Advances in Supportive Care for Multiple Myeloma-Related Bone Disease—A Review
Simple Summary
Abstract
1. Introduction
2. Methods and Materials
2.1. Search Strategy and Selection Criteria
2.1.1. Level of Evidence
2.1.2. Study Design and Review Approach
2.2. Myeloma Bone Disease (MBD)
2.3. Pathophysiology of Bone Disease in Multiple Myeloma
Serum Markers in Myeloma Bone Disease
2.4. Management of Myeloma Bone Disease
2.4.1. Antiresorptive Therapy
2.4.2. Bisphosphonates
2.4.3. Duration of Treatment
2.4.4. Denosumab
2.4.5. Duration of Treatment
2.5. Choice of Antiresorptive Therapy
2.5.1. In Patients with Renal Impairment
2.5.2. In Patients with Hypercalcemia
2.6. Monitoring and Management of Adverse Effects
2.6.1. Serum Monitoring and Supplementation
2.6.2. Renal Function Monitoring
2.6.3. Osteonecrosis of the Jaw (ONJ)
3. Pain Management from Bone Lesions
3.1. Analgesics
3.2. Radiotherapy
3.3. Interventional Procedures
3.3.1. Vertebroplasty and Kyphoplasty
3.3.2. Surgical Management of Spine Involvement of Myeloma
3.4. Novel Therapies (Table 3)
Drug Name | Trial Results | Key Effectiveness Data | Reported Drug-Related Adverse Events (Incidence %) |
---|---|---|---|
Sotatercept (ACE-011) | Phase I: Increased bone formation and decreased bone resorption in post-menopausal women | Increase in BSALP **: 3.0 mg/kg IV group: Peak increase of 35.9% from baseline at day 15 Placebo group: No significant changes in BSALP at any time point Change in CTX ‡ from baseline at day 15: 3.0 mg/kg IV group: 24.1% decrease Placebo group: 2.6% increase | |
Phase IIa: Improved bone formation markers, increased hemoglobin levels, reduced bone pain | Improvement in bone pain (VAS ¶ score): Mean decrease of 5.8 to 12.7 (sotatercept) vs. −0.7 to 7.2 (placebo) | Hypertension (12.5) | |
BHQ880 | Phase I/II: BHQ880 with zoledronic acid increased spine and hip bone strength | Increase in bone strength at the hip: 2.4% to 3.7% (baseline to EOT †) Increase in bone strength at the spine: 2.8% to 20.2% (baseline to EOT †) | Hypertension (7.1) Raised creatinine (3.6) Thrombocytopenia (3.6) |
Phase II: Increased bone anabolic activity in high-risk smoldering MM | Anabolic bone activity: Vertebral strength increase: 3% from baseline (p = 0.002), exceeding 5% in some cases | Arthralgia (16) Fatigue (12) Pain in extremity (12) Pyrexia (12) | |
Romosozumab | Phase III: Decreased vertebral fracture risk in postmenopausal women with osteoporosis | Reduction in new vertebral fractures: 73% lower risk (vs. placebo; RR = 0.27, p < 0.001) | Arthralgia (13) Nasopharyngitis (12.8) Back pain (10.5) |
Preclinical: Bone loss prevention, increased bone strength | |||
Tanezumab | Phase III: Improved average daily pain | ≥50% improvement in average pain: 25.4% (vs. 12.3% placebo; OR = 2.55, p = 0.0405) | Anemia (8.3) Arthralgia (8.3) Decreased appetite (8.3) |
3.4.1. Activin Inhibitors
3.4.2. DKK-1 Antagonists
3.4.3. Sclerostin Antagonists
3.4.4. Nerve Growth Factor (NGF) Inhibitors
3.5. Quality of Life and Patient Considerations
3.6. Biomarkers
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
MM | Multiple Myeloma |
MBD | Myeloma bone disease |
ZA | Zoledronic Acid |
ONJ | Osteonecrosis of the Jaw |
VGPR | Very good partial response |
OPG | Osteoprotegerin |
RT | Radiotherapy |
NGF | Nerve Growth Factor |
SNRIs | Serotonin-norepinephrine reuptake inhibitors |
SMM | Smoldering multiple my |
MGUS | monoclonal gammopathy of undetermined significance |
OS | Overall survival |
PFS | Progression-free survival |
ASCO | American Society of Clinical Oncology |
IMWG | International Myeloma Working Group |
NCCN | National Comprehensive Cancer Network |
References
- Malhotra, J.; Paddock, L.E.; Lin, Y.; Pine, S.R.; Habib, M.H.; Stroup, A.; Manne, S. Racial disparities in follow-up care of early-stage lung cancer survivors. J. Cancer Surviv. Res. Pract. 2023, 17, 1259–1265. [Google Scholar] [CrossRef] [PubMed]
- Coluzzi, F.; Rolke, R.; Mercadante, S. Pain Management in Patients with Multiple Myeloma: An Update. Cancers 2019, 11, 2037. [Google Scholar] [CrossRef] [PubMed]
- Hameed, A.; Brady, J.J.; Dowling, P.; Clynes, M.; O’Gorman, P. Bone disease in multiple myeloma: Pathophysiology and management. Cancer Growth Metastasis 2014, 7, CGM.S16817. [Google Scholar] [CrossRef]
- Scharschmidt, T.J.; Lindsey, J.D.; Becker, P.S.; Conrad, E.U. Multiple myeloma: Diagnosis and orthopaedic implications. J. Am. Acad. Orthop. Surg. 2011, 19, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Colson, K. Treatment-related symptom management in patients with multiple myeloma: A review. Support. Care Cancer 2015, 23, 1431–1445. [Google Scholar] [CrossRef]
- Hillengass, J.; Usmani, S.; Rajkumar, S.V.; Durie, B.G.M.; Mateos, M.-V.; Lonial, S.; Joao, C.; Anderson, K.C.; García-Sanz, R.; Riva, E.; et al. International myeloma working group consensus recommendations on imaging in monoclonal plasma cell disorders. Lancet. Oncol. 2019, 20, e302–e312. [Google Scholar] [CrossRef]
- Santoni, A.; Simoncelli, M.; Franceschini, M.; Ciofini, S.; Fredducci, S.; Caroni, F.; Sammartano, V.; Bocchia, M.; Gozzetti, A. Functional Imaging in the Evaluation of Treatment Response in Multiple Myeloma: The Role of PET-CT and MRI. J. Pers. Med. 2022, 12, 1885. [Google Scholar] [CrossRef]
