Development and Validation of a Score-Based Model for Estimating Esophageal Squamous Cell Carcinoma and Precancerous Lesions Risk in an Opportunistic Screening Population
Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Study Population
2.2. Study Procedures
2.2.1. Questionnaire Survey
2.2.2. Upper Gastrointestinal Endoscopy Examination
2.3. Outcomes
2.4. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Development of the Scored-Based Prediction Model
3.3. External Validation of the Scored-Based Prediction Model
3.4. Model Calibration and Clinical Utility
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Teng, Y.; Xia, C.; Cao, M.; Yang, F.; Yan, X.; He, S.; Cao, M.; Zhang, S.; Li, Q.; Tan, N.; et al. Esophageal cancer global burden profiles, trends, and contributors. Cancer Biol. Med. 2024, 21, 656–666. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Sun, M.; Liu, W.; Zhang, X.; Yu, Y.; Tian, Z.; Ni, Z.; Zheng, R.; Li, Y. Global esophageal cancer epidemiology in 2022 and predictions for 2050: A comprehensive analysis and projections based on GLOBOCAN data. Chin. Med. J. 2024, 137, 3108–3116. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; He, S.; Cao, M.; Teng, Y.; Li, Q.; Tan, N.; Wang, J.; Zuo, T.; Li, T.; Zheng, Y.; et al. Comparative analysis of cancer statistics in China and the United States in 2024. Chin. Med. J. 2024, 137, 3093–3100. [Google Scholar] [CrossRef]
- Kamangar, F.; Nasrollahzadeh, D.; Safiri, S.; Sepanlou, S.G.; Fitzmaurice, C.; Ikuta, K.S.; Bisignano, C.; Islami, F.; Roshandel, G.; Lim, S.S.; et al. The global, regional, and national burden of oesophageal cancer and its attributable risk factors in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2020, 5, 582–597. [Google Scholar] [CrossRef]
- Yang, H.; Wang, F.; Hallemeier, C.L.; Lerut, T.; Fu, J. Oesophageal cancer. Lancet 2024, 404, 1991–2005. [Google Scholar] [CrossRef]
- Morgan, E.; Soerjomataram, I.; Rumgay, H.; Coleman, H.G.; Thrift, A.P.; Vignat, J.; Laversanne, M.; Ferlay, J.; Arnold, M. The Global Landscape of Esophageal Squamous Cell Carcinoma and Esophageal Adenocarcinoma Incidence and Mortality in 2020 and Projections to 2040: New Estimates From GLOBOCAN 2020. Gastroenterology 2022, 163, 649–658.e2. [Google Scholar] [CrossRef]
- Han, B.; Zheng, R.; Zeng, H.; Wang, S.; Sun, K.; Chen, R.; Li, L.; Wei, W.; He, J. Cancer incidence and mortality in China, 2022. J. Natl. Cancer Cent. 2024, 4, 47–53. [Google Scholar] [CrossRef]
- Xin, L.; Gao, Y.; Cheng, Z.; Wang, T.; Lin, H.; Pang, Y.; Sun, C.; Fu, Z.; Li, Z.; Ma, X.; et al. Utilization and quality assessment of digestive endoscopy in China: Results from 5-year consecutive nationwide surveys. Chin. Med. J. 2022, 135, 2003–2010. [Google Scholar] [CrossRef]
- Zeng, H.; Chen, W.; Zheng, R.; Zhang, S.; Ji, J.S.; Zou, X.; Xia, C.; Sun, K.; Yang, Z.; Li, H.; et al. Changing cancer survival in China during 2003–15: A pooled analysis of 17 population-based cancer registries. Lancet Glob. Health 2018, 6, e555–e567. [Google Scholar] [CrossRef]
- Arnold, M.; Rutherford, M.; Bardot, A.; Ferlay, J.; Andersson, T.M.-L.; Myklebust, T.Å.; Tervonen, H.; Thursfield, V.; Ransom, D.; Shack, L.; et al. Progress in cancer survival, mortality, and incidence in seven high-income countries 1995–2014 (ICBP SURVMARK-2): A population-based study. Lancet Oncol. 2019, 20, 1493–1505. [Google Scholar] [CrossRef] [PubMed]
