Exploring Experimental Models of Colorectal Cancer: A Critical Appraisal from 2D Cell Systems to Organoids, Humanized Mouse Avatars, Organ-on-Chip, CRISPR Engineering, and AI-Driven Platforms—Challenges and Opportunities for Translational Precision Oncology
Simple Summary
Abstract
1. Introduction
Classification of Colorectal Cancer Models
2. Methodology
2.1. In Vitro Models
Two-Dimensional (2D) Colorectal Cancer Cell Line Models: Clinical Utility, Molecular Features, and Limitations
2.2. Three-Dimensional (3D) Spheroid Models in Colorectal Cancer Research
2.3. Patient-Derived Organoids (PDOs) in Colorectal Cancer Research
2.4. In Vivo Models
Murine Models of Colorectal Cancer
2.5. Chemically Induced Models (AOM, DSS, and Others)
2.6. Genetically Engineered Mouse Models (GEMMs)
2.7. Xenograft Models (Human Tumor Grafts in Mice)
2.8. Syngeneic Mouse Models
2.9. Orthotopic Implantation Models
2.10. Non-Murine Models of Colorectal Cancer
2.11. Zebrafish Models
2.12. Drosophila (Fruit Fly) Models
2.13. Canine Models (Dog)
2.14. Porcine Models (Pig)
2.15. Non-Human Primate Models
2.16. Emerging Integrative Platforms
2.16.1. Humanized Mouse Models
CRISPR-Cas9 Edited Models
2.17. Microfluidic Tumor-on-Chip Systems
2.18. AI-Augmented Computational Frameworks
2.19. Cross-Scale Integrated Models/Hybrid Models
3. Future Directions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2D | Two-Dimensional (cell culture) |
3D | Three-Dimensional (cell culture) |
5-FU | 5-Fluorouracil |
ACS | American Cancer Society |
AI | Artificial Intelligence |
ALI | Air-Liquid Interface |
AOM | Azoxymethane |
APC | Adenomatous Polyposis Coli (gene) |
ASR | Age-Standardized Incidence Rate |
ATM | Ataxia Telangiectasia Mutated (gene) |
ATR | Ataxia Telangiectasia and Rad3-Related (gene) |
AUROC | Area Under the Receiver Operating Characteristic Curve |
BRAF | B-Raf Proto-Oncogene (gene) |
CAF | Cancer-Associated Fibroblast |
CAR-T | Chimeric Antigen Receptor T-cell |
CD34+ | Hematopoietic Stem Cell Marker |
CDX | Cell Line-Derived Xenograft |
CEA | Carcinoembryonic Antigen |
CIMP-high | High CpG Island Methylator Phenotype |
CIMP | CpG Island Methylator Phenotype |
CIN | Chromosomal Instability |
CMS | Consensus Molecular Subtype |
COX-2 | Cyclooxygenase-2 |
CpG | Cytosine-Guanine Dinucleotide (DNA methylation site) |
CRC | Colorectal Cancer |
Cre-lox | Site-Specific Recombinase System |
CRISPR | Clustered Regularly Interspaced Short Palindromic Repeats |
CT26 | Murine Colon Carcinoma Cell Line |
ctDNA | Circulating Tumor DNA |
CTLA-4 | Cytotoxic T-Lymphocyte-Associated Protein 4 |
DL | Deep Learning |
dMMR | Deficient Mismatch Repair |
DSS | Dextran Sulfate Sodium |
ECM | Extracellular Matrix |
EGFR | Epidermal Growth Factor Receptor |
EMT | Epithelial–Mesenchymal Transition |
EO-CRC | Early-Onset Colorectal Cancer |
ERBB2 | Erythroblastic Oncogene B2 |
F0/F1/F2 | Generations in PDX Models |
FAP | Familial Adenomatous Polyposis |
FAP | Fibroblast Activation Protein |
FGFR2 | Fibroblast Growth Factor Receptor 2 |
FOLFIRI | Folinic Acid, Fluorouracil, Irinotecan |
FOLFOX | Folinic Acid, Fluorouracil, Oxaliplatin |
GEMM | Genetically Engineered Mouse Model |
GREM1 | Gremlin-1 (BMP antagonist) |
GWAS | Genome-Wide Association Study |
HCT116 | Human CRC Cell Line (MSI-high, KRAS mutant) |
HER2 | Human Epidermal Growth Factor Receptor 2 |
HIF | Hypoxia-Inducible Factor |
HLA | Human Leukocyte Antigen |
HNPCC | Hereditary Nonpolyposis Colorectal Cancer (Lynch Syndrome) |
HPFS | Health Professionals Follow-Up Study |
HT29 | Human CRC Cell Line (MSS, BRAF mutant) |
IACUC | Institutional Animal Care and Use Committee |
ICI | Immune Checkpoint Inhibitor |
ICIs | Immune Checkpoint Inhibitors |
IGF-1 | Insulin-Like Growth Factor 1 |
IL-6/IL-8 | Interleukin-6/Interleukin-8 |
IVIS | In Vivo Imaging System |
KRAS | Kirsten Rat Sarcoma Viral Oncogene Homolog (gene) |
LGR5 | Leucine-Rich Repeat-Containing G-Protein Coupled Receptor 5 (stem cell marker) |
LoVo | Human CRC Cell Line (MSI-high, derived from metastasis) |
LS | Lynch Syndrome |
MAPK | Mitogen-Activated Protein Kinase |
MC38 | Murine Colon Adenocarcinoma Cell Line |
MCP-1 | Monocyte Chemoattractant Protein-1 |
MEK | Mitogen-Activated Protein Kinase Kinase |
ML | Machine Learning |
MLH1 | MutL Homolog 1 (MMR gene) |
MLH1/MSH2/MSH6/PMS2 | Mismatch Repair Genes |
MMR | Mismatch Repair |
MSI-H | Microsatellite Instability-High |
MSI | Microsatellite Instability |
MSS | Microsatellite Stable |
NF-κB | Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells |
NHP | Non-Human Primate |
NHS | Nurses’ Health Study |
NK | Natural Killer (cell) |
NOD-SCID | Non-Obese Diabetic-Severe Combined Immunodeficiency (mice) |
NSAIDs | Non-Steroidal Anti-Inflammatory Drugs |
NSG | NOD-SCID-IL2Rγnull (immunodeficient mice) |
OLFM4 | Olfactomedin-4 (stem cell marker) |
OoC | Organ-on-a-Chip |
PAR-2 | Protease-Activated Receptor-2 |
PBMC | Peripheral Blood Mononuclear Cell |
PD-1/PD-L1 | Programmed Death-1/Programmed Death-Ligand 1 |
PDMS | Polydimethylsiloxane (microfluidic material) |
PDO | Patient-Derived Organoid |
PDOX | Patient-Derived Organoid Xenograft |
PDX | Patient-Derived Xenograft |
PI3K | Phosphoinositide 3-Kinase |
PIK3CA | Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha (gene) |
R-spondin | Wnt Pathway Agonist |
RAS | Rat Sarcoma (gene family) |
RAS | Rat Sarcoma Virus |
RRR (3Rs) | Replacement, Reduction and Refinement |
SCFA | Short-Chain Fatty Acid |
SHAP | SHapley Additive exPlanations (AI interpretability tool) |
SMAD4 | Mothers Against Decapentaplegic Homolog 4 (TGF-β pathway) |
SNP | Single Nucleotide Polymorphism |
STAT3 | Signal Transducer and Activator of Transcription 3 |
SW480 | Human CRC Cell Line (MSS, KRAS mutant) |
TCGA | The Cancer Genome Atlas |
TCR-T | T-Cell Receptor-Engineered T-cell |
TGF-β | Transforming Growth Factor Beta |
TME | Tumor Microenvironment |
TNBS | Trinitrobenzene Sulfonic Acid (colitis inducer) |
TNF-α | Tumor Necrosis Factor-Alpha |
TP53 | Tumor Protein p53 (gene) |
VEGF | Vascular Endothelial Growth Factor |
WHO | World Health Organization |
WNT | Wingless-Type MMTV Integration Site Family (signaling pathway) |
WRN | Werner Syndrome Helicase (synthetic lethal target in MSI CRC) |
β-catenin | Key Wnt Pathway Effector |
References
- Colorectal Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/colorectal-cancer (accessed on 20 March 2025).
- ACS Releases Colorectal Cancer Estimates for 2024 | Colorectal Cancer Alliance. Available online: https://colorectalcancer.org/article/acs-releases-colorectal-cancer-estimates-2024 (accessed on 20 March 2025).
- Rawla, P.; Sunkara, T.; Barsouk, A. Epidemiology of Colorectal Cancer: Incidence, Mortality, Survival, and Risk Factors. Prz. Gastroenterol. 2019, 14, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Colorectal Cancer Statistics. Available online: https://www.wcrf.org/preventing-cancer/cancer-statistics/colorectal-cancer-statistics/ (accessed on 20 March 2025).
- Alessy, S.A.; Alqahtani, S.A.; Vignat, J.; Abuhmaidan, A.; Basmi, A.E.L.; Al Lawati, N.; Ali A-Nooh, A.; Shelpai, W.; Alhomoud, S.; Al-Zahrani, A.; et al. The Current and Future Cancer Burden in the Gulf Cooperation Council (GCC) Countries. Cancer Med. 2024, 13, e70141. [Google Scholar] [CrossRef] [PubMed]
- Namasivayam, V.; Lim, S. Recent Advances in the Link between Physical Activity, Sedentary Behavior, Physical Fitness, and Colorectal Cancer. F1000Research 2017, 6, 199. [Google Scholar] [CrossRef] [PubMed]
- Porru, M.; Pompili, L.; Caruso, C.; Biroccio, A.; Leonetti, C. Targeting KRAS in Metastatic Colorectal Cancer: Current Strategies and Emerging Opportunities. J. Exp. Clin. Cancer Res. 2018, 37, 57. [Google Scholar] [CrossRef]
- Mehta, R.S.; Song, M.; Nishihara, R.; Drew, D.A.; Wu, K.; Qian, Z.R.; Fung, T.T.; Hamada, T.; Masugi, Y.; da Silva, A.; et al. Dietary Patterns and Risk of Colorectal Cancer: Analysis by Tumor Location and Molecular Subtypes. Gastroenterology 2017, 152, 1944–1953.e1. [Google Scholar] [CrossRef]
- Statovci, D.; Aguilera, M.; MacSharry, J.; Melgar, S. The Impact of Western Diet and Nutrients on the Microbiota and Immune Response at Mucosal Interfaces. Front. Immunol. 2017, 8, 838. [Google Scholar] [CrossRef]
- Sinha, R.; Peters, U.; Cross, A.J.; Kulldorff, M.; Weissfeld, J.L.; Pinsky, P.F.; Rothman, N.; Hayes, R.B. Meat, Meat Cooking Methods and Preservation, and Risk for Colorectal Adenoma. Cancer Res. 2005, 65, 8034–8041. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and Tumor Progression: Signaling Pathways and Targeted Intervention. Signal Transduct. Target. Ther. 2021, 6, 263. [Google Scholar] [CrossRef]
- Akimoto, N.; Ugai, T.; Zhong, R.; Hamada, T.; Fujiyoshi, K.; Giannakis, M.; Wu, K.; Cao, Y.; Ng, K.; Ogino, S. Rising Incidence of Early-Onset Colorectal Cancer—A Call to Action. Nat. Rev. Clin. Oncol. 2021, 18, 230–243. [Google Scholar] [CrossRef]
- Rosenberg, D.W.; Giardina, C.; Tanaka, T. Mouse Models for the Study of Colon Carcinogenesis. Carcinogenesis 2009, 30, 183–196. [Google Scholar] [CrossRef]
- Wang, T.; Chen, Z.; Zhang, Y.; Liu, M.; Sui, H.; Tang, Q. Recent Advances in the Development and Application of Colorectal Cancer Mouse Models. Front. Pharmacol. 2025, 16, 1553637. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Korn, J.M.; Ferretti, S.; Monahan, J.E.; Wang, Y.; Singh, M.; Zhang, C.; Schnell, C.; Yang, G.; Zhang, Y.; et al. High-Throughput Screening Using Patient-Derived Tumor Xenografts to Predict Clinical Trial Drug Response. Nat. Med. 2015, 21, 1318–1325. [Google Scholar] [CrossRef] [PubMed]
- Goessling, W.; North, T.E.; Lord, A.M.; Ceol, C.; Lee, S.; Weidinger, G.; Bourque, C.; Strijbosch, R.; Haramis, A.-P.; Puder, M.; et al. APC Mutant Zebrafish Uncover a Changing Temporal Requirement for Wnt Signaling in Liver Development. Dev. Biol. 2008, 320, 161–174. [Google Scholar] [CrossRef]
- Zhao, W.; Chen, Y.; Hu, N.; Long, D.; Cao, Y. The Uses of Zebrafish (Danio Rerio) as an In Vivo Model for Toxicological Studies: A Review Based on Bibliometrics. Ecotoxicol. Environ. Saf. 2024, 272, 116023. [Google Scholar] [CrossRef]
- Fontana, C.M.; Van Doan, H. Zebrafish Xenograft as a Tool for the Study of Colorectal Cancer: A Review. Cell Death Dis. 2024, 15, 23. [Google Scholar] [CrossRef]
- Bangi, E.; Murgia, C.; Teague, A.G.S.; Sansom, O.J.; Cagan, R.L. Functional Exploration of Colorectal Cancer Genomes Using Drosophila. Nat. Commun. 2016, 7, 13615. [Google Scholar] [CrossRef]
- Wang, Y.; Tamori, Y. Polyploid Cancer Cell Models in Drosophila. Genes 2024, 15, 96. [Google Scholar] [CrossRef]
- Zhou, J.; Boutros, M. JNK-Dependent Intestinal Barrier Failure Disrupts Host–Microbe Homeostasis during Tumorigenesis. Proc. Natl. Acad. Sci. USA 2020, 117, 9401–9412. [Google Scholar] [CrossRef]
- Youmans, L.; Taylor, C.; Shin, E.; Harrell, A.; Ellis, A.E.; Séguin, B.; Ji, X.; Zhao, S. Frequent Alteration of the Tumor Suppressor Gene APC in Sporadic Canine Colorectal Tumors. PLoS ONE 2012, 7, e50813. [Google Scholar] [CrossRef]
- Greco, A.; Meomartino, L.; Gnudi, G.; Brunetti, A.; Di Giancamillo, M. Imaging Techniques in Veterinary Medicine. Part II: Computed Tomography, Magnetic Resonance Imaging, Nuclear Medicine. Eur. J. Radiol. Open 2023, 10, 100467. [Google Scholar] [CrossRef]
- Nosalova, N.; Huniadi, M.; Horňáková, Ľ.; Valenčáková, A.; Horňák, S.; Nagoos, K.; Vozar, J.; Cizkova, D. Canine Mammary Tumors: Classification, Biomarkers, Traditional and Personalized Therapies. Int. J. Mol. Sci. 2024, 25, 2891. [Google Scholar] [CrossRef] [PubMed]
- Flisikowska, T.; Merkl, C.; Landmann, M.; Eser, S.; Rezaei, N.; Cui, X.; Kurome, M.; Zakhartchenko, V.; Kessler, B.; Wieland, H.; et al. A Porcine Model of Familial Adenomatous Polyposis. Gastroenterology 2012, 143, 1173–1175.e7. [Google Scholar] [CrossRef]
- Schook, L.B.; Collares, T.V.; Hu, W.; Liang, Y.; Rodrigues, F.M.; Rund, L.A.; Schachtschneider, K.M.; Seixas, F.K.; Singh, K.; Wells, K.D.; et al. A Genetic Porcine Model of Cancer. PLoS ONE 2015, 10, e0128864. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, V.; Joshi, T.; Elkhadragy, L.; Schook, L.B.; Gaba, R.C.; El-Kebir, M.; Schachtschneider, K.M. Development of a Whole-Exome Sequencing Kit to Facilitate Porcine Biomedical Research. Genome Biol. 2025, 26, 118. [Google Scholar] [CrossRef]
- Dray, B.K.; Raveendran, M.; Harris, R.A.; Benavides, F.; Gray, S.B.; Perez, C.J.; McArthur, M.J.; Williams, L.E.; Baze, W.B.; Doddapaneni, H.; et al. Mismatch Repair Gene Mutations Lead to Lynch Syndrome Colorectal Cancer in Rhesus Macaques. Genes Cancer 2018, 9, 142–152. [Google Scholar] [CrossRef]
- Bertone, E.R.; Giovannucci, E.L.; King, N.W.; Petto, A.J.; Johnson, L.D. Family History as a Risk Factor for Ulcerative Colitis-Associated Colon Cancer in Cotton-Top Tamarin. Gastroenterology 1998, 114, 669–674. [Google Scholar] [CrossRef]
- Sun, W.; Ge, Y.; Cui, J.; Yu, Y.; Liu, B. Scutellarin Resensitizes Oxaliplatin-Resistant Colorectal Cancer Cells to Oxaliplatin Treatment through Inhibition of PKM2. Mol. Ther. Oncolytics 2021, 21, 87–97. [Google Scholar] [CrossRef]
- Botchkina, G.I.; Zuniga, E.S.; Das, M.; Wang, Y.; Wang, H.; Zhu, S.; Savitt, A.G.; Rowehl, R.A.; Leyfman, Y.; Ju, J.; et al. New-Generation Taxoid SB-T-1214 Inhibits Stem Cell-Related Gene Expression in 3D Cancer Spheroids Induced by Purified Colon Tumor-Initiating Cells. Mol. Cancer 2010, 9, 192. [Google Scholar] [CrossRef]
- Bu, X.-D.; Li, N.; Tian, X.-Q.; Huang, P.-L. Caco-2 and LS174T Cell Lines Provide Different Models for Studying Mucin Expression in Colon Cancer. Tissue Cell 2011, 43, 201–206. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, H.; Jin, F.; Li, M.; Luo, J.; Wang, G. Cetuximab Improves AZD6244 Antitumor Activity in Colorectal Cancer HT29 Cells in Vitro and in Nude Mice by Attenuating HER3/Akt Pathway Activation. Oncol. Lett. 2018, 16, 326–334. [Google Scholar] [CrossRef]
- Patnaik, R.; Varghese, R.L.; Khan, S.; Huda, B.; Bhurka, F.; Amiri, L.; Banerjee, Y. Targeting PAR-2-Driven Inflammatory Pathways in Colorectal Cancer: Mechanistic Insights from Atorvastatin and Rosuvastatin Treatment in Cell Line Models. Transl. Cancer Res. 2025, 14, 1531–1566. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Wang, D.; Huang, Y.; Zeng, Z.; Xu, P.; Xiong, H.; Ke, Z.; Zhang, Y.; Hu, Y.; Wang, F.; et al. A Reciprocal Feedback between Colon Cancer Cells and Schwann Cells Promotes the Proliferation and Metastasis of Colon Cancer. J. Exp. Clin. Cancer Res. 2022, 41, 348. [Google Scholar] [CrossRef] [PubMed]
- Dean, L.; Kane, M. Cetuximab Therapy and RAS and BRAF Genotype. In Medical Genetics Summaries; Pratt, V.M., Scott, S.A., Pirmohamed, M., Esquivel, B., Kattman, B.L., Malheiro, A.J., Eds.; National Center for Biotechnology Information: Bethesda, MD, USA, 2012. [Google Scholar]
- Geißler, A.-L.; Geißler, M.; Kottmann, D.; Lutz, L.; Fichter, C.D.; Fritsch, R.; Weddeling, B.; Makowiec, F.; Werner, M.; Lassmann, S. ATM Mutations and E-Cadherin Expression Define Sensitivity to EGFR-Targeted Therapy in Colorectal Cancer. Oncotarget 2017, 8, 17164–17190. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, L.J.; Luk, I.Y.; Chionh, F.; Tan, T.; Needham, K.; Ayton, J.; Reehorst, C.M.; Vukelic, N.; Sieber, O.M.; Mouradov, D.; et al. BCL-XL Inhibitors Enhance the Apoptotic Efficacy of BRAF Inhibitors in BRAFV600E Colorectal Cancer. Cell Death Dis. 2024, 15, 183. [Google Scholar] [CrossRef]
- Kawakami, H.; Zaanan, A.; Sinicrope, F.A. MSI Testing and Its Role in the Management of Colorectal Cancer. Curr. Treat. Options Oncol. 2015, 16, 30. [Google Scholar] [CrossRef]
- Ferretti, S.; Hamon, J.; de Kanter, R.; Scheufler, C.; Andraos-Rey, R.; Barbe, S.; Bechter, E.; Blank, J.; Bordas, V.; Dammassa, E.; et al. Discovery of WRN Inhibitor HRO761 with Synthetic Lethality in MSI Cancers. Nature 2024, 629, 443–449. [Google Scholar] [CrossRef]
- Aparicio, C.; Belver, M.; Enríquez, L.; Espeso, F.; Núñez, L.; Sánchez, A.; de la Fuente, M.Á.; González-Vallinas, M. Cell Therapy for Colorectal Cancer: The Promise of Chimeric Antigen Receptor (CAR)-T Cells. Int. J. Mol. Sci. 2021, 22, 11781. [Google Scholar] [CrossRef]
- Na, Y.-S.; Jung, K.-A.; Kim, S.-M.; Hong, Y.S.; Ryu, M.-H.; Jang, S.J.; Moon, D.H.; Cho, D.-H.; Kim, J.C.; Lee, J.S.; et al. The Histone Deacetylase Inhibitor PXD101 Increases the Efficacy of Irinotecan in In Vitro and In Vivo Colon Cancer Models. Cancer Chemother. Pharmacol. 2011, 68, 389–398. [Google Scholar] [CrossRef]
- Quan, Q.; Zhong, F.; Wang, X.; Chen, K.; Guo, L. PAR2 Inhibition Enhanced the Sensitivity of Colorectal Cancer Cells to 5-FU and Reduced EMT Signaling. Oncol. Res. 2019, 27, 779–788. [Google Scholar] [CrossRef]
- Gilchrist, V.H.; Jémus-Gonzalez, E.; Said, A.; Alain, T. Kinase Inhibitors with Viral Oncolysis: Unmasking Pharmacoviral Approaches for Cancer Therapy. Cytokine Growth Factor Rev. 2020, 56, 83–93. [Google Scholar] [CrossRef]
- Cizkova, K.; Birke, P.; Malohlava, J.; Tauber, Z.; Huskova, Z.; Ehrmann, J. HT-29 and Caco2 Cell Lines Are Suitable Models for Studying the Role of Arachidonic Acid-Metabolizing Enzymes in Intestinal Cell Differentiation. Cells Tissues Organs 2019, 208, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Kleiveland, C.R. Co-Cultivation of Caco-2 and HT-29MTX. In The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models; Verhoeckx, K., Cotter, P., López-Expósito, I., Kleiveland, C., Lea, T., Mackie, A., Requena, T., Swiatecka, D., Wichers, H., Eds.; Springer: Cham, Switzerland, 2015; ISBN 978-3-319-15791-7. [Google Scholar]
- Davoodi, H.; Hashemi, S.R.; Seow, H.F. Increased NFk-B Activity in HCT116 Colorectal Cancer Cell Line Harboring TLR4 Asp299Gly Variant. Iran. J. Allergy Asthma Immunol. 2012, 11, 121–132. [Google Scholar] [PubMed]
- Dallas, N.A.; Xia, L.; Fan, F.; Gray, M.J.; Gaur, P.; van Buren, G.; Samuel, S.; Kim, M.P.; Lim, S.J.; Ellis, L.M. Chemoresistant Colorectal Cancer Cells, the Cancer Stem Cell Phenotype, and Increased Sensitivity to Insulin-like Growth Factor-I Receptor Inhibition. Cancer Res. 2009, 69, 1951–1957. [Google Scholar] [CrossRef]
- Wang, S.; Li, H.; Chen, T.; Zhou, H.; Zhang, W.; Lin, N.; Yu, X.; Lou, Y.; Li, B.; Yinwang, E.; et al. Human Γδ T Cells Induce CD8+ T Cell Antitumor Responses via Antigen-Presenting Effect through HSP90-MyD88-Mediated Activation of JNK. Cancer Immunol. Immunother. 2023, 72, 1803–1821. [Google Scholar] [CrossRef]