- Zamagni, E.; Tacchetti, P.; Cavo, M. Imaging in multiple myeloma: How? When? Blood 2019, 133, 644–651. [Google Scholar] [CrossRef]
- Hillengass, J.; Landgren, O. Challenges and opportunities of novel imaging techniques in monoclonal plasma cell disorders: Imaging “early myeloma”. Leuk. Lymphoma 2013, 54, 1355–1363. [Google Scholar] [CrossRef]
- Papadopoulou, E.C.; Batzios, S.P.; Dimitriadou, M.; Perifanis, V.; Garipidou, V. Multiple myeloma and bone disease: Pathogenesis and current therapeutic approaches. Hippokratia 2010, 14, 76–81. [Google Scholar]
- Ayati, B.P.; Edwards, C.M.; Webb, G.F.; Wikswo, J.P. A mathematical model of bone remodeling dynamics for normal bone cell populations and myeloma bone disease. Biol. Direct 2010, 5, 28. [Google Scholar] [CrossRef] [PubMed]
- Roodman, G.D. Mechanisms of bone resorption in myeloma. J. Musculoskelet. Neuronal Interact. 2003, 3, 271–272; discussion 292–294. [Google Scholar] [PubMed]
- Abe, M. [Mechanisms of myeloma-induced bone disease]. Clin. Calcium 2016, 26, 699–706. [Google Scholar]
- Qiang, Y.-W.; John D Shaughnessy, J.; Yaccoby, S. Wnt3a signaling within bone inhibits multiple myeloma bone disease and tumor growth. Blood 2008, 112, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Sezer, O. Myeloma bone disease. Hematology 2005, 10, 19–24. [Google Scholar] [CrossRef]
- Pop, V.; Parvu, A.; Craciun, A.; Farcas, A.D.; Tomoaia, G.; Bojan, A. Modern markers for evaluating bone disease in multiple myeloma (Review). Exp. Ther. Med. 2021, 22, 1329. [Google Scholar] [CrossRef]
- Terpos, E.; Dimopoulos, M.A.; Sezer, O.; Roodman, D.; Abildgaard, N.; Vescio, R.; Tosi, P.; Garcia-Sanz, R.; Davies, F.; Chanan-Khan, A.; et al. The use of biochemical markers of bone remodeling in multiple myeloma: A report of the International Myeloma Working Group. Leukemia 2010, 24, 1700–1712. [Google Scholar] [CrossRef]
- Terpos, E.; Politou, M.; Rahemtulla, A. The role of markers of bone remodeling in multiple myeloma. Blood Rev. 2005, 19, 125–142. [Google Scholar] [CrossRef]
- Abildgaard, N.; Brixen, K.; Kristensen, J.E.; Eriksen, E.F.; Nielsen, J.L.; Heickendorff, L. Comparison of five biochemical markers of bone resorption in multiple myeloma: Elevated pre-treatment levels of S-ICTP and U-Ntx are predictive for early progression of the bone disease during standard chemotherapy. Br. J. Haematol. 2003, 120, 235–242. [Google Scholar] [CrossRef]
- Terpos, E.; Berenson, J.; Cook, R.J.; Lipton, A.; Coleman, R.E. Prognostic variables for survival and skeletal complications in patients with multiple myeloma osteolytic bone disease. Leukemia 2010, 24, 1043–1049. [Google Scholar] [CrossRef]
- Fonseca, R.; Trendle, M.C.; Leong, T.; Kyle, R.A.; Oken, M.M.; Kay, N.E.; Van Ness, B.; Greipp, P.R. Prognostic value of serum markers of bone metabolism in untreated multiple myeloma patients. Br. J. Haematol. 2000, 109, 24–29. [Google Scholar] [CrossRef]
- Pecoraro, V.; Roli, L.; Germagnoli, L.; Banfi, G. The prognostic role of bone turnover markers in multiple myeloma patients: The impact of their assay. A systematic review and meta-analysis. Crit. Rev. Oncol./Hematol. 2015, 96, 54–66. [Google Scholar] [CrossRef]
- Terpos, E.; Morgan, G.; Dimopoulos, M.A.; Drake, M.T.; Lentzsch, S.; Raje, N.; Sezer, O.; García-Sanz, R.; Shimizu, K.; Turesson, I.; et al. International Myeloma Working Group Recommendations for the Treatment of Multiple Myeloma–Related Bone Disease. J. Clin. Oncol. 2013, 31, 2347–2357. [Google Scholar] [CrossRef] [PubMed]
- Narusawa, K.i.; Nakamura, T. Bisphosphonates for osteoporosis. N. Engl. J. Med. 2010, 363, 311–315. [Google Scholar] [CrossRef]
- Mikhael, J.; Ismaila, N.; Cheung, M.C.; Costello, C.; Dhodapkar, M.V.; Kumar, S.; Lacy, M.; Lipe, B.; Little, R.F.; Nikonova, A.; et al. Treatment of Multiple Myeloma: ASCO and CCO Joint Clinical Practice Guideline. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019, 37, 1228–1263. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.K.; Callander, N.S.; Adekola, K.; Anderson, L.; Baljevic, M.; Campagnaro, E.; Castillo, J.J.; Chandler, J.C.; Costello, C.; Efebera, Y.; et al. Multiple Myeloma, Version 3.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. JNCCN 2020, 18, 1685–1717. [Google Scholar] [CrossRef]
- Terpos, E.; Kleber, M.; Engelhardt, M.; Zweegman, S.; Gay, F.; Kastritis, E.; van de Donk, N.W.C.J.; Bruno, B.; Sezer, O.; Broij, A.; et al. European Myeloma Network guidelines for the management of multiple myeloma-related complications. Haematologica 2015, 100, 1254–1266. [Google Scholar] [CrossRef]
- Mhaskar, R.; Kumar, A.; Miladinovic, B.; Djulbegovic, B. Bisphosphonates in multiple myeloma: An updated network meta-analysis. Cochrane Database Syst. Rev. 2017, 12, 1465–1858. [Google Scholar] [CrossRef]
- Berenson, J.R.; Lichtenstein, A.; Porter, L.; Dimopoulos, M.A.; Bordoni, R.; George, S.; Lipton, A.; Keller, A.; Ballester, O.; Kovacs, M.J.; et al. Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. Myeloma Aredia Study Group. N. Engl. J. Med. 1996, 334, 488–493. [Google Scholar] [CrossRef]
- Gimsing, P.; Carlson, K.; Turesson, I.; Fayers, P.; Waage, A.; Vangsted, A.; Mylin, A.; Gluud, C.; Juliusson, G.; Gregersen, H.; et al. Effect of pamidronate 30 mg versus 90 mg on physical function in patients with newly diagnosed multiple myeloma (Nordic Myeloma Study Group): A double-blind, randomised controlled trial. Lancet. Oncol. 2010, 11, 973–982. [Google Scholar] [CrossRef]
