Perioperative and Oncological Outcome in Patients Undergoing Curative-Intent Liver Resection for Cholangiocarcinoma in the Context of Osteopenia
Simple Summary
Abstract
1. Introduction
2. Patients and Methods
2.1. Patients and Eligibility
2.2. Image Analysis and Segmentation
2.3. Clinical Data Collection and Patient Follow-Up
2.4. Statistical Analysis
3. Results
3.1. Study Population Characteristics
3.2. Body Composition Assessment and Patient Characteristics
3.3. Surgical Approach
3.4. Perioperative Outcome and Osteopenia
3.5. The Effect of Osteopenia on Long-Term Overall and Disease-Free Survival
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALT | Alanine aminotransferase |
ASA | American Society of Anesthesiologists |
AST | Aspartate aminotransferase |
BC | Body composition |
BMD | Bone mineral density |
BMI | Body mass index |
CCA | Cholangiocarcinoma |
CCI | Comprehensive complication index |
CD | Clavien–Dindo classification |
CT | Computed tomography |
FFP units | Fresh frozen plasma units |
GCP | Good clinical practice |
GGT | Gamma glutamyltransferase |
HU | Hounsfield units |
iCCA | Intrahepatic cholangiocarcinoma |
ICU | Intensive care unit |
L3 | Third lumbar level |
OLT | Orthotopic liver transplantation |
OR | Odds-ratio |
pCCA | Perihilar cholangiocarcinoma |
PVE | Portal vein embolization |
POD | Postoperative day |
RBC units | Red blood cell units |
SMA | Skeletal muscle radiation attenuation |
SMI | Skeletal muscle index |
UH-RWTH | University Hospital of the RWTH University |
UICC | Union for International Cancer Control |
References
- Bunchorntavakul, C.; Reddy, K.R. Review article: Malnutrition/sarcopenia and frailty in patients with cirrhosis. Aliment. Pharmacol. Ther. 2019, 51, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Harimoto, N.; Shirabe, K.; Yamashita, Y.-I.; Ikegami, T.; Yoshizumi, T.; Soejima, Y.; Ikeda, T.; Maehara, Y.; Nishie, A.; Yamanaka, T. Sarcopenia as a predictor of prognosis in patients following hepatectomy for hepatocellular carcinoma. Br. J. Surg. 2013, 100, 1523–1530. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.M.; Kang, J. Prognostic impact of myosteatosis in patients with colorectal cancer: A systematic review and meta-analysis. J. Cachex-Sarcopenia Muscle 2020, 11, 1270–1282. [Google Scholar] [CrossRef] [PubMed]
- Montano-Loza, A.J.; Angulo, P.; Meza-Junco, J.; Prado, C.M.M.; Sawyer, M.B.; Beaumont, C.; Esfandiari, N.; Ma, M.; Baracos, V.E. Sarcopenic obesity and myosteatosis are associated with higher mortality in patients with cirrhosis. J. Cachex-Sarcopenia Muscle 2015, 7, 126–135. [Google Scholar] [CrossRef]
- Czigany, Z.; Kramp, W.; Bednarsch, J.; van der Kroft, G.; Boecker, J.; Strnad, P.; Zimmermann, M.; Koek, G.; Neumann, U.P.; Lurje, G. Myosteatosis to predict inferior perioperative outcome in patients undergoing orthotopic liver transplantation. Am. J. Transplant. 2019, 20, 493–503. [Google Scholar] [CrossRef]