- Varshavi, D.; Varshavi, D.; McCarthy, N.; Veselkov, K.; Keun, H.C.; Everett, J.R. Metabolic Characterization of Colorectal Cancer Cells Harbouring Different KRAS Mutations in Codon 12, 13, 61 and 146 Using Human SW48 Isogenic Cell Lines. Metabolomics 2020, 16, 51. [Google Scholar] [CrossRef]
- Fontana, F.; Marzagalli, M.; Sommariva, M.; Gagliano, N.; Limonta, P. In Vitro 3D Cultures to Model the Tumor Microenvironment. Cancers 2021, 13, 2970. [Google Scholar] [CrossRef]
- Teixeira, N.; Baião, A.; Dias, S.; Sarmento, B. The Progress and Challenges in Modeling Colorectal Cancer and the Impact on Novel Drug Discovery. Expert Opin. Drug Discov. 2024, 20, 565–574. [Google Scholar] [CrossRef]
- Domcke, S.; Sinha, R.; Levine, D.A.; Sander, C.; Schultz, N. Evaluating Cell Lines as Tumour Models by Comparison of Genomic Profiles. Nat. Commun. 2013, 4, 2126. [Google Scholar] [CrossRef]
- Wangsa, D.; Braun, R.; Schiefer, M.; Gertz, E.M.; Bronder, D.; Quintanilla, I.; Padilla-Nash, H.M.; Torres, I.; Hunn, C.; Warner, L.; et al. The Evolution of Single Cell-Derived Colorectal Cancer Cell Lines Is Dominated by the Continued Selection of Tumor-Specific Genomic Imbalances, despite Random Chromosomal Instability. Carcinogenesis 2018, 39, 993–1005. [Google Scholar] [CrossRef]
- Goenka, A.; Khan, F.; Verma, B.; Sinha, P.; Dmello, C.C.; Jogalekar, M.P.; Gangadaran, P.; Ahn, B.-C. Tumor Microenvironment Signaling and Therapeutics in Cancer Progression. Cancer Commun. 2023, 43, 525–561. [Google Scholar] [CrossRef]
- Ahmad Zawawi, S.S.; Salleh, E.A.; Musa, M. Spheroids and Organoids Derived from Colorectal Cancer as Tools for in Vitro Drug Screening. Explor. Target. Anti-Tumor Ther. 2024, 5, 409–431. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yan, Q.; Chen, Z.; Wei, X.; Li, L.; Tang, D.; Tan, J.; Xu, C.; Yu, C.; Lai, Y.; et al. Overview of Research Progress and Application of Experimental Models of Colorectal Cancer. Front. Pharmacol. 2023, 14, 1193213. [Google Scholar] [CrossRef] [PubMed]
- Mu, P.; Zhou, S.; Lv, T.; Xia, F.; Shen, L.; Wan, J.; Wang, Y.; Zhang, H.; Cai, S.; Peng, J.; et al. Newly Developed 3D In Vitro Models to Study Tumor–Immune Interaction. J. Exp. Clin. Cancer Res. 2023, 42, 81. [Google Scholar] [CrossRef]
- Yau, J.N.N.; Adriani, G. Three-Dimensional Heterotypic Colorectal Cancer Spheroid Models for Evaluation of Drug Response. Front. Oncol. 2023, 13, 1148930. [Google Scholar] [CrossRef]
- Cordeiro, S.; Oliveira, B.B.; Valente, R.; Ferreira, D.; Luz, A.; Baptista, P.V.; Fernandes, A.R. Breaking the Mold: 3D Cell Cultures Reshaping the Future of Cancer Research. Front. Cell Dev. Biol. 2024, 12, 1507388. [Google Scholar] [CrossRef]
- Abbas, Z.N.; Al-Saffar, A.Z.; Jasim, S.M.; Sulaiman, G.M. Comparative Analysis between 2D and 3D Colorectal Cancer Culture Models for Insights into Cellular Morphological and Transcriptomic Variations. Sci. Rep. 2023, 13, 18380. [Google Scholar] [CrossRef]
- Yau, J.N.N.; Yempala, T.; Muthuramalingam, R.P.K.; Giustarini, G.; Teng, G.; Ang, W.H.; Gibson, D.; Adriani, G.; Pastorin, G. Fluorescence-Guided Spatial Drug Screening in 3D Colorectal Cancer Spheroids. Adv. Healthc. Mater. 2024, 13, e2400203. [Google Scholar] [CrossRef]
- Bilgin, S. Apoptotic Effect of 5-Fluorouracil-Doxorubicin Combination on Colorectal Cancer Cell Monolayers and Spheroids. Mol. Biol. Rep. 2024, 51, 603. [Google Scholar] [CrossRef]
- Leonard, N.A.; Reidy, E.; Thompson, K.; McDermott, E.; Peerani, E.; Tomas Bort, E.; Balkwill, F.R.; Loessner, D.; Ryan, A.E. Stromal Cells Promote Matrix Deposition, Remodelling and an Immunosuppressive Tumour Microenvironment in a 3D Model of Colon Cancer. Cancers 2021, 13, 5998. [Google Scholar] [CrossRef]
- Jeong, S.-Y.; Lee, J.-H.; Shin, Y.; Chung, S.; Kuh, H.-J. Co-Culture of Tumor Spheroids and Fibroblasts in a Collagen Matrix-Incorporated Microfluidic Chip Mimics Reciprocal Activation in Solid Tumor Microenvironment. PLoS ONE 2016, 11, e0159013. [Google Scholar] [CrossRef]
- Xiang, J.; Wang, J.; Xiao, H.; Huang, C.; Wu, C.; Zhang, L.; Qian, C.; Xiang, D. Targeting Tumor-Associated Macrophages in Colon Cancer: Mechanisms and Therapeutic Strategies. Front. Immunol. 2025, 16, 1573917. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zhang, L.; Leng, X.-X.; Xie, Y.-L.; Kang, Z.-R.; Zhao, L.-C.; Song, L.-H.; Zhou, C.-B.; Fang, J.-Y. Fusobacterium Nucleatum Induces Chemoresistance in Colorectal Cancer by Inhibiting Pyroptosis via the Hippo Pathway. Gut Microbes 2024, 16, 2333790. [Google Scholar] [CrossRef] [PubMed]
- Mangani, S.; Kremmydas, S.; Karamanos, N.K. Mimicking the Complexity of Solid Tumors: How Spheroids Could Advance Cancer Preclinical Transformative Approaches. Cancers 2025, 17, 1161. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, G.; Rath, B. Role of Circulating Tumor Cell Spheroids in Drug Resistance. Cancer Drug Resist. 2019, 2, 762–772. [Google Scholar] [CrossRef]
- Valente, R.; Cordeiro, S.; Luz, A.; Melo, M.C.; Rodrigues, C.R.; Baptista, P.V.; Fernandes, A.R. Doxorubicin-Sensitive and -Resistant Colorectal Cancer Spheroid Models: Assessing Tumor Microenvironment Features for Therapeutic Modulation. Front. Cell Dev. Biol. 2023, 11, 1310397. [Google Scholar] [CrossRef]
- Däster, S.; Amatruda, N.; Calabrese, D.; Ivanek, R.; Turrini, E.; Droeser, R.A.; Zajac, P.; Fimognari, C.; Spagnoli, G.C.; Iezzi, G.; et al. Induction of Hypoxia and Necrosis in Multicellular Tumor Spheroids Is Associated with Resistance to Chemotherapy Treatment. Oncotarget 2016, 8, 1725–1736. [Google Scholar] [CrossRef]
- Leonard, N.A.; Corry, S.M.; Reidy, E.; Egan, H.; O’Malley, G.; Thompson, K.; McDermott, E.; O’Neill, A.; Zakaria, N.; Egan, L.J.; et al. Tumor-Associated Mesenchymal Stromal Cells Modulate Macrophage Phagocytosis in Stromal-Rich Colorectal Cancer via PD-1 Signaling. iScience 2024, 27, 110701. [Google Scholar] [CrossRef]
- Sullivan, R.; Paré, G.C.; Frederiksen, L.J.; Semenza, G.L.; Graham, C.H. Hypoxia-Induced Resistance to Anticancer Drugs Is Associated with Decreased Senescence and Requires Hypoxia-Inducible Factor-1 Activity. Mol. Cancer Ther. 2008, 7, 1961–1973. [Google Scholar] [CrossRef]
- Chicote, I.; Martínez-Quintanilla, J.; Cámara, J.A.; Palmer, H.G. Orthotopic Implantation of Patient-Derived Cancer Cells in Mice Recapitulates Advanced Colorectal Cancer. J. Vis. Exp. 2023, 64629. [Google Scholar] [CrossRef]
- Sargenti, A.; Musmeci, F.; Bacchi, F.; Delprete, C.; Cristaldi, D.A.; Cannas, F.; Bonetti, S.; Pasqua, S.; Gazzola, D.; Costa, D.; et al. Physical Characterization of Colorectal Cancer Spheroids and Evaluation of NK Cell Infiltration Through a Flow-Based Analysis. Front. Immunol. 2020, 11, 564887. [Google Scholar] [CrossRef]
- Mohamadian Namaqi, M.; Moll, F.; Wiedemeier, S.; Grodrian, A.; Lemke, K. Dynamic Cell Culture Modulates Colon Cancer Cell Migration in a Novel 3D Cell Culture System. Sci. Rep. 2024, 14, 18851. [Google Scholar] [CrossRef] [PubMed]
- Sirenko, O.; Mitlo, T.; Hesley, J.; Luke, S.; Owens, W.; Cromwell, E.F. High-Content Assays for Characterizing the Viability and Morphology of 3D Cancer Spheroid Cultures. Assay Drug Dev. Technol. 2015, 13, 402–414. [Google Scholar] [CrossRef] [PubMed]
- Tidwell, T.R.; Røsland, G.; Tronstad, K.J.; Søreide, K.; Hagland, H.R. Comparing In Vitro Cytotoxic Drug Sensitivity in Colon and Pancreatic Cancer Using 2D and 3D Cell Models: Contrasting Viability and Growth Inhibition in Clinically Relevant Dose and Repeated Drug Cycles. Cancer Med. 2024, 13, e7318. [Google Scholar] [CrossRef] [PubMed]
- Reidy, E.; Leonard, N.A.; Treacy, O.; Ryan, A.E. A 3D View of Colorectal Cancer Models in Predicting Therapeutic Responses and Resistance. Cancers 2021, 13, 227. [Google Scholar] [CrossRef]
- Petreus, T.; Cadogan, E.; Hughes, G.; Smith, A.; Pilla Reddy, V.; Lau, A.; O’Connor, M.J.; Critchlow, S.; Ashford, M.; Oplustil O’Connor, L. Tumour-on-Chip Microfluidic Platform for Assessment of Drug Pharmacokinetics and Treatment Response. Commun. Biol. 2021, 4, 1001. [Google Scholar] [CrossRef]
- Wang, T.; Green, R.; Howell, M.; Martinez, T.; Dutta, R.; Mohapatra, S.; Mohapatra, S.S. The Design and Characterization of a Gravitational Microfluidic Platform for Drug Sensitivity Assay in Colorectal Perfused Tumoroid Cultures. Nanomed. Nanotechnol. Biol. Med. 2020, 30, 102294. [Google Scholar] [CrossRef]
- Song, J.; Ko, J.; Choi, N.; Jeon, N.L.; Kim, H.N. Tumor Spheroid-Based and Microtumor-Based Vascularized Models for Replicating the Vascularized Tumor Microenvironment. Organoid 2023, 3, e6. [Google Scholar] [CrossRef]
- Han, S.J.; Kwon, S.; Kim, K.S. Challenges of Applying Multicellular Tumor Spheroids in Preclinical Phase. Cancer Cell Int. 2021, 21, 152. [Google Scholar] [CrossRef]
- Courau, T.; Bonnereau, J.; Chicoteau, J.; Bottois, H.; Remark, R.; Assante Miranda, L.; Toubert, A.; Blery, M.; Aparicio, T.; Allez, M.; et al. Cocultures of Human Colorectal Tumor Spheroids with Immune Cells Reveal the Therapeutic Potential of MICA/B and NKG2A Targeting for Cancer Treatment. J. Immunother. Cancer 2019, 7, 74. [Google Scholar] [CrossRef]
- Yu, T.; Guo, F.; Yu, Y.; Sun, T.; Ma, D.; Han, J.; Qian, Y.; Kryczek, I.; Sun, D.; Nagarsheth, N.; et al. Fusobacterium Nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy. Cell 2017, 170, 548–563.e16. [Google Scholar] [CrossRef]
- Luca, A.C.; Mersch, S.; Deenen, R.; Schmidt, S.; Messner, I.; Schäfer, K.-L.; Baldus, S.E.; Huckenbeck, W.; Piekorz, R.P.; Knoefel, W.T.; et al. Impact of the 3D Microenvironment on Phenotype, Gene Expression, and EGFR Inhibition of Colorectal Cancer Cell Lines. PLoS ONE 2013, 8, e59689. [Google Scholar] [CrossRef] [PubMed]
- Smabers, L.P.; Wensink, E.; Verissimo, C.S.; Koedoot, E.; Pitsa, K.-C.; Huismans, M.A.; Higuera Barón, C.; Doorn, M.; Valkenburg-van Iersel, L.B.; Cirkel, G.A.; et al. Organoids as a Biomarker for Personalized Treatment in Metastatic Colorectal Cancer: Drug Screen Optimization and Correlation with Patient Response. J. Exp. Clin. Cancer Res. 2024, 43, 61. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Olsen, K.A.; Bond, C.E.; Whitehall, V.L.J. The Efficacy of Using Patient-Derived Organoids to Predict Treatment Response in Colorectal Cancer. Cancers 2023, 15, 805. [Google Scholar] [CrossRef]
- Thorel, L.; Perréard, M.; Florent, R.; Divoux, J.; Coffy, S.; Vincent, A.; Gaggioli, C.; Guasch, G.; Gidrol, X.; Weiswald, L.-B.; et al. Patient-Derived Tumor Organoids: A New Avenue for Preclinical Research and Precision Medicine in Oncology. Exp. Mol. Med. 2024, 56, 1531–1551. [Google Scholar] [CrossRef]
- Benboubker, V.; Ramzy, G.M.; Jacobs, S.; Nowak-Sliwinska, P. Challenges in Validation of Combination Treatment Strategies for CRC Using Patient-Derived Organoids. J. Exp. Clin. Cancer Res. 2024, 43, 259. [Google Scholar] [CrossRef]
- Árnadóttir, S.S.; Jeppesen, M.; Lamy, P.; Bramsen, J.B.; Nordentoft, I.; Knudsen, M.; Vang, S.; Madsen, M.R.; Thastrup, O.; Thastrup, J.; et al. Characterization of Genetic Intratumor Heterogeneity in Colorectal Cancer and Matching Patient-Derived Spheroid Cultures. Mol. Oncol. 2018, 12, 132–147. [Google Scholar] [CrossRef]
- Ben-David, U.; Ha, G.; Tseng, Y.-Y.; Greenwald, N.F.; Oh, C.; Shih, J.; McFarland, J.M.; Wong, B.; Boehm, J.S.; Beroukhim, R.; et al. Patient-Derived Xenografts Undergo Mouse-Specific Tumor Evolution. Nat. Genet. 2017, 49, 1567–1575. [Google Scholar] [CrossRef]
- Otte, J.; Dizdar, L.; Behrens, B.; Goering, W.; Knoefel, W.T.; Wruck, W.; Stoecklein, N.H.; Adjaye, J. FGF Signalling in the Self-Renewal of Colon Cancer Organoids. Sci. Rep. 2019, 9, 17365. [Google Scholar] [CrossRef]
- Wu, Y.; Sha, Y.; Guo, X.; Gao, L.; Huang, J.; Liu, S.-B. Organoid Models: Applications and Research Advances in Colorectal Cancer. Front. Oncol. 2025, 15, 1432506. [Google Scholar] [CrossRef]
- He, X.; Jiang, Y.; Zhang, L.; Li, Y.; Hu, X.; Hua, G.; Cai, S.; Mo, S.; Peng, J. Patient-Derived Organoids as a Platform for Drug Screening in Metastatic Colorectal Cancer. Front. Bioeng. Biotechnol. 2023, 11, 1190637. [Google Scholar] [CrossRef]
- Ooft, S.N.; Weeber, F.; Dijkstra, K.K.; McLean, C.M.; Kaing, S.; van Werkhoven, E.; Schipper, L.; Hoes, L.; Vis, D.J.; van de Haar, J.; et al. Patient-Derived Organoids Can Predict Response to Chemotherapy in Metastatic Colorectal Cancer Patients. Sci. Transl. Med. 2019, 11, eaay2574. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Cheong, I.H.; Chen, P.; Li, X.; Wang, X.; Wang, H. Patient-Derived Rectal Cancer Organoids-Applications in Basic and Translational Cancer Research. Front. Oncol. 2022, 12, 922430. [Google Scholar] [CrossRef] [PubMed]
- Xue, W.; Wang, T.; Yao, J.; Wu, W.; Chen, D.; Yan, B.; Dong, X.; Tang, Y.; Zeng, Y.; He, Y.; et al. Use of Patient-Derived Tumor Organoid Platform to Predict the Benefit of Postoperative Adjuvant Chemotherapy for Poor Responders to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Bioeng. Transl. Med. 2023, 8, e10586. [Google Scholar] [CrossRef]
- Luo, L.; Ma, Y.; Zheng, Y.; Su, J.; Huang, G. Application Progress of Organoids in Colorectal Cancer. Front. Cell Dev. Biol. 2022, 10, 815067. [Google Scholar] [CrossRef]
- Harada, K.; Sakamoto, N. Cancer Organoid Applications to Investigate Chemotherapy Resistance. Front. Mol. Biosci. 2022, 9, 1067207. [Google Scholar] [CrossRef]
- Porter, R.J.; Murray, G.I.; McLean, M.H. Current Concepts in Tumour-Derived Organoids. Br. J. Cancer 2020, 123, 1209–1218. [Google Scholar] [CrossRef]
- Li, Z.; Ma, L.; Gao, Z.; Wang, X.; Che, X.; Zhang, P.; Li, Y.; Zhang, Q.; Liu, T.; Sun, Y.; et al. Identification and Validation of Tumor-Specific T Cell Receptors from Tumor Infiltrating Lymphocytes Using Tumor Organoid Co-Cultures. Cancer Immunol. Immunother. 2024, 73, 164. [Google Scholar] [CrossRef]
- Esposito, A.; Agostini, A.; Quero, G.; Piro, G.; Priori, L.; Caggiano, A.; Scaglione, G.; Battaglia, A.; Calegari, M.A.; Salvatore, L.; et al. Colorectal Cancer Patients-Derived Immunity-Organoid Platform Unveils Cancer-Specific Tissue Markers Associated with Immunotherapy Resistance. Cell Death Dis. 2024, 15, 878. [Google Scholar] [CrossRef]
- Strelez, C.; Perez, R.; Chlystek, J.S.; Cherry, C.; Yoon, A.Y.; Haliday, B.; Shah, C.; Ghaffarian, K.; Sun, R.X.; Jiang, H.; et al. Integration of Patient-Derived Organoids and Organ-on-Chip Systems: Investigating Colorectal Cancer Invasion within the Mechanical and GABAergic Tumor Microenvironment. bioRxiv 2023, 2023.09.14.557797. [Google Scholar] [CrossRef]
- Mo, S.; Tang, P.; Luo, W.; Zhang, L.; Li, Y.; Hu, X.; Ma, X.; Chen, Y.; Bao, Y.; He, X.; et al. Patient-Derived Organoids from Colorectal Cancer with Paired Liver Metastasis Reveal Tumor Heterogeneity and Predict Response to Chemotherapy. Adv. Sci. 2022, 9, 2204097. [Google Scholar] [CrossRef]
- Bolhaqueiro, A.C.F.; Ponsioen, B.; Bakker, B.; Klaasen, S.J.; Kucukkose, E.; van Jaarsveld, R.H.; Vivié, J.; Verlaan-Klink, I.; Hami, N.; Spierings, D.C.J.; et al. Ongoing Chromosomal Instability and Karyotype Evolution in Human Colorectal Cancer Organoids. Nat. Genet. 2019, 51, 824–834. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Li, X.; Song, W. Tumor Organoid Biobank-New Platform for Medical Research. Sci. Rep. 2023, 13, 1819. [Google Scholar] [CrossRef] [PubMed]
- van de Wetering, M.; Francies, H.E.; Francis, J.M.; Bounova, G.; Iorio, F.; Pronk, A.; van Houdt, W.; van Gorp, J.; Taylor-Weiner, A.; Kester, L.; et al. Prospective Derivation of a Living Organoid Biobank of Colorectal Cancer Patients. Cell 2015, 161, 933–945. [Google Scholar] [CrossRef] [PubMed]
- Seshagiri, S.; Stawiski, E.W.; Durinck, S.; Modrusan, Z.; Storm, E.E.; Conboy, C.B.; Chaudhuri, S.; Guan, Y.; Janakiraman, V.; Jaiswal, B.S.; et al. Recurrent R-Spondin Fusions in Colon Cancer. Nature 2012, 488, 660–664. [Google Scholar] [CrossRef]
- Heo, J.H.; Kang, D.; Seo, S.J.; Jin, Y. Engineering the Extracellular Matrix for Organoid Culture. Int. J. Stem Cells 2022, 15, 60–69. [Google Scholar] [CrossRef]
- Zhu, J.; Ji, L.; Chen, Y.; Li, H.; Huang, M.; Dai, Z.; Wang, J.; Xiang, D.; Fu, G.; Lei, Z.; et al. Organoids and Organs-on-Chips: Insights into Predicting the Efficacy of Systemic Treatment in Colorectal Cancer. Cell Death Discov. 2023, 9, 72. [Google Scholar] [CrossRef]
- Rafiei, S.; Fitzpatrick, K.; Liu, D.; Cai, M.-Y.; Elmarakeby, H.A.; Park, J.; Ricker, C.; Kochupurakkal, B.S.; Choudhury, A.D.; Hahn, W.C.; et al. ATM Loss Confers Greater Sensitivity to ATR Inhibition than PARP Inhibition in Prostate Cancer. Cancer Res. 2020, 80, 2094–2100. [Google Scholar] [CrossRef]
- Weeber, F.; van de Wetering, M.; Hoogstraat, M.; Dijkstra, K.K.; Krijgsman, O.; Kuilman, T.; Gadellaa-van Hooijdonk, C.G.M.; van der Velden, D.L.; Peeper, D.S.; Cuppen, E.P.J.G.; et al. Preserved Genetic Diversity in Organoids Cultured from Biopsies of Human Colorectal Cancer Metastases. Proc. Natl. Acad. Sci. USA 2015, 112, 13308–13311. [Google Scholar] [CrossRef]
- Suarez-Martinez, E.; Suazo-Sanchez, I.; Celis-Romero, M.; Carnero, A. 3D and Organoid Culture in Research: Physiology, Hereditary Genetic Diseases and Cancer. Cell Biosci. 2022, 12, 39. [Google Scholar] [CrossRef]
- Gunnarsson, E.B.; Kim, S.; Choi, B.; Schmid, J.K.; Kaura, K.; Lenz, H.-J.; Mumenthaler, S.M.; Foo, J. Understanding Patient-Derived Tumor Organoid Growth through an Integrated Imaging and Mathematical Modeling Framework. PLoS Comput. Biol. 2024, 20, e1012256. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, J.; Zhang, B.; Lee, H.K.; Xie, S.; Shen, W.; Chen, X.; You, M.; Shen, C.; Xia, B.; et al. Optimizing Drug Sensitivity Assays in Patient-Derived Tumor Organoids: A Comparison of IC50 Estimation Methods and Experimental Parameters. Biol. Methods Protoc. 2025, 10, bpaf012. [Google Scholar] [CrossRef] [PubMed]
- Nwokoye, P.N.; Abilez, O.J. Blood Vessels in a Dish: The Evolution, Challenges, and Potential of Vascularized Tissues and Organoids. Front. Cardiovasc. Med. 2024, 11, 1336910. [Google Scholar] [CrossRef] [PubMed]
- Drost, J.; Clevers, H. Organoids in Cancer Research. Nat. Rev. Cancer 2018, 18, 407–418. [Google Scholar] [CrossRef]