- Rosen, L.S.; Gordon, D.; Kaminski, M.; Howell, A.; Belch, A.; Mackey, J.; Apffelstaedt, J.; Hussein, M.A.; Coleman, R.E.; Reitsma, D.J.; et al. Long-term efficacy and safety of zoledronic acid compared with pamidronate disodium in the treatment of skeletal complications in patients with advanced multiple myeloma or breast carcinoma: A randomized, double-blind, multicenter, comparative trial. Cancer 2003, 98, 1735–1744. [Google Scholar] [CrossRef] [PubMed]
- Morgan, G.J.; Davies, F.E.; Gregory, W.M.; Cocks, K.; Bell, S.E.; Szubert, A.J.; Navarro-Coy, N.; Drayson, M.T.; Owen, R.G.; Feyler, S.; et al. First-line treatment with zoledronic acid as compared with clodronic acid in multiple myeloma (MRC Myeloma IX): A randomised controlled trial. Lancet 2010, 376, 1989–1999. [Google Scholar] [CrossRef]
- Guenther, A.; Gordon, S.; Tiemann, M.; Burger, R.; Bakker, F.; Green, J.R.; Baum, W.; Roelofs, A.J.; Rogers, M.J.; Gramatzki, M. The bisphosphonate zoledronic acid has antimyeloma activity in vivo by inhibition of protein prenylation. Int. J. Cancer 2010, 126, 239–246. [Google Scholar] [CrossRef]
- Major, P.; Lortholary, A.; Hon, J.; Abdi, E.; Mills, G.; Menssen, H.D.; Yunus, F.; Bell, R.; Body, J.; Quebe-Fehling, E.; et al. Zoledronic acid is superior to pamidronate in the treatment of hypercalcemia of malignancy: A pooled analysis of two randomized, controlled clinical trials. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2001, 19, 558–567. [Google Scholar] [CrossRef]
- Stein, E.M.; Dash, A.; Bucovsky, M.; Agarwal, S.; Fu, J.; Lentzsch, S.; Shane, E. Disrupted radial and tibial microarchitecture in patients with monoclonal gammopathy of undetermined significance. Osteoporos. Int 2019, 30, 629–635. [Google Scholar] [CrossRef]
- Berenson, J.R.; Yellin, O.; Boccia, R.V.; Flam, M.; Wong, S.F.; Batuman, O.; Moezi, M.M.; Woytowitz, D.; Duvivier, H.; Nassir, Y.; et al. Zoledronic acid markedly improves bone mineral density for patients with monoclonal gammopathy of undetermined significance and bone loss. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2008, 14, 6289–6295. [Google Scholar] [CrossRef] [PubMed]
- Musto, P.; Petrucci, M.T.; Bringhen, S.; Guglielmelli, T.; Caravita, T.; Bongarzoni, V.; Andriani, A.; D’Arena, G.; Balleari, E.; Pietrantuono, G.; et al. A multicenter, randomized clinical trial comparing zoledronic acid versus observation in patients with asymptomatic myeloma. Cancer 2008, 113, 1588–1595. [Google Scholar] [CrossRef] [PubMed]
- Bonello, F.; Grasso, M.; D’agostino, M.; Celeghini, I.; Castellino, A.; Boccadoro, M.; Bringhen, S. The Role of Monoclonal Antibodies in the First-Line Treatment of Transplant-Ineligible Patients with Newly Diagnosed Multiple Myeloma. Pharmaceuticals 2020, 14, 20. [Google Scholar] [CrossRef]
- Raje, N.; Vescio, R.; Montgomery, C.W.; Badros, A.; Munshi, N.; Orlowski, R.; Hadala, J.T.; Warsi, G.; Argonza-Aviles, E.; Ericson, S.G.; et al. Bone Marker-Directed Dosing of Zoledronic Acid for the Prevention of Skeletal Complications in Patients with Multiple Myeloma: Results of the Z-MARK Study. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2016, 22, 1378–1384. [Google Scholar] [CrossRef]
- Hortobagyi, G.N.; Van Poznak, C.; Harker, W.G.; Gradishar, W.J.; Chew, H.; Dakhil, S.R.; Haley, B.B.; Sauter, N.; Mohanlal, R.; Zheng, M.; et al. Continued Treatment Effect of Zoledronic Acid Dosing Every 12 vs. 4 Weeks in Women with Breast Cancer Metastatic to Bone: The OPTIMIZE-2 Randomized Clinical Trial-PubMed. JAMA Oncol. 2017, 3, 906–912. [Google Scholar] [CrossRef]
- Lund, T.; Gundesen, M.T.; Juul Vangsted, A.; Helleberg, C.; Haukås, E.; Silkjær, T.; Asmussen, J.T.; Manuela Teodorescu, E.; Amdi Jensen, B.; Schmidt Slørdahl, T.; et al. In multiple myeloma, monthly treatment with zoledronic acid beyond two years offers sustained protection against progressive bone disease. Blood Cancer J. 2024, 14, 65. [Google Scholar] [CrossRef]
- Terpos, E.; Zamagni, E.; Lentzsch, S.; Drake, M.T.; García-Sanz, R.; Abildgaard, N.; Ntanasis-Stathopoulos, I.; Schjesvold, F.; de la Rubia, J.; Kyriakou, C.; et al. Treatment of multiple myeloma-related bone disease: Recommendations from the Bone Working Group of the International Myeloma Working Group. Lancet. Oncol. 2021, 22, e119–e130. [Google Scholar] [CrossRef] [PubMed]
- Dougall, W.; Chaisson, M. Monoclonal antibody targeting RANKL as a therapy for cancer-induced bone diseases. Clin. Calcium 2006, 16, 627–635. [Google Scholar]
- Bruhn, C. Denosumab. The first inhibitor of RANK-ligand for treatment of osteoporosis. Med. Monatsschrift Für Pharm. 2010, 33, 370–375. [Google Scholar] [PubMed]
- Yee, A.J.; Raje, N.S. Denosumab, a RANK ligand inhibitor, for the management of bone loss in cancer patients. Clin. Interv. Aging 2012, 7, 331–338. [Google Scholar] [CrossRef]
- Body, J.J.; Facon, T.; Coleman, R.E.; Lipton, A.; Geurs, F.; Fan, M.; Holloway, D.; Peterson, M.C.; Bekker, P.J. A study of the biological receptor activator of nuclear factor-kappaB ligand inhibitor, denosumab, in patients with multiple myeloma or bone metastases from breast cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2006, 12, 1221–1228. [Google Scholar] [CrossRef]