- Meister, F.A.; Lurje, G.; Verhoeven, S.; Wiltberger, G.; Heij, L.; Liu, W.-J.; Jiang, D.; Bruners, P.; Lang, S.A.; Ulmer, T.F.; et al. The Role of Sarcopenia and Myosteatosis in Short- and Long-Term Outcomes Following Curative-Intent Surgery for Hepatocellular Carcinoma in a European Cohort. Cancers 2022, 14, 720. [Google Scholar] [CrossRef]
- Yang, L.; Chen, K.; Li, G.; Wang, W. Impact of myosteatosis on outcomes after liver transplantation: A systematic review and meta-analysis. Hepatol. Int. 2025, 7, 1–8. [Google Scholar] [CrossRef]
- Wang, G.; Mantas, A.; Heij, L.R.; Al-Masri, T.M.; Liu, D.; Heise, D.; Schmitz, S.M.; Damink, S.W.M.O.; Luedde, T.; Lang, S.A.; et al. Body composition is associated with postoperative complications in perihilar cholangiocarcinoma. Cancer Med. 2024, 13, e6878. [Google Scholar] [CrossRef]
- Lu, D.; Hu, Z.; Chen, H.; Khan, A.A.; Xu, Q.; Lin, Z.; Li, H.; Zhuo, J.; He, C.; Zhuang, L.; et al. Myosteatosis and muscle loss impact liver transplant outcomes in male patients with hepatocellular carcinoma. J. Cachex- Sarcopenia Muscle 2024, 15, 2071–2083. [Google Scholar] [CrossRef]
- Pereira, F.B.; Leite, A.F.; de Paula, A.P. Relationship between pre-sarcopenia, sarcopenia and bone mineral density in elderly men. Arq. Bras. de Endocrinol. Metabol. 2015, 59, 59–65. [Google Scholar] [CrossRef]
- Pickhardt, P.J.; Pooler, B.D.; Lauder, T.; del Rio, A.M.; Bruce, R.J.; Binkley, N. Opportunistic Screening for Osteoporosis Using Abdominal Computed Tomography Scans Obtained for Other Indications. Ann. Intern. Med. 2013, 158, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Meister, F.A.; Verhoeven, S.; Mantas, A.; Liu, W.-J.; Jiang, D.; Heij, L.; Heise, D.; Bruners, P.; Lang, S.A.; Ulmer, T.F.; et al. Osteopenia is associated with inferior survival in patients undergoing partial hepatectomy for hepatocellular carcinoma. Sci. Rep. 2022, 12, 18316. [Google Scholar] [CrossRef] [PubMed]
- Miyachi, Y.; Kaido, T.; Yao, S.; Shirai, H.; Kobayashi, A.; Hamaguchi, Y.; Kamo, N.; Yagi, S.; Uemoto, S. Bone Mineral Density as a Risk Factor for Patients Undergoing Surgery for Hepatocellular Carcinoma. World J. Surg. 2018, 43, 920–928. [Google Scholar] [CrossRef] [PubMed]
- Jördens, M.S.; Wittig, L.; Loberg, C.; Heinrichs, L.; Keitel, V.; Schulze-Hagen, M.; Antoch, G.; Knoefel, W.T.; Fluegen, G.; Loosen, S.H.; et al. Bone Mineral Density Is a Predictor of Mortality in Female Patients with Cholangiocellular Carcinoma Undergoing Palliative Treatment. Biomedicines 2022, 10, 1660. [Google Scholar] [CrossRef]
- Watanabe, J.; Miki, A.; Sakuma, Y.; Shimodaira, K.; Aoki, Y.; Meguro, Y.; Morishima, K.; Endo, K.; Sasanuma, H.; Lefor, A.K.; et al. Preoperative Osteopenia Is Associated with Significantly Shorter Survival in Patients with Perihilar Cholangiocar-cinoma. Cancers 2022, 14, 2213. [Google Scholar] [CrossRef]
- Sharma, P.; Parikh, N.D.; Yu, J.; Barman, P.; Derstine, B.A.; Sonnenday, C.J.; Wang, S.C.; Su, G.L. Bone mineral density predicts posttransplant survival among hepatocellular carcinoma liver transplant recipients. Liver Transplant. 2016, 22, 1092–1098. [Google Scholar] [CrossRef]
