | (66.2) | 39 | (66.1) | 1.000 *** |
HER2 positive | 36 | (28.8) | 11 | (16.7) | 25 | (42.4) | 0.003 *** | |
Sub-type | Lum A | 47 | (37.3) | 29 | (43.3) | 18 | (30.5) | 0.110 *** |
Lum B | 36 | (28.6) | 15 | -22.4 | 21 | (35.6) | ||
TNBC | 28 | (22.2) | 17 | (25.4) | 11 | (18.6) | ||
HER2 enriched | 15 | (11.9) | 6 | (9.0) | 9 | (15.2) |
All Patients | Patients Divided by Mammogram Type | ||||||||
---|---|---|---|---|---|---|---|---|---|
Film | Digital | p diff | |||||||
n | % | n | % | n | % | Chi sq | |||
Total patients | 127 | (100.0) | 68 | (53.4) | 59 | (46.6) | |||
Neoadjuvant Treatment | |||||||||
Chemotherapy | Median cycles | 6 | 6 | 6 | |||||
Mean cycles | 5.7 | 5.6 | 5.9 | ||||||
6+ cycles | 97 | (77.6) | 53 | (79.1) | 44 | (75.9) | 0.814 | ||
Anthracycline | 13 | (10.4) | 5 | (7.5) | 8 | (13.8) | - | ||
Taxane | 5 | (4.0) | 1 | (1.5) | 4 | (6.9) | |||
Anthracycline + Taxane | 107 | (85.6) | 61 | (91.0) | 46 | (79.3) | 0.089 | ||
HER2 targeted | Trastuzumab | 4 | (11.4) | 1 | (9.1) | 3 | (13.6) | 0.798 | |
Combined (Neo)adjuvant Treatment | |||||||||
Chemotherapy | Median cycles | 6 | 6 | 6 | |||||
Mean cycles | 6.4 | 6.2 | 6.6 | ||||||
6+ cycles | 110 | (88.0) | 60 | (89.6) | 50 | (86.2) | 0.877 | ||
Anthracycline | 4 | (3.2) | 2 | (3.0) | 2 | (3.4) | - | ||
Taxane | 5 | (4.0) | 1 | (1.5) | 4 | (6.9) | |||
Anthracycline + Taxane | 116 | (92.8) | 64 | (95.5) | 52 | (89.7) | 0.232 | ||
HER2 targeted | Trastuzumab | 28 | (74.3) | 6 | (54.5) | 20 | (80.0) | 0.116 |
Frequency of Outcome | ||||||
---|---|---|---|---|---|---|
No | Yes | p | ||||
Outcome | n | % | n | % | t-Test | |
cCR | 55 | (50.9) | 53 | (49.1) | ||
Mean density | 22.2 | 16.8 | 0.048 | |||
Median density | 17.9 | 14.1 | ||||
IQR | 5.6–37.4 | 3.7–24.2 | ||||
pCR | 100 | (78.9) | 27 | (21.1) | ||
Mean density | 19.2 | 17.9 | 0.375 | |||
Median density | 15.4 | 9.9 | ||||
IQR | 5.5–29.6 | 3.4–31.4 | ||||
Relapse | 84 | (66.1) | 43 | (33.9) | ||
Mean density | 17.1 | 22.4 | 0.041 | |||
Median density | 13.5 | 22 | ||||
IQR | 3.6–23.6 | 8.1–35.9 | ||||
Distant relapse | 90 | (70.9) | 37 | (29.1) | ||
Mean density | 17.6 | 22.1 | 0.071 | |||
Median density | 13.5 | 22.3 | ||||
IQR | 4.4–24.3 | 6.9–35.7 | ||||
Overall mortality | 79 | (62.2) | 48 | (37.8) | ||
Mean density | 18.4 | 19.8 | 0.324 | |||
Median density | 14.5 | 18 | ||||
IQR | 4.5–29.2 | 5.5–33.5 | ||||
BrCa-specific mortality | 91 | (71.7) | 36 | (28.3) | ||
Mean density | 18 | 21.2 | 0.144 | |||
Median density | 14.1 | 20.8 | ||||
IQR | 4.2–29.2 | 6.6–33.5 |
Density Category | |||||
---|---|---|---|---|---|
Low Density | High Density | p | |||
Outcome | n | % | n | % | Chi sq |
cCR | |||||
Yes | 31 | (58.5) | 22 | (40.0) | 0.027 |
No | 22 | (41.5) | 33 | (60.0) | |
pCR | |||||
Yes | 16 | (25.0) | 11 | (17.5) | 0.15 |
No | 48 | (75.0) | 52 | (82.5) | |
Any Relapse | |||||
Yes | 19 | (29.7) | 24 | (38.1) | 0.158 |
No | 45 | (70.3) | 39 | (61.9) | |
Distant relapse | |||||
Yes | 16 | (25.0) | 21 | (33.3) | 0.151 |
No | 48 | (75.0) | 42 | (66.7) | |
Overall mortality | |||||
Yes | 25 | (39.1) | 23 | (36.5) | 0.383 |
No | 39 | (61.9) | 40 | (63.5) | |
BrCa specific mortality | |||||
Yes | 16 | (25.0) | 20 | (31.7) | 0.2 |
No | 48 | (75.0) | 43 | (68.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agarwal, V.; Spalding, L.; Martin, H.; Darcey, E.; Stone, J.; Redfern, A. Correlations Between Mammographic Breast Density and Outcomes After Neoadjuvant Chemotherapy in Patients with Locally Advanced Breast Cancer. Cancers 2025, 17, 2214. https://doi.org/10.3390/cancers17132214
Agarwal V, Spalding L, Martin H, Darcey E, Stone J, Redfern A. Correlations Between Mammographic Breast Density and Outcomes After Neoadjuvant Chemotherapy in Patients with Locally Advanced Breast Cancer. Cancers. 2025; 17(13):2214. https://doi.org/10.3390/cancers17132214
Chicago/Turabian StyleAgarwal, Veenoo, Lisa Spalding, Hilary Martin, Ellie Darcey, Jennifer Stone, and Andrew Redfern. 2025. "Correlations Between Mammographic Breast Density and Outcomes After Neoadjuvant Chemotherapy in Patients with Locally Advanced Breast Cancer" Cancers 17, no. 13: 2214. https://doi.org/10.3390/cancers17132214
APA StyleAgarwal, V., Spalding, L., Martin, H., Darcey, E., Stone, J., & Redfern, A. (2025). Correlations Between Mammographic Breast Density and Outcomes After Neoadjuvant Chemotherapy in Patients with Locally Advanced Breast Cancer. Cancers, 17(13), 2214. https://doi.org/10.3390/cancers17132214