- Podaza, E.; Kuo, H.-H.; Nguyen, J.; Elemento, O.; Martin, M.L. Next Generation Patient Derived Tumor Organoids. Transl. Res. 2022, 250, 84–97. [Google Scholar] [CrossRef]
- Usui, T.; Sakurai, M.; Umata, K.; Yamawaki, H.; Ohama, T.; Sato, K. Preparation of Human Primary Colon Tissue-Derived Organoid Using Air Liquid Interface Culture. Curr. Protoc. Toxicol. 2018, 75, 22.6.1–22.6.7. [Google Scholar] [CrossRef]
- Qu, S.; Xu, R.; Yi, G.; Li, Z.; Zhang, H.; Qi, S.; Huang, G. Patient-Derived Organoids in Human Cancer: A Platform for Fundamental Research and Precision Medicine. Mol. Biomed. 2024, 5, 6. [Google Scholar] [CrossRef]
- Joshi, R.; De Moura, M.C.; Piñeyro, D.; Alvarez-Errico, D.; Arribas, C.; Esteller, M. The DNA Methylation Landscape of Human Cancer Organoids Available at the American Type Culture Collection. Epigenetics 2020, 15, 1167–1177. [Google Scholar] [CrossRef]
- Kaur, S.; Kaur, I.; Rawal, P.; Tripathi, D.M.; Vasudevan, A. Non-Matrigel Scaffolds for Organoid Cultures. Cancer Lett. 2021, 504, 58–66. [Google Scholar] [CrossRef]
- Wu, W.; Li, X.; Yu, S. Patient-Derived Tumour Organoids: A Bridge between Cancer Biology and Personalised Therapy. Acta Biomater. 2022, 146, 23–36. [Google Scholar] [CrossRef]
- Greten, F.R.; Eckmann, L.; Greten, T.F.; Park, J.M.; Li, Z.-W.; Egan, L.J.; Kagnoff, M.F.; Karin, M. IKKbeta Links Inflammation and Tumorigenesis in a Mouse Model of Colitis-Associated Cancer. Cell 2004, 118, 285–296. [Google Scholar] [CrossRef]
- Ohnishi, S.; Hiramoto, K.; Ma, N.; Kawanishi, S. Chemoprevention by Aspirin against Inflammation-Related Colorectal Cancer in Mice. J. Clin. Biochem. Nutr. 2021, 69, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Colnot, S.; Niwa-Kawakita, M.; Hamard, G.; Godard, C.; Le Plenier, S.; Houbron, C.; Romagnolo, B.; Berrebi, D.; Giovannini, M.; Perret, C. Colorectal Cancers in a New Mouse Model of Familial Adenomatous Polyposis: Influence of Genetic and Environmental Modifiers. Lab. Investig. 2004, 84, 1619–1630. [Google Scholar] [CrossRef] [PubMed]
- Boutin, A.T.; Liao, W.-T.; Wang, M.; Hwang, S.S.; Karpinets, T.V.; Cheung, H.; Chu, G.C.; Jiang, S.; Hu, J.; Chang, K.; et al. Oncogenic Kras Drives Invasion and Maintains Metastases in Colorectal Cancer. Genes Dev. 2017, 31, 370–382. [Google Scholar] [CrossRef]
- Jackstadt, R.; Sansom, O.J. Mouse Models of Intestinal Cancer. J. Pathol. 2016, 238, 141–151. [Google Scholar] [CrossRef]
- Corcoran, R.B.; Ebi, H.; Turke, A.B.; Coffee, E.M.; Nishino, M.; Cogdill, A.P.; Brown, R.D.; Della Pelle, P.; Dias-Santagata, D.; Hung, K.E.; et al. EGFR-Mediated Re-Activation of MAPK Signaling Contributes to Insensitivity of BRAF Mutant Colorectal Cancers to RAF Inhibition with Vemurafenib. Cancer Discov. 2012, 2, 227–235. [Google Scholar] [CrossRef]
- Dang, D.T.; Chun, S.Y.; Burkitt, K.; Abe, M.; Chen, S.; Havre, P.; Mabjeesh, N.J.; Heath, E.I.; Vogelzang, N.J.; Cruz-Correa, M.; et al. Hypoxia-Inducible Factor-1 Target Genes as Indicators of Tumor Vessel Response to Vascular Endothelial Growth Factor Inhibition. Cancer Res. 2008, 68, 1872–1880. [Google Scholar] [CrossRef]
- Chaudhary, N.; La Ferlita, A.; Choudhary, B.S.; Jog, E.; Kazi, M.; Yahya, S.; Dalwai, A.; Ostwal, V.; Singh, S.; Redkar, S.; et al. Patient-Derived Organoids and Xenografts Uncover Therapeutic Vulnerabilities in Colorectal Signet Ring Cell Carcinomas. Clin. Cancer Res. 2025, 31, 1359–1373. [Google Scholar] [CrossRef]
- Tang, Y.-C.; Ou, J.-J.; Hsu, S.-C.; Huang, C.-H.; Lin, L.-M.; Chang, H.-H.; Wang, Y.-H.; Huang, Z.-T.; Sun, M.; Liu, K.-J.; et al. Advancing Precision Therapy for Colorectal Cancer: Developing Clinical Indications for Multi-Target Kinase Inhibitor BPR1J481 Using Patient-Derived Xenograft Models. Pharmacol. Res. 2025, 211, 107556. [Google Scholar] [CrossRef]
- Sato, Y.; Fu, Y.; Liu, H.; Lee, M.Y.; Shaw, M.H. Tumor-Immune Profiling of CT-26 and Colon 26 Syngeneic Mouse Models Reveals Mechanism of Anti-PD-1 Response. BMC Cancer 2021, 21, 1222. [Google Scholar] [CrossRef]
- Shields, N.J.; Peyroux, E.M.; Ferguson, A.L.; Steain, M.; Neumann, S.; Young, S.L. Late-Stage MC38 Tumours Recapitulate Features of Human Colorectal Cancer—Implications for Appropriate Timepoint Selection in Preclinical Studies. Front. Immunol. 2023, 14, 1152035. [Google Scholar] [CrossRef]
- De Angelis, M.L.; Francescangeli, F.; Nicolazzo, C.; Xhelili, E.; La Torre, F.; Colace, L.; Bruselles, A.; Macchia, D.; Vitale, S.; Gazzaniga, P.; et al. An Orthotopic Patient-Derived Xenograft (PDX) Model Allows the Analysis of Metastasis-Associated Features in Colorectal Cancer. Front. Oncol. 2022, 12, 869485. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.P.; Winiarski, B.K.; Sutton, P.A.; Ressel, L.; Duckworth, C.A.; Pritchard, D.M.; Palmer, D.H.; Goldring, C.E.; Kitteringham, N.R. Development of an Orthotopic Syngeneic Murine Model of Colorectal Cancer for Use in Translational Research. Lab. Anim. 2019, 53, 598–609. [Google Scholar] [CrossRef] [PubMed]
- De Robertis, M.; Massi, E.; Poeta, M.L.; Carotti, S.; Morini, S.; Cecchetelli, L.; Signori, E.; Fazio, V.M. The AOM/DSS Murine Model for the Study of Colon Carcinogenesis: From Pathways to Diagnosis and Therapy Studies. J. Carcinog. 2011, 10, 9. [Google Scholar] [CrossRef]
- Neufert, C.; Becker, C.; Neurath, M.F. An Inducible Mouse Model of Colon Carcinogenesis for the Analysis of Sporadic and Inflammation-Driven Tumor Progression. Nat. Protoc. 2007, 2, 1998–2004. [Google Scholar] [CrossRef]
- Liu, L.; Gao, H.; Wen, T.; Gu, T.; Zhang, S.; Yuan, Z. Tanshinone IIA Attenuates AOM/DSS-Induced Colorectal Tumorigenesis in Mice via Inhibition of Intestinal Inflammation. Pharm. Biol. 2021, 59, 89–96. [Google Scholar] [CrossRef]
- Wang, M.; Ma, Y.; Yu, G.; Zeng, B.; Yang, W.; Huang, C.; Dong, Y.; Tang, B.; Wu, Z. Integration of Microbiome, Metabolomics and Transcriptome for in-Depth Understanding of Berberine Attenuates AOM/DSS-Induced Colitis-Associated Colorectal Cancer. Biomed. Pharmacother. 2024, 179, 117292. [Google Scholar] [CrossRef]
- Sewduth, R.N.; Georgelou, K. Relevance of Carcinogen-Induced Preclinical Cancer Models. J. Xenobiotics 2024, 14, 96–109. [Google Scholar] [CrossRef]
- Takahashi, M.; Wakabayashi, K. Gene Mutations and Altered Gene Expression in Azoxymethane-Induced Colon Carcinogenesis in Rodents. Cancer Sci. 2004, 95, 475–480. [Google Scholar] [CrossRef]
- Pan, Q.; Lou, X.; Zhang, J.; Zhu, Y.; Li, F.; Shan, Q.; Chen, X.; Xie, Y.; Su, S.; Wei, H.; et al. Genomic Variants in Mouse Model Induced by Azoxymethane and Dextran Sodium Sulfate Improperly Mimic Human Colorectal Cancer. Sci. Rep. 2017, 7, 25. [Google Scholar] [CrossRef]
- Thaker, A.I.; Shaker, A.; Rao, M.S.; Ciorba, M.A. Modeling Colitis-Associated Cancer with Azoxymethane (AOM) and Dextran Sulfate Sodium (DSS). J. Vis. Exp. 2012, 4100. [Google Scholar] [CrossRef]
- Dzhalilova, D.; Zolotova, N.; Fokichev, N.; Makarova, O. Murine Models of Colorectal Cancer: The Azoxymethane (AOM)/Dextran Sulfate Sodium (DSS) Model of Colitis-Associated Cancer. PeerJ 2023, 11, e16159. [Google Scholar] [CrossRef] [PubMed]
- Tanimura, Y.; Fukui, T.; Horitani, S.; Matsumoto, Y.; Miyamoto, S.; Suzuki, R.; Tanaka, T.; Tomiyama, T.; Ikeura, T.; Ando, Y.; et al. Long-Term Model of Colitis-Associated Colorectal Cancer Suggests Tumor Spread Mechanism and Nature of Cancer Stem Cells. Oncol. Lett. 2021, 21, 7. [Google Scholar] [CrossRef] [PubMed]
- Clapper, M.L.; Cooper, H.S.; Chang, W.-C.L. Dextran Sulfate Sodium-Induced Colitis-Associated Neoplasia: A Promising Model for the Development of Chemopreventive Interventions. Acta Pharmacol. Sin. 2007, 28, 1450–1459. [Google Scholar] [CrossRef] [PubMed]
- Metzger, R.; Maruskova, M.; Krebs, S.; Janssen, K.-P.; Krug, A.B. Increased Incidence of Colon Tumors in AOM-Treated Apc1638N/+ Mice Reveals Higher Frequency of Tumor Associated Neutrophils in Colon Than Small Intestine. Front. Oncol. 2019, 9, 1001. [Google Scholar] [CrossRef]
- Yamashita, I.; Tazawa, K.; Fujimaki, M. Effects of indomethacin and prostaglandin E2 administered intrarectally on colon carcinogenesis induced by azoxymethane (AOM) in rats. Nihon Shokakibyo Gakkai Zasshi. 1989, 86, 1438–1447. [Google Scholar]
- Randhawa, P.K.; Singh, K.; Singh, N.; Jaggi, A.S. A Review on Chemical-Induced Inflammatory Bowel Disease Models in Rodents. Korean J. Physiol. 2014, 18, 279–288. [Google Scholar] [CrossRef]
- Giacobbe, A.; Abate-Shen, C. Modeling Metastasis in Mice: A Closer Look. Trends Cancer 2021, 7, 916–929. [Google Scholar] [CrossRef]
- Bürtin, F.; Mullins, C.S.; Linnebacher, M. Mouse Models of Colorectal Cancer: Past, Present and Future Perspectives. World J. Gastroenterol. 2020, 26, 1394–1426. [Google Scholar] [CrossRef]
- Janssen, K.-P.; Alberici, P.; Fsihi, H.; Gaspar, C.; Breukel, C.; Franken, P.; Rosty, C.; Abal, M.; El Marjou, F.; Smits, R.; et al. APC and Oncogenic KRAS Are Synergistic in Enhancing Wnt Signaling in Intestinal Tumor Formation and Progression. Gastroenterology 2006, 131, 1096–1109. [Google Scholar] [CrossRef]
- Halberg, R.B.; Katzung, D.S.; Hoff, P.D.; Moser, A.R.; Cole, C.E.; Lubet, R.A.; Donehower, L.A.; Jacoby, R.F.; Dove, W.F. Tumorigenesis in the Multiple Intestinal Neoplasia Mouse: Redundancy of Negative Regulators and Specificity of Modifiers. Proc. Natl. Acad. Sci. USA 2000, 97, 3461–3466. [Google Scholar] [CrossRef]
- Betzler, A.M.; Nanduri, L.K.; Hissa, B.; Blickensdörfer, L.; Muders, M.H.; Roy, J.; Jesinghaus, M.; Steiger, K.; Weichert, W.; Kloor, M.; et al. Differential Effects of Trp53 Alterations in Murine Colorectal Cancer. Cancers 2021, 13, 808. [Google Scholar] [CrossRef] [PubMed]
- Kucherlapati, M.H.; Lee, K.; Nguyen, A.A.; Clark, A.B.; Hou, H.; Rosulek, A.; Li, H.; Yang, K.; Fan, K.; Lipkin, M.; et al. An Msh2 Conditional Knockout Mouse for Studying Intestinal Cancer and Testing Anticancer Agents. Gastroenterology 2010, 138, 993–1002.e1. [Google Scholar] [CrossRef] [PubMed]
- Pothuraju, R.; Khan, I.; Jain, M.; Bouvet, M.; Malafa, M.; Roy, H.K.; Kumar, S.; Batra, S.K. Colorectal Cancer Murine Models: Initiation to Metastasis. Cancer Lett. 2024, 587, 216704. [Google Scholar] [CrossRef]
- Thomas, E.M.; Wright, J.A.; Blake, S.J.; Page, A.J.; Worthley, D.L.; Woods, S.L. Advancing Translational Research for Colorectal Immuno-Oncology. Br. J. Cancer 2023, 129, 1442–1450. [Google Scholar] [CrossRef]
- Qiu, W.; Wang, X.; Leibowitz, B.; Liu, H.; Barker, N.; Okada, H.; Oue, N.; Yasui, W.; Clevers, H.; Schoen, R.E.; et al. Chemoprevention by Nonsteroidal Anti-Inflammatory Drugs Eliminates Oncogenic Intestinal Stem Cells via SMAC-Dependent Apoptosis. Proc. Natl. Acad. Sci. USA 2010, 107, 20027–20032. [Google Scholar] [CrossRef]
- Roper, J.; Sinnamon, M.J.; Coffee, E.M.; Belmont, P.; Keung, L.; Georgeon-Richard, L.; Wang, W.V.; Faber, A.C.; Yun, J.; Yilmaz, Ö.H.; et al. Combination PI3K/MEK Inhibition Promotes Tumor Apoptosis and Regression in PIK3CA Wild-Type, KRAS Mutant Colorectal Cancer. Cancer Lett. 2014, 347, 204–211. [Google Scholar] [CrossRef]
- Byun, A.J.; Hung, K.E.; Fleet, J.C.; Bronson, R.T.; Mason, J.B.; Garcia, P.E.; Crott, J.W. Colon-Specific Tumorigenesis in Mice Driven by Cre-Mediated Inactivation of Apc and Activation of Mutant Kras. Cancer Lett. 2014, 347, 191–195. [Google Scholar] [CrossRef]
- Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE Guidelines 2.0: Updated Guidelines for Reporting Animal Research. Br. J. Pharmacol. 2020, 177, 3617–3624. [Google Scholar] [CrossRef]
- Kashima, H.; Fischer, A.; Veronese-Paniagua, D.A.; Gazit, V.A.; Ma, C.; Yan, Y.; Levin, M.S.; Madison, B.B.; Rubin, D.C. A Novel CRISPR/Cas9-Mediated Mouse Model of Colon Carcinogenesis. Cell. Mol. Gastroenterol. Hepatol. 2024, 18, 101390. [Google Scholar] [CrossRef]
- Arenas, R.B.; Fichera, A.; Mok, P.; Blanco, M.C.; Michelassi, F. Introduction of Human Adenomatous Polyposis Coli Gene into Min Mice via Cationic Liposomes. Surgery 1996, 120, 712–717; discussion 717–718. [Google Scholar] [CrossRef]
- Morton, J.J.; Bird, G.; Refaeli, Y.; Jimeno, A. Humanized Mouse Xenograft Models: Narrowing the Tumor-Microenvironment Gap. Cancer Res. 2016, 76, 6153–6158. [Google Scholar] [CrossRef] [PubMed]
- Diao, Y.; Ma, J.; Xiao, W.-D.; Luo, J.; Li, X.-Y.; Chu, K.-W.; Fung, P.W.C.; Habib, N.; Farzaneh, F.; Xu, R.-A. Inhibition of Angiogenesis and HCT-116 Xenograft Tumor Growth in Mice by Kallistatin. World J. Gastroenterol. 2007, 13, 4615–4619. [Google Scholar] [CrossRef]
- Georges, L.M.C.; De Wever, O.; Galván, J.A.; Dawson, H.; Lugli, A.; Demetter, P.; Zlobec, I. Cell Line Derived Xenograft Mouse Models Are a Suitable In Vivo Model for Studying Tumor Budding in Colorectal Cancer. Front. Med. 2019, 6, 139. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Bhattacharya, A.; Li, Y.; Sexton, S.; Ling, X.; Li, F.; Zhang, Y. Depleting Receptor Tyrosine Kinases EGFR and HER2 Overcomes Resistance to EGFR Inhibitors in Colorectal Cancer. J. Exp. Clin. Cancer Res. 2022, 41, 184. [Google Scholar] [CrossRef] [PubMed]
- Tseng, W.; Leong, X.; Engleman, E. Orthotopic Mouse Model of Colorectal Cancer. J. Vis. Exp. 2007, 484. [Google Scholar] [CrossRef]
- Siolas, D.; Hannon, G.J. Patient-Derived Tumor Xenografts: Transforming Clinical Samples into Mouse Models. Cancer Res. 2013, 73, 5315–5319. [Google Scholar] [CrossRef]
- Hidalgo, M.; Amant, F.; Biankin, A.V.; Budinská, E.; Byrne, A.T.; Caldas, C.; Clarke, R.B.; de Jong, S.; Jonkers, J.; Mælandsmo, G.M.; et al. Patient-Derived Xenograft Models: An Emerging Platform for Translational Cancer Research. Cancer Discov. 2014, 4, 998–1013. [Google Scholar] [CrossRef]
- Rizzo, G.; Bertotti, A.; Leto, S.M.; Vetrano, S. Patient-Derived Tumor Models: A More Suitable Tool for Pre-Clinical Studies in Colorectal Cancer. J. Exp. Clin. Cancer Res. 2021, 40, 178. [Google Scholar] [CrossRef]
- Lu, Y.; Lei, X.; Xu, Y.; Li, Y.; Wang, R.; Wang, S.; Wu, A.; Qin, C. Advancing Cancer Research: Cutting-Edge Insights from Colorectal Cancer Patient-Derived Xenograft Mouse Models. Genes Dis. 2025, 101634, in press. [Google Scholar] [CrossRef]
- Inoue, A.; Deem, A.K.; Kopetz, S.; Heffernan, T.P.; Draetta, G.F.; Carugo, A. Current and Future Horizons of Patient-Derived Xenograft Models in Colorectal Cancer Translational Research. Cancers 2019, 11, 1321. [Google Scholar] [CrossRef]
- Wang, J.; Xing, B.; Liu, W.; Li, J.; Wang, X.; Li, J.; Yang, J.; Ji, C.; Li, Z.; Dong, B.; et al. Molecularly Annotation of Mouse Avatar Models Derived from Patients with Colorectal Cancer Liver Metastasis. Theranostics 2019, 9, 3485–3500. [Google Scholar] [CrossRef] [PubMed]
- Bertotti, A.; Migliardi, G.; Galimi, F.; Sassi, F.; Torti, D.; Isella, C.; Corà, D.; Di Nicolantonio, F.; Buscarino, M.; Petti, C.; et al. A Molecularly Annotated Platform of Patient-Derived Xenografts (“xenopatients”) Identifies HER2 as an Effective Therapeutic Target in Cetuximab-Resistant Colorectal Cancer. Cancer Discov. 2011, 1, 508–523. [Google Scholar] [CrossRef] [PubMed]
- Chiron, M.; Bagley, R.G.; Pollard, J.; Mankoo, P.K.; Henry, C.; Vincent, L.; Geslin, C.; Baltes, N.; Bergstrom, D.A. Differential Antitumor Activity of Aflibercept and Bevacizumab in Patient-Derived Xenograft Models of Colorectal Cancer. Mol. Cancer Ther. 2014, 13, 1636–1644. [Google Scholar] [CrossRef]
- Julien, S.; Merino-Trigo, A.; Lacroix, L.; Pocard, M.; Goéré, D.; Mariani, P.; Landron, S.; Bigot, L.; Nemati, F.; Dartigues, P.; et al. Characterization of a Large Panel of Patient-Derived Tumor Xenografts Representing the Clinical Heterogeneity of Human Colorectal Cancer. Clin. Cancer Res. 2012, 18, 5314–5328. [Google Scholar] [CrossRef]
- Zheng, J.; He, S.; Qi, J.; Wang, X.; Yu, J.; Wu, Y.; Gao, Q.; Wang, K.; Sun, X. Targeted CDX2 Expression Inhibits Aggressive Phenotypes of Colon Cancer Cells In Vitro and In Vivo. Int. J. Oncol. 2017, 51, 478–488. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, W.; Cai, C.; Zhang, H.; Shen, H.; Han, Y. Patient-Derived Xenograft Models in Cancer Therapy: Technologies and Applications. Signal Transduct. Target. Ther. 2023, 8, 160. [Google Scholar] [CrossRef]
- Shang, P.; Yu, L.; Cao, S.; Guo, C.; Zhang, W. An Improved Cell Line-Derived Xenograft Humanized Mouse Model for Evaluation of PD-1/PD-L1 Blocker BMS202-Induced Immune Responses in Colorectal Cancer. Acta Biochim. Biophys. Sin. 2022, 54, 1497–1506. [Google Scholar] [CrossRef]
- Capasso, A.; Lang, J.; Pitts, T.M.; Lieu, C.H.; Kopetz, S.; Davis, S.L.; Jordan, K.; Bagby, S.M.; Messersmith, W.A.; Pelanda, R.; et al. Abstract A012: Humanized Patient-Derived Xenografts (PDXs) Recapitulate Clinical Responses in Microsatellite Stable (MSS) and Unstable (MSI-H) Colorectal Cancer (CRC). Mol. Cancer Ther. 2018, 17, A012. [Google Scholar] [CrossRef]
- Jin, J.; Yoshimura, K.; Sewastjanow-Silva, M.; Song, S.; Ajani, J.A. Challenges and Prospects of Patient-Derived Xenografts for Cancer Research. Cancers 2023, 15, 4352. [Google Scholar] [CrossRef]
- Hylander, B.L.; Punt, N.; Tang, H.; Hillman, J.; Vaughan, M.; Bshara, W.; Pitoniak, R.; Repasky, E.A. Origin of the Vasculature Supporting Growth of Primary Patient Tumor Xenografts. J. Transl. Med. 2013, 11, 110. [Google Scholar] [CrossRef]
- Brown, K.M.; Xue, A.; Mittal, A.; Samra, J.S.; Smith, R.; Hugh, T.J. Patient-Derived Xenograft Models of Colorectal Cancer in Pre-Clinical Research: A Systematic Review. Oncotarget 2016, 7, 66212–66225. [Google Scholar] [CrossRef] [PubMed]
- Prasetyanti, P.R.; van Hooff, S.R.; van Herwaarden, T.; de Vries, N.; Kalloe, K.; Rodermond, H.; van Leersum, R.; de Jong, J.H.; Franitza, M.; Nürnberg, P.; et al. Capturing Colorectal Cancer Inter-Tumor Heterogeneity in Patient-Derived Xenograft (PDX) Models. Int. J. Cancer 2019, 144, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Matsui, K.; Yagishita, S.; Hamada, A. Need for Ethical Governance on the Implementation and Use of Patient-Derived Xenograft (PDX) Models for Anti-Cancer Drug Discovery and Development: Ethical Considerations and Policy Proposal. JMA J. 2024, 7, 605–609. [Google Scholar] [CrossRef] [PubMed]
- Zeng, M.; Ruan, Z.; Tang, J.; Liu, M.; Hu, C.; Fan, P.; Dai, X. Generation, Evolution, Interfering Factors, Applications, and Challenges of Patient-Derived Xenograft Models in Immunodeficient Mice. Cancer Cell Int. 2023, 23, 120. [Google Scholar] [CrossRef]