- Terpos, E.; Ntanasis-Stathopoulos, I. Controversies in the use of new bone-modifying therapies in multiple myeloma. Br. J. Haematol. 2021, 193, 1034–1043. [Google Scholar] [CrossRef]
- Raje, N.; Terpos, E.; Willenbacher, W.; Shimizu, K.; García-Sanz, R.; Durie, B.; Legieć, W.; Krejčí, M.; Laribi, K.; Zhu, L.; et al. Denosumab versus zoledronic acid in bone disease treatment of newly diagnosed multiple myeloma: An international, double-blind, double-dummy, randomised, controlled, phase 3 study. Lancet. Oncol. 2018, 19, 370–381. [Google Scholar] [CrossRef]
- Tsourdi, E.; Langdahl, B.; Cohen-Solal, M.; Aubry-Rozier, B.; Eriksen, E.F.; Guañabens, N.; Obermayer-Pietsch, B.; Ralston, S.H.; Eastell, R.; Zillikens, M.C. Discontinuation of Denosumab therapy for osteoporosis: A systematic review and position statement by ECTS. Bone 2017, 105, 11–17. [Google Scholar] [CrossRef]
- Terpos, E.; Ntanasis-Stathopoulos, I.; Dimopoulos, M.A. Myeloma bone disease: From biology findings to treatment approaches. Blood 2019, 133, 1534–1539. [Google Scholar] [CrossRef]
- Eleutherakis-Papaiakovou, V.; Bamias, A.; Gika, D.; Simeonidis, A.; Pouli, A.; Anagnostopoulos, A.; Michali, E.; Economopoulos, T.; Zervas, K.; Dimopoulos, M.A. Renal failure in multiple myeloma: Incidence, correlations, and prognostic significance. Leuk. Lymphoma 2007, 48, 337–341. [Google Scholar] [CrossRef]
- Alexanian, R.; Barlogie, B.; Dixon, D. Renal failure in multiple myeloma. Pathogenesis and prognostic implications. Arch. Intern. Med. 1990, 150, 1693–1695. [Google Scholar] [CrossRef] [PubMed]
- Leung, N.; Nasr, S.H. Myeloma-related kidney disease. Adv. Chronic Kidney Dis. 2014, 21, 36–47. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Kastritis, E.; Rosinol, L.; Bladé, J.; Ludwig, H. Pathogenesis and treatment of renal failure in multiple myeloma. Leukemia 2008, 22, 1485–1493. [Google Scholar] [CrossRef]
- Perazella, M.A.; Markowitz, G.S. Bisphosphonate nephrotoxicity. Kidney Int. 2008, 74, 1385–1393. [Google Scholar] [CrossRef] [PubMed]
- Kyle, R.A.; Yee, G.C.; Somerfield, M.R.; Flynn, P.J.; Halabi, S.; Jagannath, S.; Orlowski, R.Z.; Roodman, D.G.; Twilde, P.; Anderson, K. American Society of Clinical Oncology 2007 clinical practice guideline update on the role of bisphosphonates in multiple myeloma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2007, 25, 2464–2472. [Google Scholar] [CrossRef] [PubMed]
- Kanellias, N.; Gavriatopoulou, M.; Terpos, E.; Dimopoulos, M.A. Management of multiple myeloma bone disease: Impact of treatment on renal function. Expert. Rev. Hematol. 2018, 11, 881–888. [Google Scholar] [CrossRef]
- Block, G.A.; Bone, H.G.; Fang, L.; Lee, E.; Padhi, D. A single-dose study of denosumab in patients with various degrees of renal impairment. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2012, 27, 1471–1479. [Google Scholar] [CrossRef]
- Gastanaga, V.M.; Schwartzberg, L.S.; Jain, R.K.; Pirolli, M.; Quach, D.; Quigley, J.M.; Mu, G.; Scott Stryker, W.; Liede, A. Prevalence of hypercalcemia among cancer patients in the United States. Cancer Med. 2016, 5, 2091–2100. [Google Scholar] [CrossRef]
- Pecherstorfer, M.; Steinhauer, E.U.; Rizzoli, R.; Wetterwald, M.; Bergström, B. Efficacy and safety of ibandronate in the treatment of hypercalcemia of malignancy: A randomized multicentric comparison to pamidronate. Support. Care Cancer Off. J. Multinatl. Assoc. Support. Care Cancer 2003, 11, 539–547. [Google Scholar] [CrossRef]
- Cicci, J.D.; Buie, L.; Bates, J.; Van Deventer, H. Denosumab for the management of hypercalcemia of malignancy in patients with multiple myeloma and renal dysfunction. Clin. Lymphoma Myeloma Leuk. 2014, 14, e207–e211. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.I.; Glezerman, I.G.; Leboulleux, S.; Insogna, K.; Gucalp, R.; Misiorowski, W.; Yu, B.; Zorsky, P.; Tosi, D.; Bessudo, A.; et al. Denosumab for treatment of hypercalcemia of malignancy. J. Clin. Endocrinol. Metab. 2014, 99, 3144–3152. [Google Scholar] [CrossRef]
- Mirhosseini, N.; Psihogios, A.; McLaren, M.D.; Seely, D. Vitamin D and Multiple Myeloma: A Scoping Review. Curr. Oncol. 2023, 30, 3263–3276. [Google Scholar] [CrossRef]
- Bingham, N.; Reale, A.; Spencer, A. An Evidence-Based Approach to Myeloma Bone Disease. Curr. Hematol. Malig. Rep. 2017, 12, 109–118. [Google Scholar] [CrossRef]
- Badros, A.; Goloubeva, O.; Terpos, E.; Milliron, T.; Baer, M.R.; Streeten, E. Prevalence and significance of vitamin D deficiency in multiple myeloma patients. Br. J. Haematol. 2008, 142, 492–494. [Google Scholar] [CrossRef] [PubMed]