- Clavien, P.A.; Barkun, J.; De Oliveira, M.L.; Vauthey, J.N.; Dindo, D.; Schulick, R.D.; De Santibañes, E.; Pekolj, J.; Slankamenac, K.; Bassi, C. The Clavien-Dindo classification of surgical complications: Five-year experience. Ann. Surg. 2009, 250, 187–196. [Google Scholar] [CrossRef]
- Slankamenac, K.; Graf, R.; Barkun, J.; Puhan, M.A.; Clavien, P.A. The comprehensive complication index: A novel continuous scale to measure surgical morbidity. Ann. Surg. 2013, 258, 1–7. [Google Scholar] [CrossRef]
- Yao, S.; Kaido, T.; Okumura, S.; Iwamura, S.; Miyachi, Y.; Shirai, H.; Kobayashi, A.; Hamaguchi, Y.; Kamo, N.; Uozumi, R.; et al. Bone mineral density correlates with survival after resection of extrahepatic biliary malignancies. Clin. Nutr. 2019, 38, 2770–2777. [Google Scholar] [CrossRef]
- Kenny, A.M.; Waynik, I.Y.; Smith, J.; Fortinsky, R.; Kleppinger, A.; McGee, D. Association Between Level of Frailty and Bone Mineral Density in Community-Dwelling Men. J. Clin. Densitom. 2006, 9, 309–314. [Google Scholar] [CrossRef]
- Sharshar, M.; Kaido, T.; Shirai, H.; Okumura, S.; Yao, S.; Miyachi, Y.; Iwamura, S.; Kamo, N.; Yagi, S.; Macshut, M.; et al. Impact of the preoperative bone mineral density on the outcomes after resection of pancreatic cancer. Surg. Today 2020, 50, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.; Graffy, P.M.; Ziemlewicz, T.J.; Lee, S.J.; Summers, R.M.; Pickhardt, P.J. Opportunistic Osteoporosis Screening at Routine Abdominal and Thoracic CT: Normative L1 Trabecular Attenuation Values in More than 20 000 Adults. Radiology 2019, 291, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Ziemlewicz, T.J.; Binkley, N.; Pickhardt, P.J. Opportunistic Osteoporosis Screening: Addition of Quantitative CT Bone Mineral Density Evaluation to CT Colonography. J. Am. Coll. Radiol. 2015, 12, 1036–1041. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Liu, Y.; Lee, S.; Yang, H.; Chan, W.P. Gender interactions between vertebral bone mineral density and fat content in the elderly: Assessment using fat–water MRI. J. Magn. Reson. Imaging 2019, 51, 1382–1389. [Google Scholar] [CrossRef]
- Szulc, P.; Beck, T.J.; Marchand, F.; Delmas, P.D. Low Skeletal Muscle Mass Is Associated With Poor Structural Parameters of Bone and Impaired Balance in Elderly Men—The MINOS Study. J. Bone Miner. Res. 2005, 20, 721–729. [Google Scholar] [CrossRef]
- Weigle, C.A.; Beetz, O.; Wiemann, B.A.; Tessmer, P.; Störzer, S.; Cammann, S.; Vondran, F.W.R.; Oldhafer, F.; Schmelzle, M.; Richter, N. Resection of intrahepatic cholangiocarcinoma in octogenarians: A single-center analysis. Discov. Oncol. 2024, 15, 224. [Google Scholar] [CrossRef]
- Gupta, A.K.; Kanhere, H.A.; Maddern, G.J.; Trochsler, M.L. Liver resection in octogenarians: Are the outcomes worth the risk? ANZ J. Surg. 2018, 88, E756–E760. [Google Scholar] [CrossRef]
Characteristics | All Patients | Osteopenia | p-Value | |
---|---|---|---|---|
n = 202 | Yes n = 107 | No n = 95 | ||
Age (years) | 66.6 [57.7–73.4] | 71.1 [62–76.6] | 61.3 [52.9–69.2] | 0.001 |
BMI (kg/m2) | 25.1 [22.5–28.9] | 25 [22.1–29.1] | 25.1 [22.9–28.7] | 0.921 |
Bone mineral density (HU) | 155 [129.9–187.4] | 132 [107–143] | 189 [176–215] | 0.001 |
SMI (cm2/m2) | 48 [42–55] | 46 [41–53] | 48 [42–56] | 0.325 |