- Rokita, J.L.; Rathi, K.S.; Cardenas, M.F.; Upton, K.A.; Jayaseelan, J.; Cross, K.L.; Pfeil, J.; Egolf, L.E.; Way, G.P.; Farrel, A.; et al. Genomic Profiling of Childhood Tumor Patient-Derived Xenograft Models to Enable Rational Clinical Trial Design. Cell Rep. 2019, 29, 1675–1689.e9. [Google Scholar] [CrossRef]
- Kanikarla Marie, P.; Sorokin, A.V.; Bitner, L.A.; Aden, R.; Lam, M.; Manyam, G.; Woods, M.N.; Anderson, A.; Capasso, A.; Fowlkes, N.; et al. Autologous Humanized Mouse Models to Study Combination and Single-Agent Immunotherapy for Colorectal Cancer Patient-Derived Xenografts. Front. Oncol. 2022, 12, 994333. [Google Scholar] [CrossRef]
- Cao, Z.; Zhang, Z.; Zheng, L.; Lin, J.; Peng, J.; Lin, W. Establishment of a Stable Hepatic Metastasis Mouse Model of Murine Colorectal Cancer by Microsurgical Orthotopic Implantation. Transl. Cancer Res. 2020, 9, 3249–3257. [Google Scholar] [CrossRef]
- Yang, D.; Beddows, I.; Tang, H.; Cascio, S.; McGonigal, S.C.; Bai, S.; Johnson, B.K.; Powers, J.J.; Acharya, R.; Bao, R.; et al. A Novel Humanized Immune Stroma PDX Cancer Model for Therapeutic Studies. bioRxiv 2023, 2023.07.03.547206. [Google Scholar]
- Wang, E.; Xiang, K.; Zhang, Y.; Wang, X.-F. Patient-Derived Organoids (PDOs) and PDO-Derived Xenografts (PDOXs): New Opportunities in Establishing Faithful Pre-Clinical Cancer Models. J. Natl. Cancer Cent. 2022, 2, 263–276. [Google Scholar] [CrossRef]
- Ivanics, T.; Bergquist, J.R.; Liu, G.; Kim, M.P.; Kang, Y.; Katz, M.H.; Perez, M.V.R.; Thomas, R.M.; Fleming, J.B.; Truty, M.J. Patient-Derived Xenograft Cryopreservation and Reanimation Outcomes Are Dependent on Cryoprotectant Type. Lab. Investig. J. Tech. Methods Pathol. 2018, 98, 947–956. [Google Scholar] [CrossRef]
- Yao, Y.M.; Donoho, G.P.; Iversen, P.W.; Zhang, Y.; Van Horn, R.D.; Forest, A.; Novosiadly, R.D.; Webster, Y.W.; Ebert, P.; Bray, S.; et al. Mouse PDX Trial Suggests Synergy of Concurrent Inhibition of RAF and EGFR in Colorectal Cancer with BRAF or KRAS Mutations. Clin. Cancer Res. 2017, 23, 5547–5560. [Google Scholar] [CrossRef] [PubMed]
- Greenlee, J.D.; King, M.R. A Syngeneic MC38 Orthotopic Mouse Model of Colorectal Cancer Metastasis. Biol. Methods Protoc. 2022, 7, bpac024. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.A.; Hughes, A.M.; Walton, J.; Coenen-Stass, A.M.L.; Magiera, L.; Mooney, L.; Bell, S.; Staniszewska, A.D.; Sandin, L.C.; Barry, S.T.; et al. Longitudinal Immune Characterization of Syngeneic Tumor Models to Enable Model Selection for Immune Oncology Drug Discovery. J. Immunother. Cancer 2019, 7, 328. [Google Scholar] [CrossRef] [PubMed]
- Young, K.H.; Newell, P.; Cottam, B.; Friedman, D.; Savage, T.; Baird, J.R.; Akporiaye, E.; Gough, M.J.; Crittenden, M. TGFβ Inhibition Prior to Hypofractionated Radiation Enhances Efficacy in Preclinical Models. Cancer Immunol. Res. 2014, 2, 1011–1022. [Google Scholar] [CrossRef]
- Pramil, E.; Dillard, C.; Escargueil, A.E. Colorectal Cancer and Immunity: From the Wet Lab to Individuals. Cancers 2021, 13, 1713. [Google Scholar] [CrossRef]
- Zhong, W.; Myers, J.S.; Wang, F.; Wang, K.; Lucas, J.; Rosfjord, E.; Lucas, J.; Hooper, A.T.; Yang, S.; Lemon, L.A.; et al. Comparison of the Molecular and Cellular Phenotypes of Common Mouse Syngeneic Models with Human Tumors. BMC Genom. 2020, 21, 2. [Google Scholar] [CrossRef]
- Proietto, M.; Crippa, M.; Damiani, C.; Pasquale, V.; Sacco, E.; Vanoni, M.; Gilardi, M. Tumor Heterogeneity: Preclinical Models, Emerging Technologies, and Future Applications. Front. Oncol. 2023, 13, 1164535. [Google Scholar] [CrossRef]
- Schofield, D.J.; Percival-Alwyn, J.; Rytelewski, M.; Hood, J.; Rothstein, R.; Wetzel, L.; McGlinchey, K.; Adjei, G.; Watkins, A.; Machiesky, L.; et al. Activity of Murine Surrogate Antibodies for Durvalumab and Tremelimumab Lacking Effector Function and the Ability to Deplete Regulatory T Cells in Mouse Models of Cancer. mAbs 2021, 13, 1857100. [Google Scholar] [CrossRef]
- Muta, Y.; Nakanishi, Y. Mouse Colorectal Cancer Organoids: Lessons from Syngeneic and Orthotopic Transplantation Systems. Eur. J. Cell Biol. 2025, 104, 151478. [Google Scholar] [CrossRef]
- de Las Heras, F.; Mitchell, C.B.; Murray, W.K.; Clemons, N.J.; Phillips, W.A. Development of an In Vivo Syngeneic Mouse Transplant Model of Invasive Intestinal Adenocarcinoma Driven by Endogenous Expression of Pik3caH1047R and Apc Loss. PLoS ONE 2024, 19, e0308051. [Google Scholar] [CrossRef]
- Chen, C.; Neumann, J.; Kühn, F.; Lee, S.M.L.; Drefs, M.; Andrassy, J.; Werner, J.; Bazhin, A.V.; Schiergens, T.S. Establishment of an Endoscopy-Guided Minimally Invasive Orthotopic Mouse Model of Colorectal Cancer. Cancers 2020, 12, 3007. [Google Scholar] [CrossRef] [PubMed]
- Zabala, M.; Alzuguren, P.; Benavides, C.; Crettaz, J.; Gonzalez-Aseguinolaza, G.; Ortiz de Solorzano, C.; Gonzalez-Aparicio, M.; Kramer, M.G.; Prieto, J.; Hernandez-Alcoceba, R. Evaluation of Bioluminescent Imaging for Noninvasive Monitoring of Colorectal Cancer Progression in the Liver and Its Response to Immunogene Therapy. Mol. Cancer 2009, 8, 2. [Google Scholar] [CrossRef] [PubMed]
- Cyr, M.; Chabaytah, N.; Babik, J.; Behmand, B.; St-Jean, G.; Enger, S.A. Establishing a Standardized Murine Orthotopic Intra-Rectal Model for the Study of Colorectal Adenocarcinoma. J. Gastrointest. Oncol. 2024, 15, 2578–2587. [Google Scholar] [CrossRef] [PubMed]
- Rashidi, B.; Gamagami, R.; Sasson, A.; Sun, F.X.; Geller, J.; Moossa, A.R.; Hoffman, R.M. An Orthotopic Mouse Model of Remetastasis of Human Colon Cancer Liver Metastasis. Clin. Cancer Res. 2000, 6, 2556–2561. [Google Scholar]
- Liao, H.-W.; Hung, M.-C. Intracaecal Orthotopic Colorectal Cancer Xenograft Mouse Model. Bio-Protocol. 2017, 7, e2311. [Google Scholar] [CrossRef]
- Mira, A.; Morello, V.; Céspedes, M.V.; Perera, T.; Comoglio, P.M.; Mangues, R.; Michieli, P. Stroma-Derived HGF Drives Metabolic Adaptation of Colorectal Cancer to Angiogenesis Inhibitors. Oncotarget 2017, 8, 38193–38213. [Google Scholar] [CrossRef]
- Zhou, K.; Li, G.; Pan, R.; Xin, S.; Wen, W.; Wang, H.; Luo, C.; Han, R.P.S.; Gu, Y.; Tu, Y. Preclinical Evaluation of AGTR1-Targeting Molecular Probe for Colorectal Cancer Imaging in Orthotopic and Liver Metastasis Mouse Models. Eur. J. Med. Chem. 2024, 271, 116452. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Miao, Z.-F.; Yip, K.-L.; Cheng, Y.-A.; Liu, C.-J.; Li, L.-H.; Lin, C.-Y.; Wang, J.-W.; Wu, D.-C.; Cheng, T.-L.; et al. Gut Fecal Microbiota Transplant in a Mouse Model of Orthotopic Rectal Cancer. Front. Oncol. 2020, 10, 568012. [Google Scholar] [CrossRef]
- Zhu, G.; Zhao, M.; Han, Q.; Tan, Y.; Sun, Y.U.; Bouvet, M.; Singh, S.R.; Ye, J.; Hoffman, R.M. Combination of Trabectedin With Oxaliplatinum and 5-Fluorouracil Arrests a Primary Colorectal Cancer in a Patient-Derived Orthotopic Xenograft Mouse Model. Anticancer Res. 2019, 39, 5999–6005. [Google Scholar] [CrossRef]
- Ramasawmy, R.; Johnson, S.P.; Roberts, T.A.; Stuckey, D.J.; David, A.L.; Pedley, R.B.; Lythgoe, M.F.; Siow, B.; Walker-Samuel, S. Monitoring the Growth of an Orthotopic Tumour Xenograft Model: Multi-Modal Imaging Assessment with Benchtop MRI (1T), High-Field MRI (9.4T), Ultrasound and Bioluminescence. PLoS ONE 2016, 11, e0156162. [Google Scholar] [CrossRef]
- Zhao, X.; Li, L.; Starr, T.K.; Subramanian, S. Tumor Location Impacts Immune Response in Mouse Models of Colon Cancer. Oncotarget 2017, 8, 54775–54787. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Bu, P. Generation of an Orthotopic Mouse Model to Study Colorectal Cancer Metastasis. STAR Protoc. 2021, 2, 100792. [Google Scholar] [CrossRef] [PubMed]
- Richon, S.; Zajac, O.; Perez Gonzalez, C.; Matic Vignjevic, D. Optimized Protocol for the Generation of an Orthotopic Colon Cancer Mouse Model and Metastasis. STAR Protoc. 2023, 4, 102022. [Google Scholar] [CrossRef]
- Hite, N.; Klinger, A.; Hellmers, L.; Maresh, G.A.; Miller, P.E.; Zhang, X.; Li, L.; Margolin, D.A. An Optimal Orthotopic Mouse Model for Human Colorectal Cancer Primary Tumor Growth and Spontaneous Metastasis. Dis. Colon Rectum 2018, 61, 698–705. [Google Scholar] [CrossRef]
- Wei, S.; Liu, Y.; Xin, Y.; Feng, C.; Zhang, Y.; Jia, X.; Chai, F.; Zhao, J.; Liu, Y.; Yao, X.; et al. Detecting and Monitoring Tumors in Orthotopic Colorectal Liver Metastatic Animal Models with High-Resolution Ultrasound. Clin. Exp. Metastasis 2022, 39, 771–781. [Google Scholar] [CrossRef]
- McIntyre, R.E.; Buczacki, S.J.A.; Arends, M.J.; Adams, D.J. Mouse Models of Colorectal Cancer as Preclinical Models. BioEssays News Rev. Mol. Cell. Dev. Biol. 2015, 37, 909–920. [Google Scholar] [CrossRef]
- Haramis, A.-P.G.; Hurlstone, A.; van der Velden, Y.; Begthel, H.; van den Born, M.; Offerhaus, G.J.A.; Clevers, H.C. Adenomatous Polyposis Coli-Deficient Zebrafish Are Susceptible to Digestive Tract Neoplasia. EMBO Rep. 2006, 7, 444–449. [Google Scholar] [CrossRef]
- Paquette, C.E.; Kent, M.L.; Buchner, C.; Tanguay, R.L.; Guillemin, K.; Mason, T.J.; Peterson, T.S. A Retrospective Study of the Prevalence and Classification of Intestinal Neoplasia in Zebrafish (Danio Rerio). Zebrafish 2013, 10, 228–236. [Google Scholar] [CrossRef]
- Peron, M.; Dinarello, A.; Meneghetti, G.; Martorano, L.; Facchinello, N.; Vettori, A.; Licciardello, G.; Tiso, N.; Argenton, F. The Stem-like Stat3-Responsive Cells of Zebrafish Intestine Are Wnt/β-Catenin Dependent. Development. Camb. Engl. 2020, 147, dev188987. [Google Scholar] [CrossRef]
- Lu, J.-W.; Ho, Y.-J.; Ciou, S.-C.; Gong, Z. Innovative Disease Model: Zebrafish as an In Vivo Platform for Intestinal Disorder and Tumors. Biomedicines 2017, 5, 58. [Google Scholar] [CrossRef]
- Gamble, J.T.; Elson, D.J.; Greenwood, J.A.; Tanguay, R.L.; Kolluri, S.K. The Zebrafish Xenograft Models for Investigating Cancer and Cancer Therapeutics. Biology 2021, 10, 252. [Google Scholar] [CrossRef] [PubMed]
- Stoletov, K.; Klemke, R. Catch of the Day: Zebrafish as a Human Cancer Model. Oncogene 2008, 27, 4509–4520. [Google Scholar] [CrossRef]
- Varas, M.A.; Muñoz-Montecinos, C.; Kallens, V.; Simon, V.; Allende, M.L.; Marcoleta, A.E.; Lagos, R. Exploiting Zebrafish Xenografts for Testing the In Vivo Antitumorigenic Activity of Microcin E492 Against Human Colorectal Cancer Cells. Front. Microbiol. 2020, 11, 405. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Glasgow, E.; Agarwal, S. Zebrafish Xenografts for Drug Discovery and Personalized Medicine. Trends Cancer 2020, 6, 569–579. [Google Scholar] [CrossRef]
- Rebelo de Almeida, C.; Mendes, R.V.; Pezzarossa, A.; Gago, J.; Carvalho, C.; Alves, A.; Nunes, V.; Brito, M.J.; Cardoso, M.J.; Ribeiro, J.; et al. Zebrafish Xenografts as a Fast Screening Platform for Bevacizumab Cancer Therapy. Commun. Biol. 2020, 3, 299. [Google Scholar] [CrossRef]
- Fior, R.; Póvoa, V.; Mendes, R.V.; Carvalho, T.; Gomes, A.; Figueiredo, N.; Ferreira, M.G. Single-Cell Functional and Chemosensitive Profiling of Combinatorial Colorectal Therapy in Zebrafish Xenografts. Proc. Natl. Acad. Sci. USA 2017, 114, E8234–E8243. [Google Scholar] [CrossRef]
- Mizgireuv, I.V.; Majorova, I.G.; Gorodinskaya, V.M.; Khudoley, V.V.; Revskoy, S.Y. Carcinogenic Effect of N-Nitrosodimethylamine on Diploid and Triploid Zebrafish (Danio Rerio). Toxicol. Pathol. 2004, 32, 514–518. [Google Scholar] [CrossRef]
- Hason, M.; Bartůněk, P. Zebrafish Models of Cancer—New Insights on Modeling Human Cancer in a Non-Mammalian Vertebrate. Genes 2019, 10, 935. [Google Scholar] [CrossRef]
- Cabezas-Sáinz, P.; Pensado-López, A.; Sáinz, B.; Sánchez, L. Modeling Cancer Using Zebrafish Xenografts: Drawbacks for Mimicking the Human Microenvironment. Cells 2020, 9, 1978. [Google Scholar] [CrossRef]
- Abu-Siniyeh, A.; Khataibeh, M.; Al-Zyoud, W.; Al Holi, M. Zebrafish as a Model for Human Epithelial Pathology. Lab. Anim. Res. 2025, 41, 6. [Google Scholar] [CrossRef]
- Jung, D.-W.; Oh, E.-S.; Park, S.-H.; Chang, Y.-T.; Kim, C.-H.; Choi, S.-Y.; Williams, D.R. A Novel Zebrafish Human Tumor Xenograft Model Validated for Anti-Cancer Drug Screening. Mol. Biosyst. 2012, 8, 1930–1939. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Yang, Q.; Do, D.; Brunson, D.C.; Langenau, D.M. Adult Immune Compromised Zebrafish for Xenograft Cell Transplantation Studies. eBioMedicine 2019, 47, 24–26. [Google Scholar] [CrossRef] [PubMed]
- Kobar, K.; Collett, K.; Prykhozhij, S.V.; Berman, J.N. Zebrafish Cancer Predisposition Models. Front. Cell Dev. Biol. 2021, 9, 660069. [Google Scholar] [CrossRef] [PubMed]
- Lucchetta, E.M.; Ohlstein, B. The Drosophila Midgut: A Model for Stem Cell Driven Tissue Regeneration. Wiley Interdiscip. Rev. Dev. Biol. 2012, 1, 781–788. [Google Scholar] [CrossRef]
- Zhai, Z.; Boquete, J.-P.; Lemaitre, B. A Genetic Framework Controlling the Differentiation of Intestinal Stem Cells during Regeneration in Drosophila. PLoS Genet. 2017, 13, e1006854. [Google Scholar] [CrossRef]
- Lee, W.-C.; Beebe, K.; Sudmeier, L.; Micchelli, C.A. Adenomatous Polyposis Coli Regulates Drosophila Intestinal Stem Cell Proliferation. Development 2009, 136, 2255–2264. [Google Scholar] [CrossRef]
- Brutscher, F.; Germani, F.; Hausmann, G.; Jutz, L.; Basler, K. Activation of the Innate Immune System Accelerates Growth in Cooperation with Oncogenic Ras. bioRxiv 2024, 2024.05.23.595555. [Google Scholar] [CrossRef]
- Brutscher, F.; Basler, K. Functions of Drosophila Toll/NF-κB Signaling in Imaginal Tissue Homeostasis and Cancer. Front. Cell Dev. Biol. 2025, 13, 1559753. [Google Scholar] [CrossRef]
- Pinal, N.; Calleja, M.; Morata, G. Pro-Apoptotic and pro-Proliferation Functions of the JNK Pathway of Drosophila: Roles in Cell Competition, Tumorigenesis and Regeneration. Open Biol. 2019, 9, 180256. [Google Scholar] [CrossRef]
- Zeng, X.; Han, L.; Singh, S.R.; Liu, H.; Neumüller, R.A.; Yan, D.; Hu, Y.; Liu, Y.; Liu, W.; Lin, X.; et al. Genome-Wide RNAi Screen Identifies Networks Involved in Intestinal Stem Cell Regulation in Drosophila. Cell Rep. 2015, 10, 1226–1238. [Google Scholar] [CrossRef]
- Martorell, Ò.; Merlos-Suárez, A.; Campbell, K.; Barriga, F.M.; Christov, C.P.; Miguel-Aliaga, I.; Batlle, E.; Casanova, J.; Casali, A. Conserved Mechanisms of Tumorigenesis in the Drosophila Adult Midgut. PLoS ONE 2014, 9, e88413. [Google Scholar] [CrossRef] [PubMed]
- Munnik, C.; Xaba, M.P.; Malindisa, S.T.; Russell, B.L.; Sooklal, S.A. Drosophila Melanogaster: A Platform for Anticancer Drug Discovery and Personalized Therapies. Front. Genet. 2022, 13, 949241. [Google Scholar] [CrossRef]
- Gondal, M.N.; Butt, R.N.; Shah, O.S.; Sultan, M.U.; Mustafa, G.; Nasir, Z.; Hussain, R.; Khawar, H.; Qazi, R.; Tariq, M.; et al. A Personalized Therapeutics Approach Using an In Silico Drosophila Patient Model Reveals Optimal Chemo- and Targeted Therapy Combinations for Colorectal Cancer. Front. Oncol. 2021, 11, 692592. [Google Scholar] [CrossRef]
- Bangi, E.; Ang, C.; Smibert, P.; Uzilov, A.V.; Teague, A.G.; Antipin, Y.; Chen, R.; Hecht, C.; Gruszczynski, N.; Yon, W.J.; et al. A Personalized Platform Identifies Trametinib plus Zoledronate for a Patient with KRAS-Mutant Metastatic Colorectal Cancer. Sci. Adv. 2019, 5, eaav6528. [Google Scholar] [CrossRef]
- Hoffmann, J.A. The Immune Response of Drosophila. Nature 2003, 426, 33–38. [Google Scholar] [CrossRef]
- Yu, S.; Luo, F.; Xu, Y.; Zhang, Y.; Jin, L.H. Drosophila Innate Immunity Involves Multiple Signaling Pathways and Coordinated Communication Between Different Tissues. Front. Immunol. 2022, 13, 905370. [Google Scholar] [CrossRef]
- Miles, W.O.; Dyson, N.J.; Walker, J.A. Modeling Tumor Invasion and Metastasis in Drosophila. Dis. Model. Mech. 2011, 4, 753–761. [Google Scholar] [CrossRef]
- Ollmann, M.; Young, L.M.; Di Como, C.J.; Karim, F.; Belvin, M.; Robertson, S.; Whittaker, K.; Demsky, M.; Fisher, W.W.; Buchman, A.; et al. Drosophila P53 Is a Structural and Functional Homolog of the Tumor Suppressor P53. Cell 2000, 101, 91–101. [Google Scholar] [CrossRef]
- Upadhyay, A.; Moss-Taylor, L.; Kim, M.-J.; Ghosh, A.C.; O’Connor, M.B. TGF-β Family Signaling in Drosophila. Cold Spring Harb. Perspect. Biol. 2017, 9, a022152. [Google Scholar] [CrossRef]
- Jiang, H.; Edgar, B.A. Intestinal Stem Cells in the Adult Drosophila Midgut. Exp. Cell Res. 2011, 317, 2780–2788. [Google Scholar] [CrossRef]
- Mirzoyan, Z.; Sollazzo, M.; Allocca, M.; Valenza, A.M.; Grifoni, D.; Bellosta, P. Drosophila Melanogaster: A Model Organism to Study Cancer. Front. Genet. 2019, 10, 51. [Google Scholar] [CrossRef] [PubMed]
- Martorell, Ò.; Barriga, F.M.; Merlos-Suárez, A.; Stephan-Otto Attolini, C.; Casanova, J.; Batlle, E.; Sancho, E.; Casali, A. Iro/IRX Transcription Factors Negatively Regulate Dpp/TGF-β Pathway Activity during Intestinal Tumorigenesis. EMBO Rep. 2014, 15, 1210–1218. [Google Scholar] [CrossRef] [PubMed]
- Markstein, M.; Dettorre, S.; Cho, J.; Neumüller, R.A.; Craig-Müller, S.; Perrimon, N. Systematic Screen of Chemotherapeutics in Drosophila Stem Cell Tumors. Proc. Natl. Acad. Sci. USA 2014, 111, 4530–4535. [Google Scholar] [CrossRef] [PubMed]
- Su, T.T. Drug Screening in Drosophila; Why, When, and When Not? Wiley Interdiscip. Rev. Dev. Biol. 2019, 8, e346. [Google Scholar] [CrossRef]
- Yadav, A.K.; Srikrishna, S.; Gupta, S.C. Cancer Drug Development Using Drosophila as an In Vivo Tool: From Bedside to Bench and Back. Trends Pharmacol. Sci. 2016, 37, 789–806. [Google Scholar] [CrossRef]
- Church, E.M.; Mehlhaff, C.J.; Patnaik, A.K. Colorectal Adenocarcinoma in Dogs: 78 Cases (1973–1984). J. Am. Vet. Med. Assoc. 1987, 191, 727–730. [Google Scholar] [CrossRef]
- Johnson, R.L.; Fleet, J.C. Animal Models of Colorectal Cancer. Cancer Metastasis Rev. 2013, 32, 39–61. [Google Scholar] [CrossRef]
- McEntee, M.F.; Brenneman, K.A. Dysregulation of Beta-Catenin Is Common in Canine Sporadic Colorectal Tumors. Vet. Pathol. 1999, 36, 228–236. [Google Scholar] [CrossRef]
- Wolf, J.C.; Ginn, P.E.; Homer, B.; Fox, L.E.; Kurzman, I.D. Immunohistochemical Detection of P53 Tumor Suppressor Gene Protein in Canine Epithelial Colorectal Tumors. Vet. Pathol. 1997, 34, 394–404. [Google Scholar] [CrossRef]
- Cultivating Research on Cancer in Dogs, from Clinical Trials down to the Molecular Level | American Veterinary Medical Association. Available online: https://www.avma.org/news/cultivating-research-cancer-dogs-clinical-trials-down-molecular-level (accessed on 29 April 2025).