- Bian, Y.; Gao, Y.; Lin, H.; Sun, C.; Wang, W.; Sun, S.; Li, X.; Feng, Z.; Ren, J.; Chen, H.; et al. Non-invasive diagnosis of esophageal cancer by a simplified circulating cell-free DNA methylation assay targeting OTOP2 and KCNA3: A double-blinded, multicenter, prospective study. J. Hematol. Oncol. 2020, 17, 47. [Google Scholar] [CrossRef] [PubMed]
- Bian, Y.; Gao, Y.; Lu, C.; Tian, B.; Xin, L.; Lin, H.; Zhang, Y.; Zhang, X.; Zhou, S.; Wan, K.; et al. Genome-wide methylation profiling identified methylated KCNA3 and OTOP2 as promising diagnostic markers for esophageal squamous cell carcinoma. Chin. Med. J. 2024, 137, 1724–1735. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Ke, Y. Precision screening for esophageal squamous cell carcinoma in China. Chin. J. Cancer Res. 2020, 32, 673–682. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, Z.; Chen, Y.; Ji, P.; Fang, Z.; He, Y.; Guo, C.; Xiao, P.; Wang, C.; Yin, W.; et al. Development and external validation of a quantitative diagnostic model for malignant gastric lesions in clinical opportunistic screening: A multicenter real-world study. Chin. Med. J. 2024, 137, 2343–2350. [Google Scholar] [CrossRef]
- Wei, W.-Q.; Chen, Z.-F.; He, Y.-T.; Feng, H.; Hou, J.; Lin, D.-M.; Li, X.-Q.; Guo, C.-L.; Li, S.-S.; Wang, G.-Q.; et al. Long-Term Follow-Up of a Community Assignment, One-Time Endoscopic Screening Study of Esophageal Cancer in China. J. Clin. Oncol. 2015, 33, 1951–1957. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, C.; He, Y.; Chen, Y.; Ji, P.; Fang, Z.; Li, F.; Tang, Y.; Chen, X.; Xiao, P.; et al. A clinical model predicting the risk of esophageal high-grade lesions in opportunistic screening: A multicenter real-world study in China. Gastrointest. Endosc. 2020, 91, 1253–1260.e3. [Google Scholar] [CrossRef]
- Gao, Y.; Xin, L.; Lin, H.; Yao, B.; Zhang, T.; Zhou, A.-J.; Huang, S.; Wang, J.-H.; Feng, Y.-D.; Yao, S.-H.; et al. Machine learning-based automated sponge cytology for screening of oesophageal squamous cell carcinoma and adenocarcinoma of the oesophagogastric junction: A nationwide, multicohort, prospective study. Lancet Gastroenterol. Hepatol. 2023, 8, 432–445. [Google Scholar] [CrossRef]
- Ishihara, R.; Arima, M.; Iizuka, T.; Oyama, T.; Katada, C.; Kato, M.; Goda, K.; Goto, O.; Tanaka, K.; Yano, T.; et al. Endoscopic submucosal dissection/endoscopic mucosal resection guidelines for esophageal cancer. Dig. Endosc. 2020, 32, 452–493. [Google Scholar] [CrossRef]
- Chen, W.; Li, H.; Ren, J.; Zheng, R.; Shi, J.; Li, J.; Cao, M.; Sun, D.; He, S.; Sun, X.; et al. Selection of high-risk individuals for esophageal cancer screening: A prediction model of esophageal squamous cell carcinoma based on a multicenter screening cohort in rural China. Int. J. Cancer 2021, 148, 329–339. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, R.; Li, Y.; Hao, C.; Song, G.; Hua, Z.; Li, J.; Wang, Y.; Wei, W. Performance of Prediction Models for Esophageal Squamous Cell Carcinoma in General Population: A Systematic Review and External Validation Study. Am. J. Gastroenterol. 2024, 119, 814–822. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ding, C.; Zeng, H.; Zheng, R.; Cao, M.; Ren, J.; Shi, J.; Sun, D.; He, S.; Yang, Z.; et al. Improved esophageal squamous cell carcinoma screening effectiveness by risk-stratified endoscopic screening: Evidence from high-risk areas in China. Cancer Commun. 2021, 41, 715–725. [Google Scholar] [CrossRef]
- Liu, M.; Liu, Z.; Cai, H.; Guo, C.; Li, X.; Zhang, C.; Wang, H.; Hang, D.; Liu, F.; Deng, Q.; et al. A Model To Identify Individuals at High Risk for Esophageal Squamous Cell Carcinoma and Precancerous Lesions in Regions of High Prevalence in China. Clin. Gastroenterol. Hepatol. 2017, 15, 1538–1546.e7. [Google Scholar] [CrossRef]