- Weide, R.; Köppler, H.; Antras, L.; Smith, M.; Eva Chang, M.P.H.; Green, J.; Wintfeld, N.; Neary, M.; Duh, M. Renal toxicity in patients with multiple myeloma receiving zoledronic acid vs. ibandronate: A retrospective medical records review. J. Cancer Res. Ther. 2010, 6, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Raje, N.S.; Yee, A.J.; Roodman, G.D. Advances in supportive care for multiple myeloma. J. Natl. Compr. Cancer Netw. JNCCN 2014, 12, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Badros, A.; Terpos, E.; Katodritou, E.; Goloubeva, O.; Kastritis, E.; Verrou, E.; Zervas, K.; Baer, M.R.; Meiller, T.; Dimopoulos, M.A. Natural history of osteonecrosis of the jaw in patients with multiple myeloma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2008, 26, 5904–5909. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Kastritis, E.; Bamia, C.; Melakopoulos, I.; Gika, D.; Roussou, M.; Migkou, M.; Eleftherakis-Papaiakovou, E.; Christoulas, D.; Terpos, E.; et al. Reduction of osteonecrosis of the jaw (ONJ) after implementation of preventive measures in patients with multiple myeloma treated with zoledronic acid. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2009, 20, 117–120. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Kastritis, E.; Anagnostopoulos, A.; Melakopoulos, I.; Gika, D.; Moulopoulos, L.A.; Bamia, C.; Terpos, E.; Tsionos, K.; Bamias, A. Osteonecrosis of the jaw in patients with multiple myeloma treated with bisphosphonates: Evidence of increased risk after treatment with zoledronic acid. Haematologica 2006, 91, 968–971. [Google Scholar]
- Aboalela, A.A.; Farook, F.F.; Alqahtani, A.S.; Almousa, M.A.; Alanazi, R.T.; Almohammadi, D.S. The Effect of Antiresorptive Drug Holidays on Medication-Related Osteonecrosis of the Jaw: A Systematic Review and Meta-Analysis. Cureus 2022, 14, e30485. [Google Scholar] [CrossRef]
- Khan, A.A.; Morrison, A.; Hanley, D.A.; Felsenberg, D.; McCauley, L.K.; O’Ryan, F.; Reid, I.R.; Ruggiero, S.L.; Taguchi, A.; Tetradis, S.; et al. Diagnosis and management of osteonecrosis of the jaw: A systematic review and international consensus-PubMed. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2015, 30I, 3–23. [Google Scholar] [CrossRef]
- Yarom, N.; Shapiro, C.L.; Peterson, D.E.; Van Poznak, C.H.; Bohlke, K.; Ruggiero, S.L.; Migliorati, C.A.; Khan, A.; Morrison, A.; Anderson, H.; et al. Medication-Related Osteonecrosis of the Jaw: MASCC/ISOO/ASCO Clinical Practice Guideline. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019, 37, 2270–2290. [Google Scholar] [CrossRef]
- Bansal, H. Medication-related osteonecrosis of the jaw: An update. Natl. J. Maxillofac. Surg. 2022, 13, 5–10. [Google Scholar] [CrossRef]
- Davies, M.P.; Fingas, S.; Chantry, A. Mechanisms and treatment of bone pain in multiple myeloma. Curr. Opin. Support. Palliat. Care 2019, 13, 408–416. [Google Scholar] [CrossRef]
- Anekar, A.A.; Hendrix, J.M.; Cascella, M. WHO Analgesic Ladder. J. R. Coll. Physicians Edinb. 2024, 38, 284. [Google Scholar] [CrossRef]
- Snowden, J.A.; Ahmedzai, S.H.; Ashcroft, J.; D’Sa, S.; Littlewood, T.; Low, E.; Lucraft, H.; Maclean, R.; Feyler, S.; Pratt, G.; et al. Guidelines for supportive care in multiple myeloma 2011. Br. J. Haematol. 2011, 154, 76–103. [Google Scholar] [CrossRef]
- Habib, M.H. Under-treatment of Pain in Black Patients: A Historical Overview, Case-based Analysis, and Legalities as Explored Through the Tenets of Critical Race Theory. Indiana Health Law. Rev. 2023, 20, 63–89. [Google Scholar] [CrossRef]
- Neuropathic Pain in Adults: Pharmacological Management in Non-Specialist Settings. Available online: https://www.ncbi.nlm.nih.gov/books/NBK552848/pdf/Bookshelf_NBK552848.pdf (accessed on 20 February 2025).
- Habib, M.H.; Arnold, R.M. Urinary Incontinence in Palliative Care Settings: Part 2: Management #426. J. Palliat. Med. 2021, 24, 1734–1735. [Google Scholar] [CrossRef]
- Peripheral Neuropathy-Treatment-NHS. Available online: https://www.nhs.uk/conditions/peripheral-neuropathy/treatment/ (accessed on 5 February 2025).
- Matuschek, C.; Ochtrop, T.A.; Bölke, E.; Ganswindt, U.; Fenk, R.; Gripp, S.; Kröpil, P.; Gerber, P.A.; Kammers, K.; Hamilton, J.; et al. Effects of Radiotherapy in the treatment of multiple myeloma: A retrospective analysis of a Single Institution. Radiat. Oncol. 2015, 10, 71. [Google Scholar] [CrossRef]
- Rudzianskiene, M.; Rudzianskas, V.; Dambrauskiene, R.; Gerbutavicius, R. The Role of Radiology and Radiotherapy for Multiple Myeloma. In Update on Multiple Myeloma; IntechOpen: London, UK, 2018. [Google Scholar]
- Tsang, R.W.; Campbell, B.A.; Goda, J.S.; Kelsey, C.R.; Kirova, Y.M.; Parikh, R.R.; Ng, A.K.; Ricardi, U.; Suh, C.-O.; Mauch, P.M.; et al. Radiation Therapy for Solitary Plasmacytoma and Multiple Myeloma: Guidelines From the International Lymphoma Radiation Oncology Group. Int. J. Radiat. Oncol. Biol. Phys. 2018, 101, 794–808. [Google Scholar] [CrossRef]
- Price, J.G.; Niedzwiecki, D.; Oyekunle, T.; Arcasoy, M.O.; Champ, C.E.; Kelsey, C.R.; Salama, J.K.; Moravan, M.J. Effective Pain Control with Very Low Dose Palliative Radiation Therapy for Patients with Multiple Myeloma with Uncomplicated Osseous Lesions-PubMed. Adv. Radiat. Oncol. 2021, 6, 100729. [Google Scholar] [CrossRef]
- Lungu, O.; Toscani, D.; Giuliani, N. Mechanistic insights into bone destruction in multiple myeloma: Cellular and molecular perspectives. J. Bone Oncol. 2025, 51, 100668. [Google Scholar] [CrossRef]
- Colciago, R.R.; Fischetti, I.; Giandini, C.; La Rocca, E.; Rancati, T.T.; Mateo, A.R.; Colombo, M.P.; Lozza, L.; Chiodoni, C.; Jachetti, E.; et al. Overview of the synergistic use of radiotherapy and immunotherapy in cancer treatment: Current challenges and scopes of improvement-PubMed. Expert. Rev. Anticancer. Ther. 2023, 23, 135–145. [Google Scholar] [CrossRef]
- Callander, N.S.; Baljevic, M.; Adekola, K.; Anderson, L.D.; Campagnaro, E.; Castillo, J.J.; Costello, C.; Devarakonda, S.; Elsedawy, N.; Faiman, M.; et al. NCCN Guidelines® Insights: Multiple Myeloma, Version 3.2022. J. Natl. Compr. Cancer Netw. JNCCN 2022, 20, 8–19. [Google Scholar] [CrossRef]