- Santiago-Rodriguez, T.M. Comparative Oncology Using Domesticated Dogs and Their Microbiome. Front. Vet. Sci. 2024, 11, 1378551. [Google Scholar] [CrossRef]
- Wang, J.; Wang, T.; Sun, Y.; Feng, Y.; Kisseberth, W.C.; Henry, C.J.; Mok, I.; Lana, S.E.; Dobbin, K.; Northrup, N.; et al. Proliferative and Invasive Colorectal Tumors in Pet Dogs Provide Unique Insights into Human Colorectal Cancer. Cancers 2018, 10, 330. [Google Scholar] [CrossRef]
- McEntee, M.F.; Cates, J.M.; Neilsen, N. Cyclooxygenase-2 Expression in Spontaneous Intestinal Neoplasia of Domestic Dogs. Vet. Pathol. 2002, 39, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Pang, L.Y.; Argyle, S.A.; Kamida, A.; Morrison, K.O.; Argyle, D.J. The Long-Acting COX-2 Inhibitor Mavacoxib (TrocoxilTM) Has Anti-Proliferative and pro-Apoptotic Effects on Canine Cancer Cell Lines and Cancer Stem Cells In Vitro. BMC Vet. Res. 2014, 10, 184. [Google Scholar] [CrossRef]
- Chow, L.; Wheat, W.; Ramirez, D.; Impastato, R.; Dow, S. Direct Comparison of Canine and Human Immune Responses Using Transcriptomic and Functional Analyses. Sci. Rep. 2024, 14, 2207. [Google Scholar] [CrossRef] [PubMed]
- Schäffer, E.; Schiefer, B. Incidence and Types of Canine Rectal Carcinomas. J. Small Anim. Pract. 1968, 9, 491–496. [Google Scholar] [CrossRef]
- Regan, D.; Garcia, K.; Thamm, D. Clinical, Pathological, and Ethical Considerations for the Conduct of Clinical Trials in Dogs with Naturally Occurring Cancer: A Comparative Approach to Accelerate Translational Drug Development. ILAR J. 2018, 59, 99–110. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, J.; Chen, Q.; Zhang, X.; Zhang, D.; Lin, J.; Lin, D. Transcriptome Analysis of the Adenoma-Carcinoma Sequences Identifies Novel Biomarkers Associated with Development of Canine Colorectal Cancer. Front. Vet. Sci. 2023, 10, 1192525. [Google Scholar] [CrossRef]
- NCI-Funded Canine Immunotherapy Clinical Trials|News & Events|DCTD. Available online: https://dctd.cancer.gov/NewsEvents/20221117_canine.htm (accessed on 29 April 2025).
- Hugen, N.; van de Velde, C.J.H.; de Wilt, J.H.W.; Nagtegaal, I.D. Metastatic Pattern in Colorectal Cancer Is Strongly Influenced by Histological Subtype. Ann. Oncol. 2014, 25, 651–657. [Google Scholar] [CrossRef]
- Dobson, J.M. Breed-Predispositions to Cancer in Pedigree Dogs. ISRN Vet. Sci. 2013, 2013, 941275. [Google Scholar] [CrossRef]
- Frazier, J.P.; Beirne, E.; Ditzler, S.H.; Tretyak, I.; Casalini, J.R.; Thirstrup, D.J.; Knoblaugh, S.; Ward, J.G.; Tripp, C.D.; Klinghoffer, R.A. Establishment and Characterization of a Canine Soft Tissue Sarcoma Patient-Derived Xenograft Model. Vet. Comp. Oncol. 2017, 15, 754–763. [Google Scholar] [CrossRef]
- Gonzalez, L.M.; Moeser, A.J.; Blikslager, A.T. Porcine Models of Digestive Disease: The Future of Large Animal Translational Research. Transl. Res. J. Lab. Clin. Med. 2015, 166, 12–27. [Google Scholar] [CrossRef] [PubMed]
- Lunney, J.K.; Van Goor, A.; Walker, K.E.; Hailstock, T.; Franklin, J.; Dai, C. Importance of the Pig as a Human Biomedical Model. Sci. Transl. Med. 2021, 13, eabd5758. [Google Scholar] [CrossRef]
- Flisikowski, K.; Perleberg, C.; Niu, G.; Winogrodzki, T.; Bak, A.; Liang, W.; Grodziecki, A.; Zhang, Y.; Pausch, H.; Flisikowska, T.; et al. Wild-Type APC Influences the Severity of Familial Adenomatous Polyposis. Cell. Mol. Gastroenterol. Hepatol. 2022, 13, 669–671.e3. [Google Scholar] [CrossRef]
- Pistol, G.C.; Bulgaru, C.V.; Marin, D.E.; Oancea, A.G.; Taranu, I. Dietary Grape Seed Meal Bioactive Compounds Alleviate Epithelial Dysfunctions and Attenuates Inflammation in Colon of DSS-Treated Piglets. Foods 2021, 10, 530. [Google Scholar] [CrossRef]
- Schachtschneider, K.M.; Schwind, R.M.; Newson, J.; Kinachtchouk, N.; Rizko, M.; Mendoza-Elias, N.; Grippo, P.; Principe, D.R.; Park, A.; Overgaard, N.H.; et al. The Oncopig Cancer Model: An Innovative Large Animal Translational Oncology Platform. Front. Oncol. 2017, 7, 190. [Google Scholar] [CrossRef]
- Yim, J.J.; Harmsen, S.; Flisikowski, K.; Flisikowska, T.; Namkoong, H.; Garland, M.; van den Berg, N.S.; Vilches-Moure, J.G.; Schnieke, A.; Saur, D.; et al. A Protease-Activated, near-Infrared Fluorescent Probe for Early Endoscopic Detection of Premalignant Gastrointestinal Lesions. Proc. Natl. Acad. Sci. USA 2021, 118, e2008072118. [Google Scholar] [CrossRef]
- Rogalla, S.; Flisikowski, K.; Gorpas, D.; Mayer, A.T.; Flisikowska, T.; Mandella, M.J.; Ma, X.; Casey, K.M.; Felt, S.A.; Saur, D.; et al. Biodegradable Fluorescent Nanoparticles for Endoscopic Detection of Colorectal Carcinogenesis. Adv. Funct. Mater. 2019, 29, 1904992. [Google Scholar] [CrossRef]
- Troya, J.; Krenzer, A.; Flisikowski, K.; Sudarevic, B.; Banck, M.; Hann, A.; Puppe, F.; Meining, A. New Concept for Colonoscopy Including Side Optics and Artificial Intelligence. Gastrointest. Endosc. 2022, 95, 794–798. [Google Scholar] [CrossRef]
- Schaaf, C.R.; Gonzalez, L.M. Use of Translational, Genetically Modified Porcine Models to Ultimately Improve Intestinal Disease Treatment. Front. Vet. Sci. 2022, 9, 878952. [Google Scholar] [CrossRef]
- Schaaf, C.R.; Polkoff, K.M.; Carter, A.; Stewart, A.S.; Sheahan, B.; Freund, J.; Ginzel, J.; Snyder, J.C.; Roper, J.; Piedrahita, J.A.; et al. A LGR5 Reporter Pig Model Closely Resembles Human Intestine for Improved Study of Stem Cells in Disease. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2023, 37, e22975. [Google Scholar] [CrossRef]
- Sikorska, A.; Flisikowska, T.; Stachowiak, M.; Kind, A.; Schnieke, A.; Flisikowski, K.; Switonski, M. Elevated Expression of P53 in Early Colon Polyps in a Pig Model of Human Familial Adenomatous Polyposis. J. Appl. Genet. 2018, 59, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Niu, G.; Hellmuth, I.; Flisikowska, T.; Pausch, H.; Rieblinger, B.; Carrapeiro, A.; Schade, B.; Böhm, B.; Kappe, E.; Fischer, K.; et al. Porcine Model Elucidates Function of P53 Isoform in Carcinogenesis and Reveals Novel circTP53 RNA. Oncogene 2021, 40, 1896–1908. [Google Scholar] [CrossRef] [PubMed]
- Beganovic, S. Clinical Significance of the KRAS Mutation. Bosn. J. Basic. Med. Sci. 2009, 9 (Suppl. 1), S17–S20. [Google Scholar] [CrossRef] [PubMed]
- Callesen, M.M.; Árnadóttir, S.S.; Lyskjaer, I.; Ørntoft, M.-B.W.; Høyer, S.; Dagnaes-Hansen, F.; Liu, Y.; Li, R.; Callesen, H.; Rasmussen, M.H.; et al. A Genetically Inducible Porcine Model of Intestinal Cancer. Mol. Oncol. 2017, 11, 1616–1629. [Google Scholar] [CrossRef]
- Walters, E.M.; Prather, R.S. Advancing Swine Models for Human Health and Diseases. Mo. Med. 2013, 110, 212–215. [Google Scholar]
- Heinritz, S.N.; Mosenthin, R.; Weiss, E. Use of Pigs as a Potential Model for Research into Dietary Modulation of the Human Gut Microbiota. Nutr. Res. Rev. 2013, 26, 191–209. [Google Scholar] [CrossRef]
- Deng, Y.; Wei, B.; Zhai, Z.; Zheng, Y.; Yao, J.; Wang, S.; Xiang, D.; Hu, J.; Ye, X.; Yang, S.; et al. Dietary Risk-Related Colorectal Cancer Burden: Estimates From 1990 to 2019. Front. Nutr. 2021, 8, 690663. [Google Scholar] [CrossRef]
- Hart, E.A.; Caccamo, M.; Harrow, J.L.; Humphray, S.J.; Gilbert, J.G.R.; Trevanion, S.; Hubbard, T.; Rogers, J.; Rothschild, M.F. Lessons Learned from the Initial Sequencing of the Pig Genome: Comparative Analysis of an 8 Mb Region of Pig Chromosome 17. Genome Biol. 2007, 8, R168. [Google Scholar] [CrossRef]
- Dawson, H.D.; Reece, J.J.; Urban, J.F. A Comparative Analysis of the Porcine, Murine, and Human Immune Systems. Vet. Immunol. Immunopathol. 2009, 128, 309. [Google Scholar] [CrossRef]
- Joshi, K.; Katam, T.; Hegde, A.; Cheng, J.; Prather, R.S.; Whitworth, K.; Wells, K.; Bryan, J.N.; Hoffman, T.; Telugu, B.P.; et al. Pigs: Large Animal Preclinical Cancer Models. World J. Oncol. 2024, 15, 149–168. [Google Scholar] [CrossRef]
- Tanihara, F.; Hirata, M.; Nguyen, N.T.; Le, Q.A.; Hirano, T.; Takemoto, T.; Nakai, M.; Fuchimoto, D.-I.; Otoi, T. Generation of a TP53-Modified Porcine Cancer Model by CRISPR/Cas9-Mediated Gene Modification in Porcine Zygotes via Electroporation. PLoS ONE 2018, 13, e0206360. [Google Scholar] [CrossRef] [PubMed]
- Basel, M.T.; Balivada, S.; Beck, A.P.; Kerrigan, M.A.; Pyle, M.M.; Dekkers, J.C.M.; Wyatt, C.R.; Rowland, R.R.R.; Anderson, D.E.; Bossmann, S.H.; et al. Human Xenografts Are Not Rejected in a Naturally Occurring Immunodeficient Porcine Line: A Human Tumor Model in Pigs. BioResearch Open Access 2012, 1, 63–68. [Google Scholar] [CrossRef]
- Peterson, L.; Yacoub, M.H.; Ayares, D.; Yamada, K.; Eisenson, D.; Griffith, B.P.; Mohiuddin, M.M.; Eyestone, W.; Venter, J.C.; Smolenski, R.T.; et al. Physiological Basis for Xenotransplantation from Genetically Modified Pigs to Humans. Physiol. Rev. 2024, 104, 1409–1459. [Google Scholar] [CrossRef]
- Gutierrez, K.; Dicks, N.; Glanzner, W.G.; Agellon, L.B.; Bordignon, V. Efficacy of the Porcine Species in Biomedical Research. Front. Genet. 2015, 6, 293. [Google Scholar] [CrossRef]
- Pan, Z.; Yao, Y.; Yin, H.; Cai, Z.; Wang, Y.; Bai, L.; Kern, C.; Halstead, M.; Chanthavixay, G.; Trakooljul, N.; et al. Pig Genome Functional Annotation Enhances the Biological Interpretation of Complex Traits and Human Disease. Nat. Commun. 2021, 12, 5848. [Google Scholar] [CrossRef]
- Brammer, D.W.; Gillespie, P.J.; Tian, M.; Young, D.; Raveendran, M.; Williams, L.E.; Gagea, M.; Benavides, F.J.; Perez, C.J.; Broaddus, R.R.; et al. MLH1-rheMac Hereditary Nonpolyposis Colorectal Cancer Syndrome in Rhesus Macaques. Proc. Natl. Acad. Sci. USA 2018, 115, 2806–2811. [Google Scholar] [CrossRef]
- Ozirmak Lermi, N.; Gray, S.B.; Bowen, C.M.; Reyes-Uribe, L.; Dray, B.K.; Deng, N.; Harris, R.A.; Raveendran, M.; Benavides, F.; Hodo, C.L.; et al. Comparative Molecular Genomic Analyses of a Spontaneous Rhesus Macaque Model of Mismatch Repair-Deficient Colorectal Cancer. PLoS Genet. 2022, 18, e1010163. [Google Scholar] [CrossRef]
- Deycmar, S.; Johnson, B.J.; Ray, K.; Schaaf, G.W.; Ryan, D.P.; Cullin, C.; Dozier, B.L.; Ferguson, B.; Bimber, B.N.; Olson, J.D.; et al. Epigenetic MLH1 Silencing Concurs with Mismatch Repair Deficiency in Sporadic, Naturally Occurring Colorectal Cancer in Rhesus Macaques. J. Transl. Med. 2024, 22, 292. [Google Scholar] [CrossRef]
- Johnson, L.D.; Ausman, L.M.; Sehgal, P.K.; King, N.W. A Prospective Study of the Epidemiology of Colitis and Colon Cancer in Cotton-Top Tamarins (Saguinus oedipus). Gastroenterology 1996, 110, 102–115. [Google Scholar] [CrossRef]
- Wood, J.D.; Peck, O.C.; Tefend, K.S.; Rodriguez-M, M.A.; Rodriguez-M., J.V.; Hernández-C., J.I.; Stonerook, M.J.; Sharma, H.M. Colitis and Colon Cancer in Cotton-Top Tamarins (Saguinus oedipus oedipus) Living Wild in Their Natural Habitat. Dig. Dis. Sci. 1998, 43, 1443–1453. [Google Scholar] [CrossRef]
- Simmons, H.A.; Mattison, J.A. The Incidence of Spontaneous Neoplasia in Two Populations of Captive Rhesus Macaques (Macaca Mulatta). Antioxid. Redox Signal. 2011, 14, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Ferl, G.Z.; Reyes, A.; Sun, L.L.; Cheu, M.; Oldendorp, A.; Ramanujan, S.; Stefanich, E.G. A Preclinical Population Pharmacokinetic Model for Anti-CD20/CD3 T-Cell-Dependent Bispecific Antibodies. Clin. Transl. Sci. 2018, 11, 296–304. [Google Scholar] [CrossRef]
- Chan, S.; Belmar, N.; Ho, S.; Rogers, B.; Stickler, M.; Graham, M.; Lee, E.; Tran, N.; Zhang, D.; Gupta, P.; et al. An Anti-PD-1-GITR-L Bispecific Agonist Induces GITR Clustering-Mediated T Cell Activation for Cancer Immunotherapy. Nat. Cancer 2022, 3, 337–354. [Google Scholar] [CrossRef] [PubMed]
- Ménochet, K.; Yu, H.; Wang, B.; Tibbitts, J.; Hsu, C.-P.; Kamath, A.V.; Richter, W.F.; Baumann, A. Non-Human Primates in the PKPD Evaluation of Biologics: Needs and Options to Reduce, Refine, and Replace. A BioSafe White Paper. mAbs 2022, 14, 2145997. [Google Scholar] [CrossRef] [PubMed]
- Uno, H.; Alsum, P.; Zimbric, M.L.; Houser, W.D.; Thomson, J.A.; Kemnitz, J.W. Colon Cancer in Aged Captive Rhesus Monkeys (Macaca Mulatta). Am. J. Primatol. 1998, 44, 19–27. [Google Scholar] [CrossRef]
- Feng, G.; Jensen, F.E.; Greely, H.T.; Okano, H.; Treue, S.; Roberts, A.C.; Fox, J.G.; Caddick, S.; Poo, M.-M.; Newsome, W.T.; et al. Opportunities and Limitations of Genetically Modified Nonhuman Primate Models for Neuroscience Research. Proc. Natl. Acad. Sci. USA 2020, 117, 24022–24031. [Google Scholar] [CrossRef]
- Belmont, P.J.; Budinska, E.; Jiang, P.; Sinnamon, M.J.; Coffee, E.; Roper, J.; Xie, T.; Rejto, P.A.; Derkits, S.; Sansom, O.J.; et al. Cross-Species Analysis of Genetically Engineered Mouse Models of MAPK-Driven Colorectal Cancer Identifies Hallmarks of the Human Disease. Dis. Model. Mech. 2014, 7, 613–623. [Google Scholar] [CrossRef]
- Gasparello, J.; Allegretti, M.; Tremante, E.; Fabbri, E.; Amoreo, C.A.; Romania, P.; Melucci, E.; Messana, K.; Borgatti, M.; Giacomini, P.; et al. Liquid Biopsy in Mice Bearing Colorectal Carcinoma Xenografts: Gateways Regulating the Levels of Circulating Tumor DNA (ctDNA) and miRNA (ctmiRNA). J. Exp. Clin. Cancer Res. 2018, 37, 124. [Google Scholar] [CrossRef]
- Claus, C.; Ferrara, C.; Xu, W.; Sam, J.; Lang, S.; Uhlenbrock, F.; Albrecht, R.; Herter, S.; Schlenker, R.; Hüsser, T.; et al. Tumor-Targeted 4-1BB Agonists for Combination with T Cell Bispecific Antibodies as off-the-Shelf Therapy. Sci. Transl. Med. 2019, 11, eaav5989. [Google Scholar] [CrossRef]
- Ceppi, M.; Hettich, M.; Teichgräber, V.; Driessen, W.; Tuerck, D.; Marrer-Berger, E.; Evers, S.; Crameri, F.; Gomes, B.; Bachl, J.; et al. Abstract 6135: Tumor-Bearing Non-Human Primates: An Unrivaled Model for Translational Cancer Immunology Research. Cancer Res. 2020, 80, 6135. [Google Scholar] [CrossRef]
- Nagpal, R.; Shively, C.A.; Appt, S.A.; Register, T.C.; Michalson, K.T.; Vitolins, M.Z.; Yadav, H. Gut Microbiome Composition in Non-Human Primates Consuming a Western or Mediterranean Diet. Front. Nutr. 2018, 5, 28. [Google Scholar] [CrossRef] [PubMed]
- Balansard, I.; Cleverley, L.; Cutler, K.L.; Spångberg, M.G.; Thibault-Duprey, K.; Langermans, J.A. Revised Recommendations for Health Monitoring of Non-Human Primate Colonies (2018): FELASA Working Group Report. Lab. Anim. 2019, 53, 429–446. [Google Scholar] [CrossRef]
- Deycmar, S.; Gomes, B.; Charo, J.; Ceppi, M.; Cline, J.M. Spontaneous, Naturally Occurring Cancers in Non-Human Primates as a Translational Model for Cancer Immunotherapy. J. Immunother. Cancer 2023, 11, e005514. [Google Scholar] [CrossRef]
- Hasgur, S.; Aryee, K.E.; Shultz, L.D.; Greiner, D.L.; Brehm, M.A. Generation of Immunodeficient Mice Bearing Human Immune Systems by the Engraftment of Hematopoietic Stem Cells. Methods Mol. Biol. 2016, 1438, 67–78. [Google Scholar] [CrossRef]
- Blümich, S.; Zdimerova, H.; Münz, C.; Kipar, A.; Pellegrini, G. Human CD34+ Hematopoietic Stem Cell-Engrafted NSG Mice: Morphological and Immunophenotypic Features. Vet. Pathol. 2021, 58, 161–180. [Google Scholar] [CrossRef]
- Lanis, J.M.; Lewis, M.S.; Strassburger, H.; Larsen, K.; Bagby, S.M.; Dominguez, A.T.A.; Marín-Jiménez, J.A.; Pelanda, R.; Pitts, T.M.; Lang, J. Testing Cancer Immunotherapeutics in a Humanized Mouse Model Bearing Human Tumors. J. Vis. Exp. JoVE 2022, e64606. [Google Scholar] [CrossRef]
- Suto, H.; Funakoshi, Y.; Nagatani, Y.; Imamura, Y.; Toyoda, M.; Kiyota, N.; Matsumoto, H.; Tanaka, S.; Takai, R.; Hasegawa, H.; et al. Microsatellite Instability-High Colorectal Cancer Patient-Derived Xenograft Models for Cancer Immunity Research. J. Cancer Res. Ther. 2021, 17, 1358–1369. [Google Scholar] [CrossRef]
- Jin, Z.; Sinicrope, F.A. Mismatch Repair-Deficient Colorectal Cancer: Building on Checkpoint Blockade. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2022, 40, 2735–2750. [Google Scholar] [CrossRef]
- Teng, R.; Zhao, J.; Zhao, Y.; Gao, J.; Li, H.; Zhou, S.; Wang, Y.; Sun, Q.; Lin, Z.; Yang, W.; et al. Chimeric Antigen Receptor-Modified T Cells Repressed Solid Tumors and Their Relapse in an Established Patient-Derived Colon Carcinoma Xenograft Model. J. Immunother. 2019, 42, 33–42. [Google Scholar] [CrossRef]
- Chuprin, J.; Buettner, H.; Seedhom, M.O.; Greiner, D.L.; Keck, J.G.; Ishikawa, F.; Shultz, L.D.; Brehm, M.A. Humanized Mouse Models for Immuno-Oncology Research. Nat. Rev. Clin. Oncol. 2023, 20, 192–206. [Google Scholar] [CrossRef]
- Ouyang, P.; Wang, L.; Wu, J.; Tian, Y.; Chen, C.; Li, D.; Yao, Z.; Chen, R.; Xiang, G.; Gong, J.; et al. Overcoming Cold Tumors: A Combination Strategy of Immune Checkpoint Inhibitors. Front. Immunol. 2024, 15, 1344272. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Wang, X.-J.; Chen, D.-X.; Liu, X.-N.; Wang, X.-J. Humanized Mouse Model: A Review on Preclinical Applications for Cancer Immunotherapy. Am. J. Cancer Res. 2020, 10, 4568–4584. [Google Scholar] [PubMed]
- Capasso, A.; Lang, J.; Pitts, T.M.; Jordan, K.R.; Lieu, C.H.; Davis, S.L.; Diamond, J.R.; Kopetz, S.; Barbee, J.; Peterson, J.; et al. Characterization of Immune Responses to Anti-PD-1 Mono and Combination Immunotherapy in Hematopoietic Humanized Mice Implanted with Tumor Xenografts. J. Immunother. Cancer 2019, 7, 37. [Google Scholar] [CrossRef]
- Matsuda, M.; Ono, R.; Iyoda, T.; Endo, T.; Iwasaki, M.; Tomizawa-Murasawa, M.; Saito, Y.; Kaneko, A.; Shimizu, K.; Yamada, D.; et al. Human NK Cell Development in hIL-7 and hIL-15 Knockin NOD/SCID/IL2rgKO Mice. Life Sci. Alliance 2019, 2, e201800195. [Google Scholar] [CrossRef] [PubMed]
- King, M.A.; Covassin, L.; Brehm, M.A.; Racki, W.; Pearson, T.; Leif, J.; Laning, J.; Fodor, W.; Foreman, O.; Burzenski, L.; et al. Human Peripheral Blood Leucocyte Non-Obese Diabetic-Severe Combined Immunodeficiency Interleukin-2 Receptor Gamma Chain Gene Mouse Model of Xenogeneic Graft-versus-Host-like Disease and the Role of Host Major Histocompatibility Complex. Clin. Exp. Immunol. 2009, 157, 104–118. [Google Scholar] [CrossRef]
- Marín-Jiménez, J.A.; Capasso, A.; Lewis, M.S.; Bagby, S.M.; Hartman, S.J.; Shulman, J.; Navarro, N.M.; Yu, H.; Rivard, C.J.; Wang, X.; et al. Testing Cancer Immunotherapy in a Human Immune System Mouse Model: Correlating Treatment Responses to Human Chimerism, Therapeutic Variables and Immune Cell Phenotypes. Front. Immunol. 2021, 12, 607282. [Google Scholar] [CrossRef]
- Davola, M.E.; Cormier, O.; Lepard, M.; McNicol, J.; Collins, S.; Hammill, J.A.; Silvestri, C.; Bramson, J.L.; Gillgrass, A.; Mossman, K.L. Humanized Mouse Models of KRAS-Mutated Colorectal and Pancreatic Cancers with HLA-Class-I Match for Pre-Clinical Evaluation of Cancer Immunotherapies. Oncoimmunology 2025, 14, 2473163. [Google Scholar] [CrossRef]
- Ren, S.-S.; Deng, J.-W.; Hong, M.; Ren, Y.-L.; Fu, H.-J.; Liu, Y.-N.; Chen, Z. Ethical Considerations of Cellular Immunotherapy for Cancer. J. Zhejiang Univ. Sci. B 2019, 20, 23–31. [Google Scholar] [CrossRef]
- Chen, Q.; Khoury, M.; Chen, J. Expression of Human Cytokines Dramatically Improves Reconstitution of Specific Human-Blood Lineage Cells in Humanized Mice. Proc. Natl. Acad. Sci. USA 2009, 106, 21783–21788. [Google Scholar] [CrossRef]
- Brehm, M.A.; Kenney, L.L.; Wiles, M.V.; Low, B.E.; Tisch, R.M.; Burzenski, L.; Mueller, C.; Greiner, D.L.; Shultz, L.D. Lack of Acute Xenogeneic Graft- versus-Host Disease, but Retention of T-Cell Function Following Engraftment of Human Peripheral Blood Mononuclear Cells in NSG Mice Deficient in MHC Class I and II Expression. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2019, 33, 3137–3151. [Google Scholar] [CrossRef]
- Wang, J.; Tao, X.; Zhu, J.; Dai, Z.; Du, Y.; Xie, Y.; Chu, X.; Fu, G.; Lei, Z. Tumor Organoid-Immune Co-Culture Models: Exploring a New Perspective of Tumor Immunity. Cell Death Discov. 2025, 11, 195. [Google Scholar] [CrossRef] [PubMed]