SM-RA (HU) | 35 [29–40] | 31 [25–36] | 35 [29–40] | 0.001 |
Sex ratio (F:M), n (%) | 86 (43):116 (57) | 44 (41):63 (59) | 42 (44):53 (56) | 0.658 |
ASA | 0.251 | |||
1 | 8 (4) | 2 (3) | 6 (6) | |
2 | 81 (40) | 41 (38) | 40 (42) | |
3 | 100 (50) | 59 (55) | 41 (43) | |
4 | 9 (5) | 5 (5) | 4 (4) | |
EBD (stent), n (%) | 100 (50) | 55 (51) | 45 (47) | 0.576 |
PBD, n (%) | 24 (12) | 13 (12) | 11 (12) | 0.922 |
Cholangitis preoperative | 55 (27) | 35 (33) | 20 (21) | 0.865 |
Steatosis | 37 (18) | 15 (14) | 22 (23) | 0.068 |
Cirrhosis | 8 (4) | 3 (3) | 5 (5) | 0.590 |
Serum CA 19-9 pre-op | 58 [22–232] | 64 [19–214] | 57 [23–283] | 0.653 |
Serum Hgb pre-op | 12.8 [11.8–13.8] | 12.6 [11.7–13.9] | 13 [11.9–13.7] | 0.614 |
Preoperative AST (U/L) | 41 [30–64] | 37 [30–55] | 47 [32–82] | 0.913 |
Serum bilirubin | 0.74 [0.44–1.76] | 0.7 [0.43–1.35] | 0.83 [0.45–2.47] | 0.878 |
Preoperative GGT (U/L) | 246 [110–626] | 245 [99–630] | 246 [120–621] | 0.041 |
Preoperative albumin (g/L) | 41 [36–44] | 40 [35–44] | 41 [36–44] | 0.368 |
Portal vein embolization (PVE), n (%) | 55 (27) | 35 (33) | 20 (21) | 0.081 |
Laparoscopic approach n (%) | 8 (4) | 2 (2) | 6 (6) | 0.268 |
Lymphadenectomy, n (%) | 193 (96) | 104 (96) | 89 (93) | 0.871 |
Vascular reconstruction n (%) | 152 (75) | 83 (77) | 70 (74) | 0.830 |
Operative Procedure | 0.078 | |||
Atypical resection | 9 (5) | 3 (3) | 6 (6) | |
Right hepatectomy | 26 (13) | 10 (9) | 16 (17) | |
Left hepatectomy | 25 (12) | 18 (17) | 7 (7) | |
Extended right hepatectomy | 30 (15) | 17 (16) | 13 (14) | |
Extended left hepatectomy | 35 (17) | 13 (12) | 22 (23) | |
Right trisectorectomy | 27 (13) | 19 (18) | 8 (8) | |
Left trisectorectomy | 14 (7) | 9 (8) | 22 (23) | |
Bisegmentectomy | 6 (3) | 4 (4) | 2 (2) | |
Hepatoduodenectomy | 9 (5) | 3 (3) | 6 (6) | |
ALPPS | 14 (7) | 7 (7) | 7 (7) | |
Tumor Stage UICC (8th edition) | 0.977 | |||
0 | 2 (1) | 1 (1) | 1 (1) | |
I | 24 (12) | 15 (14) | 9 (10) | |
II | 67 (33) | 39 (36) | 28 (30) | |
III | 79 (39) | 41 (38) | 38 (40) | |
IV | 20 (10) | 9 (9) | 11 (13) | |
T category, n (%) | 0.757 | |||
Tis | 2 (1) | 1 (1) | 1 (1) | |
T1 | 35 | 19 | 16 | |
T2 | 119 | 66 | 53 | |
T3 | 32 (16) | 13 (12) | 19 (20) | |
T4 | 13 (6) | 7 (7) | 6 (6) | |
N category, n (%) | 0.056 | |||
N0 | 109 (54) | 63 (59) | 49 (52) | |
N1 | 67 (33) | 37 (35) | 30 (32) | |
N2 | 12 (6) | 5 (5) | 7 (7) | |
Nx | 9 (5) | 1 (1) | 8 (8) | |
R category, n (%) | 0.521 | |||
R0 | 150 (74) | 76 (71) | 74 (78) | |
R1 | 28 (14) | 16 (15) | 12 (13) | |
Rx | 19 (9) | 12 (11) | 7 (7) | |
(Micro-)vascular invasion, n (%) | 62 | 31 (29) | 31 (33) | 0.852 |
Lymphovascular invasion, n (%) | 46 | 22 (21) | 24 (25) | 0.332 |
Perineural invasion, n (%) | 90 | 40 (37) | 50 (53) | 0.329 |
Tumor grading, n (%) | 0.251 | |||
G1 | 2 (1) | 1 (1) | 2 (2) | |
G2 | 128 (63) | 70 (65) | 58 (67) | |
G2–3 | 5 (3) | 4 (4) | 1 (1) | |
G3 | 50 (25) | 25 (23) | 25 (26) | |
G4 | 4 (2) | 3 (3) | 1 (1) |
Characteristics | All Patients | Osteopenia | p-Value | |
---|---|---|---|---|
pCCA + iCCA | n = 202 | yes n = 107 | no n = 95 | |