- Khan, O.A.; Brinjikji, W.; Kallmes, D.F. Vertebral augmentation in patients with multiple myeloma: A pooled analysis of published case series. AJNR. Am. J. Neuroradiol. 2014, 35, 207–210. [Google Scholar] [CrossRef]
- Habib, M.H.; Schlögl, M.; Raza, S.; Chwistek, M.; Gulati, A. Interventional pain management in cancer patients-a scoping review. Ann. Palliat. Med. 2023, 12, 1198–1214. [Google Scholar] [CrossRef]
- Kyriakou, C.; Molloy, S.; Vrionis, F.; Alberico, R.; Bastian, L.; Zonder, J.A.; Giralt, S.; Raje, N.; Kyle, R.A.; Roodman, D.G.D.; et al. The role of cement augmentation with percutaneous vertebroplasty and balloon kyphoplasty for the treatment of vertebral compression fractures in multiple myeloma: A consensus statement from the International Myeloma Working Group (IMWG). Blood Cancer J. 2019, 9, 27. [Google Scholar] [CrossRef]
- Laredo, J.-D.; Hamze, B. Complications of percutaneous vertebroplasty and their prevention. Semin. Ultrasound CT MR 2005, 26, 65–80. [Google Scholar] [CrossRef]
- Cornelis, F.H.; Petitpierre, F.; Fabre, T.; Gille, O.; Amoretti, N.; Hauger, O. Percutaneous low-pressure bone stenting to control cement deposition in extensive lytic lesions. Eur. Radiol. 2017, 27, 3942–3946. [Google Scholar] [CrossRef]
- Pflugmacher, R.; Kandziora, F.; Schroeder, R.-J.; Melcher, I.; Haas, N.P.; Klostermann, C.K. Percutaneous balloon kyphoplasty in the treatment of pathological vertebral body fracture and deformity in multiple myeloma: A one-year follow-up. Acta Radiol. 2006, 47, 369–376. [Google Scholar] [CrossRef]
- McDonald, R.; Trout, A.; Gray, L.; Dispenzieri, A.; Thielen, K.; Kallmes, D. Vertebroplasty in Multiple Myeloma: Outcomes in a Large Patient Series. Am. J. Neuroradiol. 2008, 29, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Anselmetti, G.C.; Manca, A.; Montemurro, F.; Hirsch, J.; Chiara, G.; Grignani, G.; Schianca, F.C.; Capaldi, A.; Scalabrini, D.R.; Sardo, E.; et al. Percutaneous Vertebroplasty in Multiple Myeloma: Prospective Long-Term Follow-Up in 106 Consecutive Patients. Cardiovasc. Interv. Radiol. 2011, 35, 139–145. [Google Scholar] [CrossRef]
- Chew, C.; Craig, L.; Edwards, R.; Moss, J.; O’dWyer, P. Safety and efficacy of percutaneous vertebroplasty in malignancy: A systematic review. Clin. Radiol. 2011, 66, 63–72. [Google Scholar] [CrossRef]
- Audat, Z.A.; Hajyousef, M.H.; Fawareh, M.D.; Alawneh, K.M.; Odat, M.A.; Barbarawi, M.M.; Alomari, A.A.; Jahmani, R.A.; Khatatbeh, M.A.; Assmairan, M.A. Comparison if the addition of multilevel vertebral augmentation to conventional therapy will improve the outcome of patients with multiple myeloma. Scoliosis 2016, 11, 47. [Google Scholar] [CrossRef]
- Ha, K.-Y.; Kim, Y.-H.; Kim, H.-W. Multiple Myeloma and Epidural Spinal Cord Compression: Case Presentation and a Spine Surgeon’s Perspective. J. Korean Neurosurg. Soc. 2013, 54, 151–154. [Google Scholar] [CrossRef]
- Rades, D.; Hoskin, P.J.; Stalpers, L.J.A.; Schulte, R.; Poortmans, P.; Veninga, T.; Dahm-Daphi, J.; Obralic, N.; Wildfang, I.; Bahrehmand, R.; et al. Short-course radiotherapy is not optimal for spinal cord compression due to myeloma. Int. J. Radiat. Oncol. Biol. Phys. 2006, 64, 1452–1457. [Google Scholar] [CrossRef]
- Habib, M.H.; Arnold, R.M. Urinary Incontinence in Palliative Care Settings: Part 1: Etiology and Workup #425. J. Palliat. Med. 2021, 24, 1732–1733. [Google Scholar] [CrossRef]
- Habib, M.H.; Arnold, R.M. Fecal Incontinence in Palliative Care Settings #424-PubMed. J. Palliat. Med. 2021, 24, 1570–1571. [Google Scholar] [CrossRef] [PubMed]
- Habib, M.H.; Zheng, J.; Radwan, A.; Tolchin, D.W.; Smith, S.; Inzana, R.S.; Keeney, T.; Arora, A.; Beckley, A.; Choudhary, S.; et al. Top Ten Tips Palliative Care Clinicians Should Know About Physical Therapy, Occupational Therapy, and Speech Language Pathology. J. Palliat. Med. 2024, 27, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Lan, Z.; Lv, Z.; Zuo, W.; Xiao, Y. From bench to bedside: The promise of sotatercept in hematologic disorders. Biomed. Pharmacother. 2023, 165, 115239. [Google Scholar] [CrossRef] [PubMed]
- Terpos, E.; Christoulas, D.; Gavriatopoulou, M. Biology and treatment of myeloma related bone disease. Metab. Clin. Exp. 2018, 80, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Gau, Y.-C.; Yeh, T.-j.; Hsu, C.-M.; Hsiao, S.Y.; Hsiao, H.-H. Pathogenesis and Treatment of Myeloma-Related Bone Disease. Int. J. Mol. Sci. 2022, 23, 3112. [Google Scholar] [CrossRef] [PubMed]
- Ruckle, J.; Jacobs, M.; Kramer, W.; Pearsall, A.E.; Kumar, R.; Underwood, K.W.; Seehra, J.; Yang, Y.; Condon, C.H.; Sherman, M.L. Single-dose, randomized, double-blind, placebo-controlled study of ACE-011 (ActRIIA-IgG1) in postmenopausal women. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2009, 24, 744–752. [Google Scholar] [CrossRef]
- Abdulkadyrov, K.M.; Salogub, G.N.; Khuazheva, N.K.; Sherman, M.L.; Laadem, A.; Barger, R.; Knight, R.; Srinivasan, S.; Terpos, E. Sotatercept in patients with osteolytic lesions of multiple myeloma. Br. J. Haematol. 2014, 165, 814–823. [Google Scholar] [CrossRef]
- Study Details|Sotatercept (ACE-011) with Lenalidomide or Pomalidomide and Dexamethasone in Relapsed/Refractory Multiple Myeloma|ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT01562405 (accessed on 5 February 2025).