- Stripecke, R.; Münz, C.; Schuringa, J.J.; Bissig, K.-D.; Soper, B.; Meeham, T.; Yao, L.-C.; Di Santo, J.P.; Brehm, M.; Rodriguez, E.; et al. Innovations, Challenges, and Minimal Information for Standardization of Humanized Mice. EMBO Mol. Med. 2020, 12, e8662. [Google Scholar] [CrossRef] [PubMed]
- Villiger, L.; Joung, J.; Koblan, L.; Weissman, J.; Abudayyeh, O.O.; Gootenberg, J.S. CRISPR Technologies for Genome, Epigenome and Transcriptome Editing. Nat. Rev. Mol. Cell Biol. 2024, 25, 464–487. [Google Scholar] [CrossRef]
- Matano, M.; Date, S.; Shimokawa, M.; Takano, A.; Fujii, M.; Ohta, Y.; Watanabe, T.; Kanai, T.; Sato, T. Modeling Colorectal Cancer Using CRISPR-Cas9-Mediated Engineering of Human Intestinal Organoids. Nat. Med. 2015, 21, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Cortina, C.; Turon, G.; Stork, D.; Hernando-Momblona, X.; Sevillano, M.; Aguilera, M.; Tosi, S.; Merlos-Suárez, A.; Stephan-Otto Attolini, C.; Sancho, E.; et al. A Genome Editing Approach to Study Cancer Stem Cells in Human Tumors. EMBO Mol. Med. 2017, 9, 869–879. [Google Scholar] [CrossRef]
- Jinnouchi, F.; Yamauchi, T.; Yurino, A.; Nunomura, T.; Nakano, M.; Iwamoto, C.; Obara, T.; Miyawaki, K.; Kikushige, Y.; Kato, K.; et al. A Human SIRPA Knock-in Xenograft Mouse Model to Study Human Hematopoietic and Cancer Stem Cells. Blood 2020, 135, 1661–1672. [Google Scholar] [CrossRef]
- Herndler-Brandstetter, D.; Shan, L.; Yao, Y.; Stecher, C.; Plajer, V.; Lietzenmayer, M.; Strowig, T.; de Zoete, M.R.; Palm, N.W.; Chen, J.; et al. Humanized Mouse Model Supports Development, Function, and Tissue Residency of Human Natural Killer Cells. Proc. Natl. Acad. Sci. USA 2017, 114, E9626–E9634. [Google Scholar] [CrossRef]
- Drost, J.; van Jaarsveld, R.H.; Ponsioen, B.; Zimberlin, C.; van Boxtel, R.; Buijs, A.; Sachs, N.; Overmeer, R.M.; Offerhaus, G.J.; Begthel, H.; et al. Sequential Cancer Mutations in Cultured Human Intestinal Stem Cells. Nature 2015, 521, 43–47. [Google Scholar] [CrossRef]
- Roper, J.; Tammela, T.; Cetinbas, N.M.; Akkad, A.; Roghanian, A.; Rickelt, S.; Almeqdadi, M.; Wu, K.; Oberli, M.A.; Sánchez-Rivera, F.J.; et al. In Vivo Genome Editing and Organoid Transplantation Models of Colorectal Cancer and Metastasis. Nat. Biotechnol. 2017, 35, 569–576. [Google Scholar] [CrossRef]
- Craft, K.; Amanor, A.; Barnett, I.; Donaldson, C.; Anegon, I.; Madduri, S.; Tang, Q.; Bility, M.T. Can Humanized Immune System Mouse and Rat Models Accelerate the Development of Cytomegalovirus-Based Vaccines Against Infectious Diseases and Cancers? Int. J. Mol. Sci. 2025, 26, 3082. [Google Scholar] [CrossRef]
- Romero-Castillo, L.; Li, T.; Do, N.-N.; Sareila, O.; Xu, B.; Hennings, V.; Xu, Z.; Svensson, C.; Oliveira-Coelho, A.; Sener, Z.; et al. Human MHC Class II and Invariant Chain Knock-in Mice Mimic Rheumatoid Arthritis with Allele Restriction in Immune Response and Arthritis Association. Adv. Sci. 2024, 11, e2401513. [Google Scholar] [CrossRef] [PubMed]
- Majji, S.; Wijayalath, W.; Shashikumar, S.; Pow-Sang, L.; Villasante, E.; Brumeanu, T.D.; Casares, S. Differential Effect of HLA Class-I versus Class-II Transgenes on Human T and B Cell Reconstitution and Function in NRG Mice. Sci. Rep. 2016, 6, 28093. [Google Scholar] [CrossRef] [PubMed]
- Khalili, S.; Mohseninia, A.; Liu, C.; Banister, C.E.; Heine, P.; Khazan, M.; Morrison, S.E.; Gokare, P.; Cowley, G.S.; Weir, B.A.; et al. Comprehensive Genomic Dependency Landscape of a Human Colon Cancer Organoid. Commun. Biol. 2025, 8, 436. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Yan, Y.; Jin, X.-K.; Pan, T.; Zhang, S.-M.; Yang, C.-H.; Rao, Z.-Y.; Zhang, X.-Z. An Orally Administered Gene Editing Nanoparticle Boosts Chemo-Immunotherapy in Colorectal Cancer. Nat. Nanotechnol. 2025. [Google Scholar] [CrossRef]
- Lou, E.; Choudhry, M.S.; Starr, T.K.; Folsom, T.D.; Bell, J.; Rathmann, B.; DeFeo, A.P.; Kim, J.; Slipek, N.; Jin, Z.; et al. Targeting the Intracellular Immune Checkpoint CISH with CRISPR-Cas9-Edited T Cells in Patients with Metastatic Colorectal Cancer: A First-in-Human, Single-Centre, Phase 1 Trial. Lancet Oncol. 2025, 26, 559–570. [Google Scholar] [CrossRef]
- Bai, W.; Xu, J.; Gu, W.; Wang, D.; Cui, Y.; Rong, W.; Du, X.; Li, X.; Xia, C.; Gan, Q.; et al. Defining Ortholog-Specific UHRF1 Inhibition by STELLA for Cancer Therapy. Nat. Commun. 2025, 16, 474. [Google Scholar] [CrossRef]
- Yuan, J.; Li, X.; Yu, S. Cancer Organoid Co-Culture Model System: Novel Approach to Guide Precision Medicine. Front. Immunol. 2022, 13, 1061388. [Google Scholar] [CrossRef]
- Mukhare, R.; Gandhi, K.A.; Kadam, A.; Raja, A.; Singh, A.; Madhav, M.; Chaubal, R.; Pandey, S.; Gupta, S. Integration of Organoids With CRISPR Screens: A Narrative Review. Biol. Cell 2025, 117, e70006. [Google Scholar] [CrossRef]
- Cogels, M.M.; Rouas, R.; Ghanem, G.E.; Martinive, P.; Awada, A.; Van Gestel, D.; Krayem, M. Humanized Mice as a Valuable Pre-Clinical Model for Cancer Immunotherapy Research. Front. Oncol. 2021, 11, 784947. [Google Scholar] [CrossRef]
- Karnik, I.; Her, Z.; Neo, S.H.; Liu, W.N.; Chen, Q. Emerging Preclinical Applications of Humanized Mouse Models in the Discovery and Validation of Novel Immunotherapeutics and Their Mechanisms of Action for Improved Cancer Treatment. Pharmaceutics 2023, 15, 1600. [Google Scholar] [CrossRef]
- Carvalho, M.R.; Barata, D.; Teixeira, L.M.; Giselbrecht, S.; Reis, R.L.; Oliveira, J.M.; Truckenmüller, R.; Habibovic, P. Colorectal Tumor-on-a-Chip System: A 3D Tool for Precision Onco-Nanomedicine. Sci. Adv. 2019, 5, eaaw1317. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, C.; Li, D.; Yao, Y. Tumor-on-a-Chip: Perfusable Vascular Incorporation Brings New Approach to Tumor Metastasis Research and Drug Development. Front. Bioeng. Biotechnol. 2022, 10, 1057913. [Google Scholar] [CrossRef]
- Haase, K.; Kamm, R.D. Advances in On-Chip Vascularization. Regen. Med. 2017, 12, 285–302. [Google Scholar] [CrossRef]
- Aleman, J.; Skardal, A. A Multi-Site Metastasis-on-a-Chip Microphysiological System for Assessing Metastatic Preference of Cancer Cells. Biotechnol. Bioeng. 2019, 116, 936–944. [Google Scholar] [CrossRef]
- Steinberg, E.; Friedman, R.; Goldstein, Y.; Friedman, N.; Beharier, O.; Demma, J.A.; Zamir, G.; Hubert, A.; Benny, O. A Fully 3D-Printed Versatile Tumor-on-a-Chip Allows Multi-Drug Screening and Correlation with Clinical Outcomes for Personalized Medicine. Commun. Biol. 2023, 6, 1157. [Google Scholar] [CrossRef] [PubMed]
- Auner, A.W.; Tasneem, K.M.; Markov, D.A.; McCawley, L.J.; Hutson, M.S. Chemical-PDMS Binding Kinetics and Implications for Bioavailability in Microfluidic Devices. Lab. Chip 2019, 19, 864–874. [Google Scholar] [CrossRef]
- Toepke, M.W.; Beebe, D.J. PDMS Absorption of Small Molecules and Consequences in Microfluidic Applications. Lab. Chip 2006, 6, 1484–1486. [Google Scholar] [CrossRef] [PubMed]
- Ong, L.J.Y.; Chia, S.; Wong, S.Q.R.; Zhang, X.; Chua, H.; Loo, J.M.; Chua, W.Y.; Chua, C.; Tan, E.; Hentze, H.; et al. A Comparative Study of Tumour-on-Chip Models with Patient-Derived Xenografts for Predicting Chemotherapy Efficacy in Colorectal Cancer Patients. Front. Bioeng. Biotechnol. 2022, 10, 952726. [Google Scholar] [CrossRef]
- Song, J.; Choi, H.; Koh, S.K.; Park, D.; Yu, J.; Kang, H.; Kim, Y.; Cho, D.; Jeon, N.L. High-Throughput 3D In Vitro Tumor Vasculature Model for Real-Time Monitoring of Immune Cell Infiltration and Cytotoxicity. Front. Immunol. 2021, 12, 733317. [Google Scholar] [CrossRef]
- Marzagalli, M.; Pelizzoni, G.; Fedi, A.; Vitale, C.; Fontana, F.; Bruno, S.; Poggi, A.; Dondero, A.; Aiello, M.; Castriconi, R.; et al. A Multi-Organ-on-Chip to Recapitulate the Infiltration and the Cytotoxic Activity of Circulating NK Cells in 3D Matrix-Based Tumor Model. Front. Bioeng. Biotechnol. 2022, 10, 945149. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, L.; Chang, M.A.; Ma, C.; Chen, W.; Chen, P. Spatiotemporal Dissection of Tumor Microenvironment via in Situ Sensing and Monitoring in Tumor-on-a-Chip. Biosens. Bioelectron. 2023, 225, 115064. [Google Scholar] [CrossRef] [PubMed]
- Hachey, S.J.; Movsesyan, S.; Nguyen, Q.H.; Burton-Sojo, G.; Tankazyan, A.; Wu, J.; Hoang, T.; Zhao, D.; Wang, S.; Hatch, M.M.; et al. An in Vitro Vascularized Micro-Tumor Model of Human Colorectal Cancer Recapitulates In Vivo Responses to Standard-of-Care Therapy. Lab. Chip 2021, 21, 1333–1351. [Google Scholar] [CrossRef] [PubMed]
- Ramos, P.; Carvalho, M.R.; Chen, W.; Yan, L.-P.; Zhang, C.-H.; He, Y.-L.; Reis, R.L.; Oliveira, J.M. Microphysiological Systems to Study Colorectal Cancer: State-of-the-Art. Biofabrication 2023, 15, 032001. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, W.; Qin, L. Mesenchymal-Mode Migration Assay and Antimetastatic Drug Screening with High-Throughput Microfluidic Channel Networks. Angew. Chem. Int. Ed. 2014, 53, 2344–2348. [Google Scholar] [CrossRef]
- Trujillo-de Santiago, G.; Flores-Garza, B.G.; Tavares-Negrete, J.A.; Lara-Mayorga, I.M.; González-Gamboa, I.; Zhang, Y.S.; Rojas-Martínez, A.; Ortiz-López, R.; Álvarez, M.M. The Tumor-on-Chip: Recent Advances in the Development of Microfluidic Systems to Recapitulate the Physiology of Solid Tumors. Mater. Basel Switz. 2019, 12, 2945. [Google Scholar] [CrossRef]
- Gil, J.F.; Moura, C.S.; Silverio, V.; Gonçalves, G.; Santos, H.A. Cancer Models on Chip: Paving the Way to Large-Scale Trial Applications. Adv. Materials. 2023, 35, e2300692. [Google Scholar] [CrossRef]
- Wan, L.; Neumann, C.A.; LeDuc, P.R. Tumor-on-a-Chip for Integrating a 3D Tumor Microenvironment: Chemical and Mechanical Factors. Lab. Chip 2020, 20, 873–888. [Google Scholar] [CrossRef]
- Monteduro, A.G.; Rizzato, S.; Caragnano, G.; Trapani, A.; Giannelli, G.; Maruccio, G. Organs-on-Chips Technologies—A Guide from Disease Models to Opportunities for Drug Development. Biosens. Bioelectron. 2023, 231, 115271. [Google Scholar] [CrossRef]
- Tajeddin, A.; Mustafaoglu, N. Design and Fabrication of Organ-on-Chips: Promises and Challenges. Micromachines 2021, 12, 1443. [Google Scholar] [CrossRef]
- Hachey, S.J.; Hughes, C.C.W. Applications of Tumor Chip Technology. Lab. Chip 2018, 18, 2893–2912. [Google Scholar] [CrossRef]
- Ziółkowska, K.; Stelmachowska, A.; Kwapiszewski, R.; Chudy, M.; Dybko, A.; Brzózka, Z. Long-Term Three-Dimensional Cell Culture and Anticancer Drug Activity Evaluation in a Microfluidic Chip. Biosens. Bioelectron. 2013, 40, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Bouquerel, C.; Dubrova, A.; Hofer, I.; Phan, D.T.T.; Bernheim, M.; Ladaigue, S.; Cavaniol, C.; Maddalo, D.; Cabel, L.; Mechta-Grigoriou, F.; et al. Bridging the Gap between Tumor-on-Chip and Clinics: A Systematic Review of 15 Years of Studies. Lab. Chip 2023, 23, 3906–3935. [Google Scholar] [CrossRef] [PubMed]
- Song, S.-H.; Jeong, S. State-of-the-Art in High Throughput Organ-on-Chip for Biotechnology and Pharmaceuticals. Clin. Exp. Reprod. Med. 2024, 52, 114–124. [Google Scholar] [CrossRef]
- Fuchs, S.; Johansson, S.; Tjell, A.Ø.; Werr, G.; Mayr, T.; Tenje, M. In-Line Analysis of Organ-on-Chip Systems with Sensors: Integration, Fabrication, Challenges, and Potential. ACS Biomater. Sci. Eng. 2021, 7, 2926–2948. [Google Scholar] [CrossRef]
- Shirure, V.S.; Bi, Y.; Curtis, M.B.; Lezia, A.; Goedegebuure, M.M.; Goedegebuure, S.P.; Aft, R.; Fields, R.C.; George, S.C. Tumor-on-a-Chip Platform to Investigate Progression and Drug Sensitivity in Cell Lines and Patient-Derived Organoids. Lab. Chip 2018, 18, 3687–3702. [Google Scholar] [CrossRef]
- Herland, A.; Maoz, B.M.; Das, D.; Somayaji, M.R.; Prantil-Baun, R.; Novak, R.; Cronce, M.; Huffstater, T.; Jeanty, S.S.F.; Ingram, M.; et al. Quantitative Prediction of Human Pharmacokinetic Responses to Drugs via Fluidically Coupled Vascularized Organ Chips. Nat. Biomed. Eng. 2020, 4, 421–436. [Google Scholar] [CrossRef]
- Teixeira, S.G.; Houeto, P.; Gattacceca, F.; Petitcollot, N.; Debruyne, D.; Guerbet, M.; Guillemain, J.; Fabre, I.; Louin, G.; Salomon, V. National Reflection on Organs-on-Chip for Drug Development: New Regulatory Challenges. Toxicol. Lett. 2023, 388, 1–12. [Google Scholar] [CrossRef]
- Yates, J.; Van Allen, E.M. New Horizons at the Interface of Artificial Intelligence and Translational Cancer Research. Cancer Cell 2025, 43, 708–727. [Google Scholar] [CrossRef]
- Zhu, M.; Zhai, Z.; Wang, Y.; Chen, F.; Liu, R.; Yang, X.; Zhao, G. Advancements in the Application of Artificial Intelligence in the Field of Colorectal Cancer. Front. Oncol. 2025, 15, 1499223. [Google Scholar] [CrossRef]
- Janssen, B.V.; Oteman, B.; Ali, M.; Valkema, P.A.; Adsay, V.; Basturk, O.; Chatterjee, D.; Chou, A.; Crobach, S.; Doukas, M.; et al. Artificial Intelligence-Based Segmentation of Residual Pancreatic Cancer in Resection Specimens Following Neoadjuvant Treatment (ISGPP-2). Am. J. Surg. Pathol. 2024, 48, 1108–1116. [Google Scholar] [CrossRef]
- Liu, J.; Islam, M.T.; Sang, S.; Qiu, L.; Xing, L. Biology-Aware Mutation-Based Deep Learning for Outcome Prediction of Cancer Immunotherapy with Immune Checkpoint Inhibitors. npj Precis. Oncol. 2023, 7, 117. [Google Scholar] [CrossRef] [PubMed]
- Ramzy, G.M.; Norkin, M.; Koessler, T.; Voirol, L.; Tihy, M.; Hany, D.; McKee, T.; Ris, F.; Buchs, N.; Docquier, M.; et al. Platform Combining Statistical Modeling and Patient-Derived Organoids to Facilitate Personalized Treatment of Colorectal Carcinoma. J. Exp. Clin. Cancer Res. CR 2023, 42, 79. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wei, J.; Chen, Z.; Zhang, T.; Zhong, J.; Zhong, B.; Yang, P.; Li, W.; Cao, J. Establishment of Multiple Diagnosis Models for Colorectal Cancer with Artificial Neural Networks. Oncol. Lett. 2019, 17, 3314–3322. [Google Scholar] [CrossRef]
- Ho, C.; Zhao, Z.; Chen, X.F.; Sauer, J.; Saraf, S.A.; Jialdasani, R.; Taghipour, K.; Sathe, A.; Khor, L.-Y.; Lim, K.-H.; et al. A Promising Deep Learning-Assistive Algorithm for Histopathological Screening of Colorectal Cancer. Sci. Rep. 2022, 12, 2222. [Google Scholar] [CrossRef] [PubMed]
- Amodio, V.; Yaeger, R.; Arcella, P.; Cancelliere, C.; Lamba, S.; Lorenzato, A.; Arena, S.; Montone, M.; Mussolin, B.; Bian, Y.; et al. EGFR Blockade Reverts Resistance to KRAS G12C Inhibition in Colorectal Cancer. Cancer Discov. 2020, 10, 1129–1139. [Google Scholar] [CrossRef]
- Kong, J.; Lee, H.; Kim, D.; Han, S.K.; Ha, D.; Shin, K.; Kim, S. Network-Based Machine Learning in Colorectal and Bladder Organoid Models Predicts Anti-Cancer Drug Efficacy in Patients. Nat. Commun. 2020, 11, 5485. [Google Scholar] [CrossRef]
- Park, M.; Kwon, J.; Kong, J.; Moon, S.M.; Cho, S.; Yang, K.Y.; Jang, W.I.; Kim, M.S.; Kim, Y.; Shin, U.S. A Patient-Derived Organoid-Based Radiosensitivity Model for the Prediction of Radiation Responses in Patients with Rectal Cancer. Cancers 2021, 13, 3760. [Google Scholar] [CrossRef]
- Cao, R.; Yang, F.; Ma, S.-C.; Liu, L.; Zhao, Y.; Li, Y.; Wu, D.-H.; Wang, T.; Lu, W.-J.; Cai, W.-J.; et al. Development and Interpretation of a Pathomics-Based Model for the Prediction of Microsatellite Instability in Colorectal Cancer. Theranostics 2020, 10, 11080–11091. [Google Scholar] [CrossRef]
- Yamashita, R.; Long, J.; Longacre, T.; Peng, L.; Berry, G.; Martin, B.; Higgins, J.; Rubin, D.L.; Shen, J. Deep Learning Model for the Prediction of Microsatellite Instability in Colorectal Cancer: A Diagnostic Study. Lancet Oncol. 2021, 22, 132–141. [Google Scholar] [CrossRef]
- Schmauch, B.; Romagnoni, A.; Pronier, E.; Saillard, C.; Maillé, P.; Calderaro, J.; Kamoun, A.; Sefta, M.; Toldo, S.; Zaslavskiy, M.; et al. A Deep Learning Model to Predict RNA-Seq Expression of Tumours from Whole Slide Images. Nat. Commun. 2020, 11, 3877. [Google Scholar] [CrossRef]
- Ozik, J.; Collier, N.; Heiland, R.; An, G.; Macklin, P. Learning-Accelerated Discovery of Immune-Tumour Interactions. Mol. Syst. Des. Eng. 2019, 4, 747–760. [Google Scholar] [CrossRef] [PubMed]
- Sakai, S.A.; Saeki, K.; Chi, S.; Hamaya, Y.; Du, J.; Nakamura, M.; Hojo, H.; Kojima, T.; Nakamura, Y.; Bando, H.; et al. Mathematical Modeling Predicts Optimal Immune Checkpoint Inhibitor and Radiotherapy Combinations and Timing of Administration. Cancer Immunol. Res. 2025, 13, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Castorina, P.; Castiglione, F.; Ferini, G.; Forte, S.; Martorana, E.; Giuffrida, D. Mathematical Modeling of the Synergistic Interplay of Radiotherapy and Immunotherapy in Anti-Cancer Treatments. Front. Immunol. 2024, 15, 1373738. [Google Scholar] [CrossRef] [PubMed]
- Novielli, P.; Romano, D.; Magarelli, M.; Bitonto, P.D.; Diacono, D.; Chiatante, A.; Lopalco, G.; Sabella, D.; Venerito, V.; Filannino, P.; et al. Explainable Artificial Intelligence for Microbiome Data Analysis in Colorectal Cancer Biomarker Identification. Front. Microbiol. 2024, 15, 1348974. [Google Scholar] [CrossRef]
- Ferrández, M.C.; Golla, S.S.V.; Eertink, J.J.; Wiegers, S.E.; Zwezerijnen, G.J.C.; Heymans, M.W.; Lugtenburg, P.J.; Kurch, L.; Hüttmann, A.; Hanoun, C.; et al. Validation of an Artificial Intelligence-Based Prediction Model Using 5 External PET/CT Datasets of Diffuse Large B-Cell Lymphoma. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2024, 65, 1802–1807. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Cai, C.; Ding, Y.; Kim, R.S.; Lipchik, C.; Gavin, P.G.; Yothers, G.; Allegra, C.J.; Petrelli, N.J.; et al. Machine Learning Predicts Oxaliplatin Benefit in Early Colon Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2024, 42, 1520–1530. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, Z.; Liu, L.; Zhao, Y.; Liu, Z.; Zhang, C.; Qi, H.; Feng, J.; Yao, P. Explainable Machine Learning for Predicting Lung Metastasis of Colorectal Cancer. Sci. Rep. 2025, 15, 13611. [Google Scholar] [CrossRef]
- Sommariva, S.; Caviglia, G.; Ravera, S.; Frassoni, F.; Benvenuto, F.; Tortolina, L.; Castagnino, N.; Parodi, S.; Piana, M. Computational Quantification of Global Effects Induced by Mutations and Drugs in Signaling Networks of Colorectal Cancer Cells. Sci. Rep. 2021, 11, 19602. [Google Scholar] [CrossRef]
- Kleppe, A.; Skrede, O.-J.; De Raedt, S.; Hveem, T.S.; Askautrud, H.A.; Jacobsen, J.E.; Church, D.N.; Nesbakken, A.; Shepherd, N.A.; Novelli, M.; et al. A Clinical Decision Support System Optimising Adjuvant Chemotherapy for Colorectal Cancers by Integrating Deep Learning and Pathological Staging Markers: A Development and Validation Study. Lancet Oncol. 2022, 23, 1221–1232. [Google Scholar] [CrossRef]
- Muhammad, D.; Bendechache, M. Unveiling the Black Box: A Systematic Review of Explainable Artificial Intelligence in Medical Image Analysis. Comput. Struct. Biotechnol. J. 2024, 24, 542–560. [Google Scholar] [CrossRef]
- Norori, N.; Hu, Q.; Aellen, F.M.; Faraci, F.D.; Tzovara, A. Addressing Bias in Big Data and AI for Health Care: A Call for Open Science. Patterns 2021, 2, 100347. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Sabrina, F.; Fan, Z.; Sohail, S. A Review of Privacy Enhancement Methods for Federated Learning in Healthcare Systems. Int. J. Environ. Res. Public Health 2023, 20, 6539. [Google Scholar] [CrossRef] [PubMed]
- Xianyu, Z.; Correia, C.; Ung, C.Y.; Zhu, S.; Billadeau, D.D.; Li, H. The Rise of Hypothesis-Driven Artificial Intelligence in Oncology. Cancers 2024, 16, 822. [Google Scholar] [CrossRef]
- International Cancer Genome Consortium Empowers Cancer Researchers Everywhere with New Cloud Computing Platform. Ontario Institute for Cancer Research. 2021. Available online: https://oicr.on.ca/international-cancer-genome-consortium-empowers-cancer-researchers-everywhere-with-new-cloud-computing-platform/ (accessed on 15 June 2025).