CD ≥ 3b complications 1 including 90-day mortality n (%) | 71 (35) | 34 (32) | 37 (39) | 0.262 |
Duration operative procedure (minutes) | 360 [288–438] | 355 [277–435] | 363 [300–450] | 0.274 |
Hospital stay (days) | 15 [11–28] | 16 [11–26] | 15 [11–30] | 0.266 |
Intraoperative RBC transfusion (units) | 0 [0–2] | 0 [0–2] | 0 [0–2] | 0.796 |
Intraoperative FFP transfusion (units) | 2 [0–4] | 2 [0–4] | 0 [0–4] | 0.468 |
CCI 2 | 34.6 [20.9–59] | 33.5 [8.7–56] | 39.5 [20.9–72.2] | 0.128 |
pCCA | n = 105 | yes n = 54 | no n = 51 | |
CD ≥ 3b complications 1 including 90-day mortality n (%) | 47 (49) | 20 (38) | 27 (53) | 0.101 |
Duration operative procedure (minutes) | 404 [359–474] | 390 [358–477] | 420 [357–475] | 0.479 |
Hospital stay (days) | 19 [12–36] | 16 [12–36] | 20 [13–36] | 0.207 |
Intraoperative RBC transfusion (units) | 0 [0–2] | 0 [0–2] | 0 [0–2] | 0.535 |
Intraoperative FFP transfusion (units) | 3 [0–4] | 3 [0–4] | 4 [0–5] | 0.820 |
CCI 2 | 41 [21–74] | 38 [21–60] | 30 [0–47] | 0.133 |
iCCA | n = 97 | yes n = 53 | no n = 44 | |
CD ≥ 3b complications 1 including 90-day mortality n (%) | 24 (25) | 14 (26) | 10 (23) | 0.722 |
Duration operative procedure (minutes) | 295 [227–360] | 288 [216–353] | 300 [242–374] | 0.485 |
Hospital stay (days) | 14 [9–25] | 15 [10–26] | 13 [8–22] | 0.986 |
Intraoperative RBC transfusion (units) | 0 [0–1] | 0 [0–2] | 0 [0–1] | 0.489 |
Intraoperative FFP transfusion (units) | 0 [0–4] | 0 [0–4] | 0 [0–4] | 0.431 |
CCI 2 | 28 [0–47] | 26 [26–48] | 30 [0–47] | 0.669 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meister, F.A.; Joechle, K.; Tessmer, P.; Belger, E.; Roeth, A.A.; Beetz, O.; Oldhafer, F.; Bednarsch, J.; Neumann, U.P.; Schneider, C.V.; et al. Perioperative and Oncological Outcome in Patients Undergoing Curative-Intent Liver Resection for Cholangiocarcinoma in the Context of Osteopenia. Cancers 2025, 17, 2213. https://doi.org/10.3390/cancers17132213
Meister FA, Joechle K, Tessmer P, Belger E, Roeth AA, Beetz O, Oldhafer F, Bednarsch J, Neumann UP, Schneider CV, et al. Perioperative and Oncological Outcome in Patients Undergoing Curative-Intent Liver Resection for Cholangiocarcinoma in the Context of Osteopenia. Cancers. 2025; 17(13):2213. https://doi.org/10.3390/cancers17132213
Chicago/Turabian StyleMeister, Franziska A., Katharina Joechle, Philipp Tessmer, Esref Belger, Anjali A. Roeth, Oliver Beetz, Felix Oldhafer, Jan Bednarsch, Ulf P. Neumann, Carolin V. Schneider, and et al. 2025. "Perioperative and Oncological Outcome in Patients Undergoing Curative-Intent Liver Resection for Cholangiocarcinoma in the Context of Osteopenia" Cancers 17, no. 13: 2213. https://doi.org/10.3390/cancers17132213
APA StyleMeister, F. A., Joechle, K., Tessmer, P., Belger, E., Roeth, A. A., Beetz, O., Oldhafer, F., Bednarsch, J., Neumann, U. P., Schneider, C. V., Siepmann, R., Amygdalos, I., Vondran, F. W. R., & Czigany, Z. (2025). Perioperative and Oncological Outcome in Patients Undergoing Curative-Intent Liver Resection for Cholangiocarcinoma in the Context of Osteopenia. Cancers, 17(13), 2213. https://doi.org/10.3390/cancers17132213