- Piga, A.; Perrotta, S.; Gamberini, M.R.; Voskaridou, E.; Melpignano, A.; Filosa, A.; Caruso, V.; Pietrangelo, A.; Longo, F.; Tartaglione, I.; et al. Luspatercept improves hemoglobin levels and blood transfusion requirements in a study of patients with β-thalassemia-PubMed. Blood 2019, 133, 1279–1289. [Google Scholar] [CrossRef]
- Coates, T.D.; Cappellini, M.D.; Sheth, S.; Kuo, K.H.; Piga, A.G.; Kattamis, A.; Perin, M.; Lersch, F.; Shetty, J.K.; Lai, Y.; et al. P1466: Effect of Luspatercept on Bone Mineral Density in Patients with Beta-Thalassemia Enrolled in the Phase 3 Believe Trial. HemaSphere 2023, 7, e882049a. [Google Scholar] [CrossRef]
- Weidner, H.; Wobus, M.; Hofbauer, L.C.; Rauner, M.; Platzbecker, U.; Weidner, H.; Wobus, M.; Hofbauer, L.C.; Rauner, M.; Platzbecker, U. Luspatercept mitigates bone loss driven by myelodysplastic neoplasms and estrogen-deficiency in mice. Leukemia 2022, 36, 2715–2718. [Google Scholar] [CrossRef]
- Mukkamalla, S.K.R.; Malipeddi, D. Myeloma Bone Disease: A Comprehensive Review. Int. J. Mol. Sci. 2021, 22, 6208. [Google Scholar] [CrossRef]
- Yaccoby, S.; Ling, W.; Zhan, F.; Walker, R.; Barlogie, B.; Shaughnessy, J.D. Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood 2007, 109, 2106–2111. [Google Scholar] [CrossRef]
- Iyer, S.P.; Beck, J.T.; Stewart, A.K.; Shah, J.; Kelly, K.R.; Isaacs, R.; Bilic, S.; Sen, S.; Munshi, N.C. A Phase IB multicentre dose-determination study of BHQ880 in combination with anti-myeloma therapy and zoledronic acid in patients with relapsed or refractory multiple myeloma and prior skeletal-related events. Br. J. Haematol. 2014, 167, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Munshi, N.C.; Abonour, R.; Beck, J.T.; Bensinger, W.; Facon, T.; Stockerl-Goldstein, K.; Baz, R.; Siegel, D.S.; Neben, K.; Lonial, S.; et al. Early Evidence of Anabolic Bone Activity of BHQ880, a Fully Human Anti-DKK1 Neutralizing Antibody: Results of a Phase 2 Study in Previously Untreated Patients with Smoldering Multiple Myeloma At Risk for Progression. Blood 2012, 120, 331. [Google Scholar] [CrossRef]
- Terpos, E.; Berenson, J.; Raje, N.; Roodman, G.D. Management of bone disease in multiple myeloma. Expert. Rev. Hematol. 2014, 7, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Cosman, F.; Crittenden, D.B.; Adachi, J.D.; Binkley, N.; Czerwinski, E.; Ferrari, S.; Hofbauer, L.C.; Lau, E.; Lewiecki, E.M.; Miyauchi, A.; et al. Romosozumab Treatment in Postmenopausal Women with Osteoporosis. N. Engl. J. Med. 2016, 375, 1532–1543. [Google Scholar] [CrossRef] [PubMed]
- Toscani, D.; Bolzoni, M.; Ferretti, M.; Palumbo, C.; Giuliani, N. Role of Osteocytes in Myeloma Bone Disease: Anti-sclerostin Antibody as New Therapeutic Strategy. Front. Immunol. 2018, 9, 2467. [Google Scholar] [CrossRef]
- Eda, H.; Santo, L.; Wein, M.N.; Hu, D.Z.; Cirstea, D.D.; Nemani, N.; Tai, Y.T.; Raines, S.E.; Kuhstoss, S.A.; Munshi, N.C.; et al. Regulation of Sclerostin Expression in Multiple Myeloma by Dkk-1: A Potential Therapeutic Strategy for Myeloma Bone Disease. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2016, 31, 1225–1234. [Google Scholar] [CrossRef]
- Fallon, M.; Sopata, M.; Dragon, E.; Brown, M.T.; Viktrup, L.; West, C.R.; Bao, W.; Agyemang, A. A Randomized Placebo-Controlled Trial of the Anti-Nerve Growth Factor Antibody Tanezumab in Subjects with Cancer Pain Due to Bone Metastasis. Oncologist 2023, 28, e1268–e1278. [Google Scholar] [CrossRef]
- Abonour, R.; Rifkin, R.M.; Gasparetto, C.; Toomey, K.; Durie, B.G.M.; Hardin, J.W.; Terebelo, H.R.; Jagannath, S.; Narang, M.; Ailawadhi, S.; et al. Effect of initial treatment on health-related quality of life in patients with newly diagnosed multiple myeloma without immediate stem cell transplant intent: Results from the Connect® MM Registry. Br. J. Haematol. 2020, 193, 93–100. [Google Scholar] [CrossRef]
- Seitzler, S.; Finley-Oliver, E.; Simonelli, C.; Baz, R. Quality of life in multiple myeloma: Considerations and recommendations. Expert. Rev. Hematol. 2019, 12, 419–424. [Google Scholar] [CrossRef]
- Hamza Habib, M.; Arnold, R.M.; Rosielle, D.A. Functional Status Assessment in Serious Illness #416. J. Palliat. Med. 2021, 24, 946–948. [Google Scholar] [CrossRef]
- Cocks, K.; Cohen, D.; Wisløff, F.; Sezer, O.; Lee, S.; Hippe, E.; Gimsing, P.; Turesson, I.; Hajek, R.; Smith, A.; et al. An international field study of the reliability and validity of a disease-specific questionnaire module (the QLQ-MY20) in assessing the quality of life of patients with multiple myeloma. Eur. J. Cancer 2007, 43, 1670–1678. [Google Scholar] [CrossRef] [PubMed]