- Nunes, L.; Li, F.; Wu, M.; Luo, T.; Hammarström, K.; Torell, E.; Ljuslinder, I.; Mezheyeuski, A.; Edqvist, P.-H.; Löfgren-Burström, A.; et al. Prognostic Genome and Transcriptome Signatures in Colorectal Cancers. Nature 2024, 633, 137–146. [Google Scholar] [CrossRef]
- Bi, W.L.; Hosny, A.; Schabath, M.B.; Giger, M.L.; Birkbak, N.J.; Mehrtash, A.; Allison, T.; Arnaout, O.; Abbosh, C.; Dunn, I.F.; et al. Artificial Intelligence in Cancer Imaging: Clinical Challenges and Applications. CA Cancer J. Clin. 2019, 69, 127–157. [Google Scholar] [CrossRef]
- Viceconti, M.; Pappalardo, F.; Rodriguez, B.; Horner, M.; Bischoff, J.; Musuamba Tshinanu, F. In Silico Trials: Verification, Validation and Uncertainty Quantification of Predictive Models Used in the Regulatory Evaluation of Biomedical Products. Methods 2021, 185, 120–127. [Google Scholar] [CrossRef]
- Zhu, Z.; Shen, J.; Ho, P.C.-L.; Hu, Y.; Ma, Z.; Wang, L. Transforming Cancer Treatment: Integrating Patient-Derived Organoids and CRISPR Screening for Precision Medicine. Front. Pharmacol. 2025, 16, 1563198. [Google Scholar] [CrossRef]
- Hantel, A.; Clancy, D.D.; Kehl, K.L.; Marron, J.M.; Van Allen, E.M.; Abel, G.A. A Process Framework for Ethically Deploying Artificial Intelligence in Oncology. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2022, 40, 3907–3911. [Google Scholar] [CrossRef]
- Health, C. for D. and R. Artificial Intelligence and Machine Learning in Software as a Medical Device. United States Food and Drug Administration (FDA). 2025. Available online: https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device (accessed on 15 June 2025).
- Kolla, L.; Gruber, F.K.; Khalid, O.; Hill, C.; Parikh, R.B. The Case for AI-Driven Cancer Clinical Trials—The Efficacy Arm in Silico. Biochim. Biophys. Acta Rev. Cancer 2021, 1876, 188572. [Google Scholar] [CrossRef]
- Fang, G.; Lu, H.; Al-Nakashli, R.; Chapman, R.; Zhang, Y.; Ju, L.A.; Lin, G.; Stenzel, M.H.; Jin, D. Enabling Peristalsis of Human Colon Tumor Organoids on Microfluidic Chips. Biofabrication 2021, 14, 015006. [Google Scholar] [CrossRef]
- Pinho, D.; Santos, D.; Vila, A.; Carvalho, S. Establishment of Colorectal Cancer Organoids in Microfluidic-Based System. Micromachines 2021, 12, 497. [Google Scholar] [CrossRef] [PubMed]
- Kaladharan, K.; Ouyang, C.-H.; Yang, H.-Y.; Tseng, F.-G. Selectively Cross-Linked Hydrogel-Based Cocktail Drug Delivery Micro-Chip for Colon Cancer Combinatorial Drug Screening Using AI-CSR Platform for Precision Medicine. Lab. Chip 2024, 24, 4766–4777. [Google Scholar] [CrossRef] [PubMed]
- Bekkar, A.; Santuari, L.; Xenarios, I.; Arpat, B. Integrating Knowledge, Omics and AI to Develop Patient-Specific Virtual Avatars. bioRxiv 2024, 2024.11.07.622508. [Google Scholar]
- Nguyen, L.C.; Naulaerts, S.; Bruna, A.; Ghislat, G.; Ballester, P.J. Predicting Cancer Drug Response In Vivo by Learning an Optimal Feature Selection of Tumour Molecular Profiles. Biomedicines 2021, 9, 1319. [Google Scholar] [CrossRef]
- Lee, R.Y.; Wu, Y.; Goh, D.; Tan, V.; Ng, C.W.; Lim, J.C.T.; Lau, M.C.; Yeong, J.P.S. Application of Artificial Intelligence to In Vitro Tumor Modeling and Characterization of the Tumor Microenvironment. Adv. Healthc. Mater. 2023, 12, e2202457. [Google Scholar] [CrossRef]
- Penarete-Acosta, D.; Stading, R.; Emerson, L.; Horn, M.; Chakraborty, S.; Han, A.; Jayaraman, A. A Microfluidic Co-Culture Model for Investigating Colonocytes-Microbiota Interactions in Colorectal Cancer. Lab. Chip 2024, 24, 3690–3703. [Google Scholar] [CrossRef]
- Kenneth, M.J.; Wu, C.-C.; Fang, C.-Y.; Hsu, T.-K.; Lin, I.-C.; Huang, S.-W.; Chiu, Y.-C.; Hsu, B.-M. Exploring the Impact of Chemotherapy on the Emergence of Antibiotic Resistance in the Gut Microbiota of Colorectal Cancer Patients. Antibiotics 2025, 14, 264. [Google Scholar] [CrossRef]
- Neal, J.T.; Li, X.; Zhu, J.; Giangarra, V.; Grzeskowiak, C.L.; Ju, J.; Liu, I.H.; Chiou, S.-H.; Salahudeen, A.A.; Smith, A.R.; et al. Organoid Modeling of the Tumor Immune Microenvironment. Cell 2018, 175, 1972–1988.e16. [Google Scholar] [CrossRef]
- Li, P.; Huang, M.; Li, M.; Li, G.; Ma, Y.; Zhao, Y.; Wang, X.; Zhang, Y.; Shi, C. Combining Molecular Characteristics and Therapeutic Analysis of PDOs Predict Clinical Responses and Guide PDAC Personalized Treatment. J. Exp. Clin. Cancer Res. CR 2025, 44, 72. [Google Scholar] [CrossRef]
- Taglieri, M.; Di Gregorio, L.; Matis, S.; Uras, C.R.M.; Ardy, M.; Casati, S.; Marchese, M.; Poggi, A.; Raffaghello, L.; Benelli, R. Colorectal Organoids: Models, Imaging, Omics, Therapy, Immunology, and Ethics. Cells 2025, 14, 457. [Google Scholar] [CrossRef]
- Moshksayan, K.; Khanna, R.; Camli, B.; Yakay, Z.N.; Harihara, A.; Zdyrski, C.; Mondal, S.; Hegarty, E.; Mochel, J.P.; Allenspach, K.; et al. OrganoidChip+: A Microfluidic Platform for Culturing, Staining, Immobilization, and High-Content Imaging of Adult Stem Cell-Derived Organoids. bioRxiv 2025, 2025.06.02.657499. [Google Scholar] [CrossRef]
- Dadgar-Zankbar, L.; Elahi, Z.; Shariati, A.; Khaledi, A.; Razavi, S.; Khoshbayan, A. Exploring the Role of Fusobacterium Nucleatum in Colorectal Cancer: Implications for Tumor Proliferation and Chemoresistance. Cell Commun. Signal. CCS 2024, 22, 547. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Sun, L.; Chen, J.; Lyu, Z.; Yuan, C.; Jiang, X. Advantages of the Zebrafish Tumor Xenograft Model: The Evaluation of Efficacy in Cancer Therapy and the Application to the Study of lncRNAs. Front. Immunol. 2024, 15, 1483192. [Google Scholar] [CrossRef] [PubMed]
- Das, K.; Paltani, M.; Tripathi, P.K.; Kumar, R.; Verma, S.; Kumar, S.; Jain, C.K. Current Implications and Challenges of Artificial Intelligence Technologies in Therapeutic Intervention of Colorectal Cancer. Explor. Target. Anti-Tumor Ther. 2023, 4, 1286–1300. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate Structure Prediction of Biomolecular Interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Wang, Q.; Yuan, F.; Zuo, X.; Li, M. Breakthroughs and Challenges of Organoid Models for Assessing Cancer Immunotherapy: A Cutting-Edge Tool for Advancing Personalised Treatments. Cell Death Discov. 2025, 11, 222. [Google Scholar] [CrossRef]
- Yoo, S.; Lee, H.J. Spheroid-Hydrogel-Integrated Biomimetic System: A New Frontier in Advanced Three-Dimensional Cell Culture Technology. Cells Tissues Organs 2025, 214, 128–147. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, X.; Yu, S. Organoids Derived from Metastatic Cancers: Present and Future. Heliyon 2024, 10, e30457. [Google Scholar] [CrossRef]
- Lücke, J.; Mercanoglu, B.; Zhang, T.; Zazara, D.E.; Zigmond, E.; Seeger, P.; Mann, O.; Izbicki, J.R.; Hackert, T.; Huber, S.; et al. Mouse Models of Spontaneous Liver and Lung Metastasis for Colorectal Cancer. STAR Protoc. 2024, 5, 102811. [Google Scholar] [CrossRef]
- Ding, S.; Xu, S.; Fang, J.; Jiang, H. The Protective Effect of Polyphenols for Colorectal Cancer. Front. Immunol. 2020, 11, 1407. [Google Scholar] [CrossRef]
- Brockmueller, A.; Sajeev, A.; Koklesova, L.; Samuel, S.M.; Kubatka, P.; Büsselberg, D.; Kunnumakkara, A.B.; Shakibaei, M. Resveratrol as Sensitizer in Colorectal Cancer Plasticity. Cancer Metastasis Rev. 2024, 43, 55–85. [Google Scholar] [CrossRef] [PubMed]
- Patnaik, R.; Varghese, R.L.; Banerjee, Y. Selective Modulation of PAR-2-Driven Inflammatory Pathways by Oleocanthal: Attenuation of TNF-α and Calcium Dysregulation in Colorectal Cancer Models. Int. J. Mol. Sci. 2025, 26, 2934. [Google Scholar] [CrossRef] [PubMed]
- Jannati, S.; Patel, A.; Patnaik, R.; Banerjee, Y. Oleocanthal as a Multifunctional Anti-Cancer Agent: Mechanistic Insights, Advanced Delivery Strategies, and Synergies for Precision Oncology. Int. J. Mol. Sci. 2025, 26, 5521. [Google Scholar] [CrossRef]
- Liu, X.; Su, Q.; Zhang, X.; Yang, W.; Ning, J.; Jia, K.; Xin, J.; Li, H.; Yu, L.; Liao, Y.; et al. Recent Advances of Organ-on-a-Chip in Cancer Modeling Research. Biosensors 2022, 12, 1045. [Google Scholar] [CrossRef]
- Komen, J.; Westerbeek, E.Y.; Kolkman, R.W.; Roesthuis, J.; Lievens, C.; van den Berg, A.; van der Meer, A.D. Controlled Pharmacokinetic Anti-Cancer Drug Concentration Profiles Lead to Growth Inhibition of Colorectal Cancer Cells in a Microfluidic Device. Lab. Chip 2020, 20, 3167–3178. [Google Scholar] [CrossRef]
- Devarasetty, M.; Dominijanni, A.; Herberg, S.; Shelkey, E.; Skardal, A.; Soker, S. Simulating the Human Colorectal Cancer Microenvironment in 3D Tumor-Stroma Co-Cultures In Vitro and In Vivo. Sci. Rep. 2020, 10, 9832. [Google Scholar] [CrossRef]
- Durinikova, E.; Buzo, K.; Arena, S. Preclinical Models as Patients’ Avatars for Precision Medicine in Colorectal Cancer: Past and Future Challenges. J. Exp. Clin. Cancer Res. CR 2021, 40, 185. [Google Scholar] [CrossRef]
In Vitro Model | 2D Cell Lines | Cell Line Spheroids (MCTS) | Patient-Derived Organoids (PDOs)—Standard Culture | Advanced PDO Models (Co-Culture/OoC/ALI) |
---|---|---|---|---|
Source Material | Immortalized lines (Patient/Xenograft origin) | Immortalized lines | Patient Tissue (Tumor/Normal; Biopsy/Resection) | Patient Tissue + TME Cells/Microfluidic Device |
Generation Method | Monolayer culture on plastic/glass | Self-aggregation (Scaffold-free/based) | Self-organization from stem/progenitor cells in ECM | Co-culture, Microfluidics, ALI methods |
3D Architecture | Absent (Monolayer) | Basic (Spherical aggregate) | Complex (Organotypic, Glandular) | Complex + TME integration/Perfusion |
Cellular Heterogeneity (Epithelial) | Low (Often clonal) | Low-Medium (Source line dependent) | High (Reflects patient tumor) | High (Reflects patient tumor) |
TME Representation | Minimal/Absent | Limited (Absent unless co-cultured) | Limited (Epithelial only) | Medium-High (Incorporates TME cells/factors) |
Cell–Cell Interactions | Limited/Artificial | Moderate (3D proximity) | High (Physiological) | High (Physiological + TME) |
Cell-ECM Interactions | Artificial (Plastic) | Limited (Endogenous ECM) | Medium (ECM substitute—Matrigel) | Medium-High (ECM substitute + TME matrix/forces) |
Physiological Gradients | Minimal | Present (Size-dependent) | Present (Complex morphology) | Present and Controllable (OoC) |
Genetic/Epigenetic Fidelity | Low (Drift prone) | Low-Medium (Source line dependent) | Very High (Closely matches patient) | Very High (Maintains PDO fidelity) |
Scalability | ★★★★★ (Very High) | ★★★☆☆ (Medium, Method-dependent) | ★★☆☆☆ (Low-Medium) | ★☆☆☆☆ (Low, Complex) |
Throughput | ★★★★★ (Very High) | ★★★☆☆ (Medium) | ★★☆☆☆ (Low-Medium, Improving) | ★☆☆☆☆ (Low) |
Reproducibility | ★★★★☆ (High) | ★★☆☆☆ (Variable, Size control issue) | ★★☆☆☆ (Patient variability, Protocol dependent) | ★☆☆☆☆ (Complex, Less standardized) |
Cost | ★★★★★ (Very Low) | ★★★★☆ (Low-Medium) | ★★☆☆☆ (High) | ★☆☆☆☆ (Very High) |
Time Requirement | ★★★★★ (Short) | ★★★★☆ (Moderate) | ★★☆☆☆ (Long establishment, Moderate testing) | ★☆☆☆☆ (Long, Complex setup) |
Technical Expertise Required | ★★★★★ (Minimal) | ★★★★☆ (Moderate) | ★★☆☆☆ (High) | ★☆☆☆☆ (Very High) |
Suitability: HTS | ★★★★☆ (Standard, but low relevance) | ★★★☆☆ (Feasible, better relevance) | ★★☆☆☆ (Possible, improving) | ★☆☆☆☆ (Difficult) |
Suitability: Personalized Med. | ☆☆☆☆☆ (Not Suitable) | ☆☆☆☆☆ (Not Suitable) | ★★★★★ (Excellent, Predictive potential) | ★★★★★ (Potentially enhanced prediction) |
Suitability: Mechanistic Studies | ★★☆☆☆ (Basic pathways) | ★★★☆☆ (Gradient/3D effects) | ★★★★☆ (Patient-relevant context) | ★★★★★ (Complex interactions, TME) |
Suitability: Metastasis Studies | ★☆☆☆☆ (Limited) | ★★☆☆☆ (Invasion assays) | ★★★☆☆ (Invasion, Requires PDOX/OoC) | ★★★★☆ (OoC for cascade steps) |
Suitability: Biomarker Discovery | ★☆☆☆☆ (Low relevance) | ★★☆☆☆ (Limited) | ★★★★★ (Excellent, High fidelity) | ★★★★★ (Excellent, TME context) |
Suitability: IO/TME Studies | ☆☆☆☆☆ (Not Suitable) | ★★☆☆☆ (Heterotypic spheroids only) | ★☆☆☆☆ (Requires co-culture) | ★★★★★ (Ideal platform) |
Clinical Predictivity | ★☆☆☆☆ (Poor) | ★★☆☆☆ (Limited evidence) | ★★★★☆ (Good, Validated correlations) | ★★★★★ (Potentially Highest, Needs validation) |
Key Limitations | Relevance, Simplicity | Complexity, Fidelity, TME | TME absence, Scalability, Cost, TAT, Standardization | Complexity, Cost, Standardization, Throughput |
Species | Model Description | Human CRC Relevance | Genetic Manipulability | Cost and Maintenance | Imaging and Access to Tumors | Translational Utility | Major Limitations | Ref |
---|---|---|---|---|---|---|---|---|
Mouse (Mus musculus) | 20–30 g, ~2 yr lifespan; used in CRC research (carcinogen-induced, GEMMs, xenografts, syngeneic, orthotopic implants) | High relevance for CRC; ~95% genetic homology. Murine tumors recapitulate key aspects of human CRC, including polyposis and liver metastasis. | Highly tractable for genetic engineering (transgenic, knockout, CRISPR). Rapid breeding. | Moderate cost; more cost-effective than larger animals, but can be expensive for sophisticated GEMMs or carcinogen-induced models. | Small size necessitates advanced imaging (endoscopy, bioluminescence, micro-CT/MRI). Subcutaneous tumors are readily measurable. | Primary platform for preclinical therapeutic testing. Facilitates toxicology and pharmacokinetic studies. Critical for evaluating immune therapies. | Species-specific differences in immune system, metabolism, and gut microbiome. Many models only partially mimic human CRC (e.g., ApcMin model). Scale limitations. Predictive validity varies. | [13,14,15] |
Zebrafish (Danio rerio) | Small aquatic vertebrates (3–5 cm); optically transparent embryos; rapid life cycle (3–4 months). Genetic models (APC/KRAS mutation) and xenograft models used for CRC. | Moderate relevance for human CRC. Conserved cell types and pathways. Tumors share morphological and molecular characteristics with human adenomas. Cancer cell behaviors (migration, angiogenesis) parallel mammals. | Significant genetic tractability; facile manipulation via external fertilization. Efficient gene knockout (CRISPR, morpholino). Large clutch sizes facilitate high-throughput studies. | Highly cost-effective; dozens of adult fish use same space as one mouse. Simple aquatic setups for embryos/larvae. | Excellent visualization in larvae due to transparency. Real-time in vivo imaging of tumor cells. | Moderate translational utility; serves as discovery tools and filters. Valuable for drug discovery and screening. Excellent for studying early tumorigenesis and cell migration. | Temperature and physiology mismatch (xenografts tested at 28 °C vs. 37 °C human). Lack of adaptive immune system in early larval stages. Fish-specific biology (aquatic microbiome, regenerative capacity) can lead to non-human tumor responses. Adult fish tumors are difficult to manipulate/assess without sacrifice | [16,17,18] |
Drosophila (Fruit fly) | ~3 mm, ~10-day life cycle; invertebrate model for intestinal tumorigenesis. Engineered loss of tumor suppressors (e.g., APC homolog) or activation of oncogenes (e.g., RasV12) in intestinal stem cells. | Low-to-moderate relevance due to evolutionary distance. Conserves core cancer pathways (e.g., Wnt, EGFR/Ras, Hippo, JNK). Fly midgut tumors mimic cellular aspects of human CRC. | Unparalleled genetic control; facile combination of multiple mutations. Tissue-specific gene expression/knockdown (Gal4-UAS, RNAi libraries). Whole-genome screens feasible; CRISPR routine. | Exceptionally inexpensive; simple media; basic experiments need only dissection microscopes. Large-scale screens economically feasible. | Limited in vivo imaging without advanced techniques; typically post-mortem dissection. Fluorescent reporters with confocal microscopy allow cellular-resolution. | Low direct translational value; primarily for gene discovery and pathway dissection. Can inform mammalian research by identifying novel targets. Limited for direct drug efficacy testing. | Lack adaptive immunity. Drastically different physiology; no true colon structure or similar microbiome. Scale and endpoint assessment challenging. Some human CRC drivers have divergent roles or no clear fly counterparts. | [19,20,21] |
Dog (Canis familiaris) | Pet dogs (10–40 kg) with low incidence (<1%) of spontaneous CRC. Tumors often in distal colon/rectum, mimicking human adenoma-carcinoma sequence. | Highly relevant for specific CRC aspects. Share mammalian physiology, diet, environmental exposures. Spontaneous tumors develop over years with intact immune system, mirroring human sporadic CRC. Histologically and molecularly similar to human CRC. | Very limited genetic manipulation; relies on natural variation. No transgenic/knockout dogs for CRC. Ethical considerations preclude induced models. | Highly expensive due to space, food, and veterinary care. Comparative oncology clinical trials are costly. | Good opportunities for tumor assessment; full human clinical imaging modalities (colonoscopies, CT/MRI). Allows in vivo monitoring of tumor development/treatment response. Access to tumor tissue via biopsy/surgery. | High translational potential, especially for immunotherapies and drug side effects. Drug pharmacokinetics often scale to humans. Offer insights into long-term outcomes in immunocompetent, heterogeneous population. | Low incidence and limited case availability. Genetic heterogeneity. Ethical constraints limit tissue collection and experimental design (no untreated controls). Disease differences (low incidence, distinct risk factors) | [22,23,24] |
Pig (Sus scrofa) | Large omnivorous mammals (50–300 kg; mini-pigs ~20–40 kg); long lifespan (10–15 years). Genetically engineered models (e.g., APC^1311 mutation, Oncopig with KRAS/TP53 mutations). Spontaneous CRC rare. | High relevance due to anatomical/functional similarities to human colon. Porcine polyps/tumors resemble human lesions in structure/molecular alterations. Greater metabolic and microbiome similarities to humans than rodents. Recapitulates clinical scenario of human tumors in size, location, progression. | Low-to-moderate challenge. Gene-editing (CRISPR) and cloning enabled mutant lines, but slower breeding. Conditional/inducible systems enhance control. Still far from ease of mouse genetic manipulation. | Exceptionally expensive due to high housing and feed costs. Veterinary care adds significantly. Few specialized centers. | Fair opportunities for tumor assessment; accommodates identical clinical imaging tools as humans (colonoscopy, CT, MRI, PET). Multiple biopsies and experimental surgeries feasible. Longitudinal access for biopsies over time. | Excellent preclinical validation model with high translational potential. Human-equivalent scale allows testing of new endoscopic techniques, surgical devices, radiotherapy. Pharmacokinetic/toxicity studies often more predictive than rodent data. | Small sample sizes due to high costs. Long tumor latency. Incomplete disease spectrum (APC-mutant pigs primarily adenomas). Handling/welfare concerns (requires anesthesia). Fewer molecular tools compared to mice. | [25,26,27] |
Non-Human Primate (e.g., Rhesus macaque) | No standard experimental CRC model; spontaneous cases observed. Some rhesus macaques develop early-onset CRC with MMR deficiencies (Lynch syndrome analog). Cotton-top tamarins develop ulcerative colitis and subsequent CRC. Long lifespan (20–30 years). | Very high relevance due to close physiological similarities. Spontaneous tumors have nearly identical histology and metastatic patterns to human CRC. Molecular genetics mirror human pathways (MMR, APC). Colonic structure, microbiota, aging processes highly comparable. | Extremely limited genetic manipulation. No ability to create/breed NHPs specifically for CRC research. Relies on serendipitous findings or colitis induction. | Extremely high cost; specialized primate facilities, skilled veterinary staff. Annual care can be tens of thousands of dollars. | Good opportunities for assessment; identical clinical diagnostic approaches as humans (endoscopy, biopsy, full imaging). Allows in vivo monitoring. Longitudinal monitoring possible for rare spontaneous cases. | Moderate direct translational utility, primarily due to close immunological similarity. Valuable for testing preventive vaccines or immune interventions. Important for assessing therapy safety. | Ethical and regulatory barriers severely restrict intentional CRC research. Minuscule sample sizes. Confounding factors within NHP colonies (pathogens, diet, stress). Very long timelines. Public scrutiny of primate experiments | [28,29] |
Dimension | Humanized Mouse Models | Microfluidic Tumor-on-Chip Systems | AI-Augmented Computational Frameworks | Cross-Scale Integrated Models/Hybrid Models |
---|---|---|---|---|
Scientific Rationale | Reconstitution of human immune system in immunodeficient mice to study tumor–immune dynamics. | Recapitulation of 3D tumor microenvironment with perfusion, multicellularity, and biomechanical forces. | Simulation and analysis of CRC using large-scale multi-omics, clinical, and imaging datasets. | Hybrid platforms combining models at various scales (subcellular to systemic) to study CRC progression, crosstalk, metastasis, and treatment response |
Model Design | NSG or IL2rγ−/− mice engrafted with CD34+ HSCs or PBMCs and implanted with CRC PDXs. | Microfabricated chambers lined with vasculature, seeded with CRC organoids/spheroids under flow conditions. | Ensemble of ML/DL models trained on genomic, proteomic, imaging, and clinical datasets for predictive tasks. | Integrates 3D organoid cultures, microfluidic (organ-on-chip) systems, and AI-based simulations (multi-omics, ML optimization) |
Experimental Utility | Enables immunotherapy evaluation, adoptive T cell transfer, and immune profiling in vivo. | Captures real-time cell behavior, drug penetration, immune–tumor interaction, and metastasis simulation. | Predicts drug response, treatment outcomes, metastasis risk, and reveals resistance mechanisms. | Enables real-time tracking, modulation of tumor progression, immune-microbiome-tumor crosstalk, and treatment responses. Captures cell behavior, drug penetration, immune-tumor interaction, and metastasis simulation. |
Therapeutic Applications | Assessment of anti–PD-1, CAR-T, bispecific antibodies in a human immune context. | Personalized ex vivo drug screens, immune cell infiltration modeling, metastatic colonization studies. | Digital twins for therapy selection, biomarker discovery, radiogenomic mapping, immune profiling. | Personalized ex vivo drug screens and therapy optimization; digital twins for treatment prediction; biomarker discovery; guidance for patient treatment schedules |
Immunologic Relevance | High; allows analysis of human T/NK cell infiltration, checkpoint dynamics, and immune editing. | Moderate; immune cells (e.g., NK, T cells) can be perfused, but lacks full immune system integration. | Indirect; infers immune responses via modeling TME composition and immune evasion signatures. | High; allows incorporation of immune cells (T cells, dendritic cells) and microbiome-immune-tumor interactions, revealing immune evasion and drug resistance. |
Molecular Insights | Tumor adaptation to immune attack (e.g., PD-L1 induction), pathway modulation under pressure. | Mechano-transduction, EMT induction under shear stress, metabolic heterogeneity under flow. | Signaling rewiring post-mutation, pathway convergence, synthetic lethality prediction. | Reveals mechano-transduction, stemness changes, EMT, metabolic heterogeneity, and signaling rewiring post-mutation. Identifies pathway convergence and synthetic lethality predictions. |
Translational Value | Closely mimics patient response in immune-targeted therapies; suitable for preclinical validation. | High predictive accuracy for patient drug responses and potential for therapy optimization. | Highly scalable; facilitates hypothesis generation, patient stratification, and trial design. | High predictive accuracy for patient drug responses and therapy optimization; patient-representative; closely resembles patient tumors at transcriptomic level; facilitates patient stratification and trial design |
Limitations | High cost, ethical issues, incomplete immune system, GvHD risk, short experimental window. | Fabrication complexity, lack of full systemic integration, low throughput, validation hurdles. | Requires massive, curated data, risk of overfitting, black-box nature, limited interpretability. | Technical complexity and low throughput. Lack of standardized protocols and reproducibility challenges. Incomplete TME. Complex data integration and limited data for AI training leading to overfitting or black-box issues |
Strategies to Overcome Limitations | Use of iPSC-derived or autologous immune cells; HLA knock-ins; gene-editing to improve engraftment. | 3D printing for reproducibility; immune-on-chip integration; automated fluidics; AI analytics. | Transfer learning, explainable AI, federated learning; integration with organoids, chips, and in vivo models. | High-density arrays and modular designs for throughput. Enhanced reproducibility. Standardized protocols and shared datasets for AI validation. Integration of immune/stromal elements and microbiome components. Augmented AI for interpretability. |
Integration with Other Models | Organoid co-cultures for immune screening; AI for prediction; chip platforms for validation. | Used with PDOs, humanized mouse immune cells; feedback with in vivo and in silico models. | Connects data from organoids, PDXs, humanized mice, and patients; guides validation and next steps. | Integrates PDOs, microfluidics, and AI. Connects data from organoids, PDXs, humanized mice, and patients for validation and next steps. Future integration includes multi-organ networks. |
Cell Line | Origin (Patient) | Tissue Origin | Stage | Karyotype | MSI Status | CMS | Key Driver Mutations | Functional Traits | Suitability | Limitations |
---|---|---|---|---|---|---|---|---|---|---|
HT29 | 44 y F, Caucasian | Primary Colon Adenoca. | Carcinoma | Hypertriploid (~71) | MSS (Likely) | CMS2/4 | APC, BRAF V600E, TP53, PIK3CA, SMAD4 | Enterocyte-like, GI barrier, MAPK/PI3K study | BRAF therapy, EGFR resistance, GI barrier | Aneuploidy, drift, TP53 mutant |
HCT116 | Adult M, Caucasian | Primary Colon Carcinoma | Carcinoma | Near-diploid (~45) | MSI-H | CMS1 | KRAS G13D, PIK3CA H1047R, CTNNB1, TGFBR2, ACVR2A | MSI-H model, p53 WT/KO pair, Wnt activation | KRAS, PI3K, MSI-H, p53 function | EGFR resistance (KRAS mut), lacks stroma |
SW480 | 50 y M, Caucasian | Primary Colon Adenoca. | Carcinoma (Dukes B/C) | Hypotriploid (~58) | MSS (Likely) | CMS2/3 | KRAS G12V, APC, TP53 | KRAS/APC hom mut, transfection model | KRAS-targeting, oxaliplatin resistance | Needs L-15 medium, CO2-free |
LoVo | 56 y M, Caucasian | Metastatic Colon Adenoca. (LN) | Metastatic (Stage IV equiv.) | Hyperdiploid (~48/49) | MSI-H | CMS1 | KRAS G13D, APC, TGFBR2, ACVR2A, B2M, TP53 WT | Metastatic, CEA+, MHC-I loss (B2M) | Immune evasion, MSI-H therapy, metastatic model | B2M confers immune escape, complex CIN |
DLD-1 | Adult M, Caucasian | Primary Colon Adenoca. | Carcinoma | Pseudodiploid (~46) | MSI-H | CMS1 | KRAS G13D, PIK3CA, TP53, APC, TGFBR2, ACVR2A, B2M | MSI-H, MHC-I loss, fast growth, shared origin | PI3K, MSI-H drug resistance, immune escape | Zygosity unclear, pseudodiploid, cross-contamination risks |
Caco-2 | 72 y M, Caucasian | Primary Colon Adenoca. | Carcinoma | Hypertetraploid (~96) | MSS | CMS2/3 | APC, TP53, SMAD4, CTNNB1 | Drug permeability and differentiation model | Drug absorption, EGFR sensitivity model | Very slow growth, heterogeneity among stocks |
LS174T | 58 y F, Caucasian | Primary Colon Adenoca. | Carcinoma (Dukes B/Stage II) | Near-diploid (45,X) | MSI-H | CMS1 | KRAS G12D, CTNNB1, PIK3CA, TP53 WT | Mucin producer, mucus barrier model | Mucus-targeted therapy, MSI-H | Less common CTNNB1 mutation, historical TP53 ambiguity |
Cell Line | Mutation Profile | Gain of Function Mutations | Loss of Function Mutations | siRNA Targets | CRISPR Targets | Biological Context and Implications |
---|---|---|---|---|---|---|
SW620 | KRAS mutant, TP53 mutant | KRAS | TP53 | ISCA2, RNF135, NDUFA4L2 | PPWD1, TCF7L2, RRAD | SW620 cells, due to KRAS and TP53 mutations, model metastatic CRC. CRISPR hits like TCF7L2 (Wnt signaling) and siRNA targets like NDUFA4L2 (hypoxia-linked) highlight oxidative stress and Wnt dependence in late-stage disease. |
Caco-2 | APC mutant, P53 wild-type | - | - | CYFIP1, BCAS2, CALD1 | - | Caco-2, an epithelial model, is P53 wild-type. siRNA targeting CYFIP1 (cytoskeletal regulation) and BCAS2 (mRNA splicing) reflects epithelial barrier and differentiation control, critical in transport and absorption studies. |
RKO | BRAF mutant, MLH1 hypermethylation | PIK3CA, BRAF | - | OGDH, ALDH18A1, POLR1G | WRN, ATP6V0E1, CAD | RKO is MSI-H and BRAF mutant, making it ideal for studying epigenetically driven CRC. CRISPR hits like WRN and ATP6V0E1, and siRNA targets like ALDH18A1, link to metabolic stress and replication stress in MSI-H tumors. |
SW480 | KRAS mutant, APC mutant | KRAS | TP53 | MED30, EML4, RASGEF1C | - | SW480 harbors KRAS and APC mutations and is used in canonical CIN modeling. siRNA hits like MED30 (transcription regulation) and CRISPR knockouts affecting none reflect stability under transcriptional disruption. |
HT8 | Unknown | - | - | - | - | HT8’s unknown profile limits current application; its use remains restricted until further profiling is available. |
HT29 | BRAF mutant, P53 mutant | PIK3CA, BRAF | TP53 | GINS2, AHCTF1, RAB6A | PPP2CA, SCD, PCYT1A | HT29, with BRAF and PIK3CA gain and TP53 loss, reflects CIN and MAPK pathway activation. CRISPR targets like SCD (lipid metabolism) and PPP2CA (phosphatase control) indicate signaling and metabolic vulnerabilities. |
HCT116 | KRAS mutant, MLH1 mutant | KRAS, CTNNB1, PIK3CA | - | DDX27, WRN, SAFB | WRN, TIMM17A, TEX10 | HCT116, an MSI-H model with wild-type TP53, allows for functional dissection of MMR loss and KRAS-driven tumorigenesis. CRISPR and siRNA targets converge on WRN and ribosomal biogenesis genes, linking DNA repair to proliferation. |
LoVo | KRAS mutant, BRAF wild-type | KRAS, PIK3CA | - | RAE1, TACC3, WRN | ACTR8, RPL22L1, PIK3CB | LoVo, metastatic and MSI-H, with KRAS and PIK3CA mutations, shows CRISPR/siRNA hits tied to ribosomal biosynthesis and chromosomal segregation (ACTR8, TACC3), ideal for stress response and metastasis research. |
LS174T | KRAS mutant, APC mutant | - | - | - | - | LS174T remains under-characterized for gene editing applications but is useful for mucin biology and CMS1-like CRC phenotypes. |
Model Type | Tumor Induction Method | Immune Competence | Time to Tumor Formation | Molecular Fidelity to Human CRC | Use Cases | Limitations | References |
---|---|---|---|---|---|---|---|
Chemically Induced e.g., AOM (±DSS) model | Carcinogen (AOM) often with DSS to induce colitis | Intact immune system | ~8–20 weeks | Moderate; random mutations (β-catenin, Kras), mimics colitis-associated CRC |
|
| [125,126] |
Genetically Engineered (GEMM) e.g., APCMin/+, Villin-Cre; Apcfl/fl, etc. | Germline or conditional mutations in tumor suppressors/oncogenes. | Intact immune system | Varies: 2–6 months for polyps (APCMin); 8–12+ months for invasive carcinoma | High for initiating events; can capture stepwise progression. Some mirror human histology |
|
| [127,128,129] |
Xenograft—Cell Line (CDX) | Injection of human CRC cell line into immunodeficient mouse | Lacks adaptive immunity | Fast: 2–6 weeks | Moderate; uses human cancer cells but clonal and culture-adapted |
|
| [130,131] |
Xenograft—Patient-Derived (PDX) | Implantation of human CRC tissue fragment into immunodeficient mouse | Lacks adaptive immunity | Moderate: 2–4 months initial engraftment; 1–3 months for subsequent passages | High; preserves original tumor architecture, heterogeneity, and molecular profile |
|
| [132,133] |
Syngeneic (Mouse Allograft) e.g., CT26 in BALB/c, MC38 in C57BL/6 | Transplant of murine CRC cells/tumor chunks into genetically identical mouse | Fully immunocompetent. | Very fast: 1–3 weeks (subQ); 3–6 weeks (orthotopic/metastatic) | Low-Moderate; mouse origin, often high mutation burden |
|
| [134,135] |
Orthotopic Implantation (applied to CDX, PDX, or syngeneic models) | Surgical or injection-based placement into mouse colon/caecal wall or rectum | Varies (immunocompetent for syngeneic, immunodeficient for human). | Moderate: 2–4 weeks establishment; 6–12 weeks for invasive growth/metastases | High tissue fidelity; molecular fidelity depends on source (high for PDX). Often recapitulates organ-specific metastatic cascade |
|
| [136,137] |
Research Focus | Model System | Key Findings | Reference |
---|---|---|---|
CRISPR-Edited Organoids | |||
Identifying Novel Genetic Dependencies | Genome-wide CRISPR screen in CRC organoids | Identified 13 novel therapeutic targets unique to the 3D organoid model, not apparent in 2D screens. | [350] |
Overcoming Chemoresistance | Oral CRISPR-nanoparticle therapy in CRC organoids and mouse models | CRISPR-mediated knockout of TRAP1 re-sensitized CRC models to chemotherapy and boosted anti-tumor immunity. | [351] |
Clinical Translation of Gene Editing | First-in-human trial of CRISPR-edited TILs | Ex vivo CRISPR knockout of the intracellular checkpoint CISH in TILs was safe and led to durable complete response in a CRC patient. | [352] |
Humanized Mice | |||
Validating Immunotherapy for “Cold” Tumors | HLA-A2.1-matched humanized mouse with KRAS-mutant CRC | Combination immunotherapy induced potent, tumor-specific, and HLA-restricted T-cell responses and tumor control only in the fully HLA-matched model. | [334] |
Testing Novel Epigenetic mRNA Therapy | Humanized mouse model with CRC xenografts | An mRNA therapy delivering a peptide inhibitor (mSTELLA) of the oncogene UHRF1 activated tumor suppressors and impaired tumor growth in vivo. | [353] |
Model Type | Limitation | Mitigation Strategy/Future Direction | Key Reference |
---|---|---|---|
CRISPR-Edited Organoids | Absence of a complete Tumor Microenvironment (TME) (no stroma, vasculature, or immune cells). | Development of advanced co-culture systems with fibroblasts (CAFs) and immune cells; integration into Organ-on-a-Chip devices to introduce flow and multi-tissue interfaces. | [354] |
Culture variability and lack of standardization (reliance on Matrigel). | Development of chemically defined, synthetic hydrogels to improve reproducibility and reduce batch-to-batch variability. | [355] | |
CRISPR off-target effects and editing inefficiencies. | Use of high-fidelity Cas9 nucleases, optimized gRNA design (bioinformatics, chemical modifications), transient RNP delivery, and unbiased off-target detection methods (e.g., GUIDE-seq). | [355] | |
Humanized Mice | Graft-versus-Host Disease (GvHD), especially in PBMC models. | Use of immunodeficient mouse strains lacking host MHC class I and II molecules (e.g., NSG-MHC DKO) to abrogate T-cell reactivity against mouse tissues. | [356] |
Incomplete or skewed immune reconstitution (poor myeloid/NK development, suboptimal B-cell function). | Engineering of “next-generation” mice expressing human cytokine (e.g., NSG-SGM3, NSG-IL15) and HLA transgenes to support broader and more functional immune development. | [327] | |
Confounding immunological effects (e.g., Graft-versus-Tumor). | Use of autologous models (patient tumor + patient immune cells) to minimize alloreactivity; careful monitoring and inclusion of appropriate control groups. | [357] | |
High cost, complexity, and ethical constraints. | Streamlining protocols, improving engraftment efficiency, and developing alternatives to ethically sensitive tissue sources (e.g., fetal tissue for BLT models). | [14] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Kabani, A.; Huda, B.; Haddad, J.; Yousuf, M.; Bhurka, F.; Ajaz, F.; Patnaik, R.; Jannati, S.; Banerjee, Y. Exploring Experimental Models of Colorectal Cancer: A Critical Appraisal from 2D Cell Systems to Organoids, Humanized Mouse Avatars, Organ-on-Chip, CRISPR Engineering, and AI-Driven Platforms—Challenges and Opportunities for Translational Precision Oncology. Cancers 2025, 17, 2163. https://doi.org/10.3390/cancers17132163
Al-Kabani A, Huda B, Haddad J, Yousuf M, Bhurka F, Ajaz F, Patnaik R, Jannati S, Banerjee Y. Exploring Experimental Models of Colorectal Cancer: A Critical Appraisal from 2D Cell Systems to Organoids, Humanized Mouse Avatars, Organ-on-Chip, CRISPR Engineering, and AI-Driven Platforms—Challenges and Opportunities for Translational Precision Oncology. Cancers. 2025; 17(13):2163. https://doi.org/10.3390/cancers17132163
Chicago/Turabian StyleAl-Kabani, Ahad, Bintul Huda, Jewel Haddad, Maryam Yousuf, Farida Bhurka, Faika Ajaz, Rajashree Patnaik, Shirin Jannati, and Yajnavalka Banerjee. 2025. "Exploring Experimental Models of Colorectal Cancer: A Critical Appraisal from 2D Cell Systems to Organoids, Humanized Mouse Avatars, Organ-on-Chip, CRISPR Engineering, and AI-Driven Platforms—Challenges and Opportunities for Translational Precision Oncology" Cancers 17, no. 13: 2163. https://doi.org/10.3390/cancers17132163
APA StyleAl-Kabani, A., Huda, B., Haddad, J., Yousuf, M., Bhurka, F., Ajaz, F., Patnaik, R., Jannati, S., & Banerjee, Y. (2025). Exploring Experimental Models of Colorectal Cancer: A Critical Appraisal from 2D Cell Systems to Organoids, Humanized Mouse Avatars, Organ-on-Chip, CRISPR Engineering, and AI-Driven Platforms—Challenges and Opportunities for Translational Precision Oncology. Cancers, 17(13), 2163. https://doi.org/10.3390/cancers17132163