- El-Jawahri, A.; LeBlanc, T.W.; Kavanaugh, A.; Webb, J.A.; Jackson, V.A.; Campbell, T.C.; O’Connor, N.; Luger, S.M.; Gafford, E.; Gustin, J.; et al. Effectiveness of Integrated Palliative and Oncology Care for Patients with Acute Myeloid Leukemia: A Randomized Clinical Trial. JAMA Oncol. 2020, 7, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Gerov, V.; Gerova, D.; Micheva, I.; Nikolova, M.; Mihaylova, G.; Galunska, B. Dynamics of Bone Disease Biomarkers Dickkopf-1 and Sclerostin in Patients with Multiple Myeloma. J. Clin. Med. 2023, 12, 4440. [Google Scholar] [CrossRef] [PubMed]
- Malard, F.; Neri, P.; Bahlis, N.J.; Terpos, E.; Moukalled, N.; Hungria, V.T.M.; Manier, S.; Mohty, M. Multiple myeloma. Nat. Rev. Dis. Primers 2024, 10, 45. [Google Scholar] [CrossRef]
Drug | Mode of Action | Therapeutic Target | Effect on Bone |
---|---|---|---|
Bisphosphonates | Pyrophosphate analog | Osteoclast inhibition via inhibition of the mevalonate pathway | Reduces bone resorption and turnover, stabilizes bone lesions, prevents skeletal-related events (SREs) |
Denosumab | Human monoclonal antibody (IgG2) | RANKL so inhibits osteoclast formation | Inhibits bone resorption and stabilizes lytic lesions |
Sotatercept (ACE-011) | Activin A neutralizing receptor, a recombinant activin receptor type IIA (ActRIIA) ligand trap | Osteoclast inhibition and osteoblast maturation | Increases bone mineral density and |
BHQ880 | DKK-1 neutralizing monoclonal antibody | Osteoblast maturation and function restoration through Wnt pathway inhibition | Increases bone mineral density and trabecular volume |
Romosozumab | Sclerostin-neutralizing monoclonal antibody | Increased osteoblast differentiation and activity Decreased osteoclastogenesis | Reverses lytic lesions and promotes bone remineralization |
Tanezumab | Monoclonal antibody against Nerve Growth Factors (NGFs) | Prevents NGF from interacting with TRk receptors to block signaling pathways | No direct effects, changes in pain perception, and mechanical load |
Study Title, Year | Study Design, N | Intervention | Key Findings |
---|---|---|---|
Percutaneous balloon kyphoplasty to treat pathological vertebral body fracture and deformity in MM: a one-year follow-up, 2006 [94] | Prospective cohort, 20 | Balloon kyphoplasty | 1. Pain reduction: Significant decrease in VAS * (p < 0.05) 2. Oswestry improvement: Significant reduction (p < 0.05) 3. Vertebral height: Stabilized postoperatively 4. Complications: 10.4% asymptomatic cement leakage |
Vertebroplasty in MM: a Large Patient Series, 2008 [95] | Retrospective Review, 67 | Vertebroplasty | 1. Pain reduction: Rest pain ↓2.7 points (p < 0.001); Activity pain ↓5.3 points (p < 0.0001) 2. Seventy % improved mobility 3. RDQ ** improvement: 11.0 points (p < 0.0001) |
Percutaneous vertebroplasty in MM, 2011 [96] | Prospective cohort,106 | Vertebroplasty | 1. Pain reduction: VAS decreased from 9 to 1 2. ODI improvement: Decreased from 82% to 7% 3. Brace use: 86% discontinued the brace All outcomes had p < 0.001 |
Safety and efficacy of percutaneous vertebroplasty in malignancy, 2011 [97] | Systematic Review, 987 | Vertebroplasty | 1. Pain reduction: 47–87% 2. Complications: (5 deaths, 19 major adverse events) |
Vertebral Augmentation in Patients with MM, 2014 [89] | Systematic Review, 923 | Vertebral augmentation (kyphoplasty/vertebroplasty) | 1. Pain reduction: -4.4 points at ≥1 year (p < 0.001) -No difference between vertebroplasty and kyphoplasty (p > 0.9) 2. ODI ‡: No significant improvement (p > 0.05) 3. Analgesic use: Significant reduction at 1 year (85%, p = 0.003) |
Comparison if the addition of multilevel vertebral augmentation to conventional therapy will improve the outcome of patients with MM, 2016 [98] | Prospective cohort, 27 | Group I: Conventional Group II: Conventional + Vertebroplasty + Kyphoplasty | Group II (augmentation): 1. Improved ODI (p = 0.047) and SINS ¶ (p = 0.002) vs. Group I 2. Mortality: Equal in both groups (4 deaths each) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, S.; Adil, H.S.; Raza, S.; Basit, J.; Arul, K.; Anwer, F.; Habib, M.H. Advances in Supportive Care for Multiple Myeloma-Related Bone Disease—A Review. Cancers 2025, 17, 2166. https://doi.org/10.3390/cancers17132166
Abbas S, Adil HS, Raza S, Basit J, Arul K, Anwer F, Habib MH. Advances in Supportive Care for Multiple Myeloma-Related Bone Disease—A Review. Cancers. 2025; 17(13):2166. https://doi.org/10.3390/cancers17132166
Chicago/Turabian StyleAbbas, Saadia, Haleema Sadia Adil, Shahzad Raza, Janita Basit, Karan Arul, Faiz Anwer, and Muhammad Hamza Habib. 2025. "Advances in Supportive Care for Multiple Myeloma-Related Bone Disease—A Review" Cancers 17, no. 13: 2166. https://doi.org/10.3390/cancers17132166
APA StyleAbbas, S., Adil, H. S., Raza, S., Basit, J., Arul, K., Anwer, F., & Habib, M. H. (2025). Advances in Supportive Care for Multiple Myeloma-Related Bone Disease—A Review. Cancers, 17(13), 2166. https://doi.org/10.3390/cancers17132166