- Chen, W.; Li, H.; Zheng, R.; Ren, J.; Shi, J.; Cao, M.; Sun, D.; Sun, X.; Cao, X.; Zhou, J.; et al. An initial screening strategy based on epidemiologic information in esophageal cancer screening: A prospective evaluation in a community-based cancer screening cohort in rural China. Gastrointest. Endosc. 2021, 93, 110–118.e2. [Google Scholar] [CrossRef]
- Liu, Z.; Zheng, H.; Liu, M.; He, Y.; Chen, Y.; Ji, P.; Fang, Z.; Xiao, P.; Li, F.; Guo, C.; et al. Development and External Validation of an Improved Version of the Diagnostic Model for Opportunistic Screening of Malignant Esophageal Lesions. Cancers 2022, 14, 5945. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, P.; Wang, J.; Fan, J.; Qiao, Y.; Taylor, P.R. Association between tooth loss and upper gastrointestinal cancer: A 30-year follow-up of the Linxian Dysplasia Nutrition Intervention Trial Cohort. Thorac. Cancer 2019, 10, 966–974. [Google Scholar] [CrossRef]
- Lo, C.-H.; Kwon, S.; Wang, L.; Polychronidis, G.; Knudsen, M.D.; Zhong, R.; Cao, Y.; Wu, K.; Ogino, S.; Giovannucci, E.L.; et al. Periodontal disease, tooth loss, and risk of oesophageal and gastric adenocarcinoma: A prospective study. Gut 2021, 70, 620–621. [Google Scholar] [CrossRef]
- Yano, Y.; Fan, J.; Dawsey, S.M.; Qiao, Y.; Abnet, C.C. A long-term follow-up analysis of associations between tooth loss and multiple cancers in the Linxian General Population cohort. J. Natl. Cancer Cent. 2021, 1, 39–43. [Google Scholar] [CrossRef]
- Etemadi, A.; Dawsey, S.M.; Abnet, C.C.; Mwachiro, M.M. Predicting the risk of esophageal high-grade lesions in opportunistic screening. Gastrointest. Endosc. 2020, 92, 1136–1137. [Google Scholar] [CrossRef]
- Wang, Y.-K.; Karmakar, R.; Mukundan, A.; Men, T.-C.; Tsao, Y.-M.; Lu, S.-C.; Wu, I.-C.; Wang, H.-C. Computer-aided endoscopic diagnostic system modified with hyperspectral imaging for the classification of esophageal neoplasms. Front. Oncol. 2024, 14, 1423405. [Google Scholar] [CrossRef]
- Yang, P.-C.; Huang, C.-W.; Karmakar, R.; Mukundan, A.; Chen, T.-H.; Chou, C.-K.; Yang, K.-Y.; Wang, H.-C. Precision Imaging for Early Detection of Esophageal Cancer. Bioengineering 2025, 12, 90. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Yang, W.; Guo, C.; Liu, Z.; Li, F.; Liu, A.; Yang, H.; Shen, L.; Wu, Q.; Duan, L.; et al. Effectiveness of Endoscopic Screening on Esophageal Cancer Incidence and Mortality: A 9-Year Report of the Endoscopic Screening for Esophageal Cancer in China (ESECC) Randomized Trial. J. Clin. Oncol. 2024, 42, 1655–1664. [Google Scholar] [CrossRef] [PubMed]
Variable | Training Cohort (n = 7899) | Validation Cohort (n = 6698) | p Value |
---|---|---|---|
Age, years | <0.001 | ||
40–49 | 1883 (23.8%) | 1675 (25.0%) | |
50–59 | 3295 (41.7%) | 2912 (43.5%) | |
60–69 | 2153 (27.3%) | 1630 (24.3%) | |
>69 | 568 (7.2%) | 481 (7.2%) | |
Sex | <0.001 | ||
Female | 4058 (51.4%) | 3626 (54.1%) | |
Male | 3841 (48.6%) | 3072 (45.9%) | |
Residence | <0.001 | ||
Urban | 5299 (67.1%) | 6152 (91.8%) | |
Rural | 2600 (32.9%) | 546 (8.2%) | |
Education level | <0.001 | ||
Primary school or below | 4739 (60.0%) | 5542 (82.7%) | |
Middle school or above | 3160 (40.0%) | 1156 (17.3%) | |
BMI, kg/m2 | 0.735 | ||
≤22 | 2094 (26.5%) | 1793 (26.8%) | |
>22 | 5805 (73.5%) | 4905 (73.2%) | |
Cigarette smoking | <0.001 | ||
No | 6386 (80.8%) | 5535 (82.6%) | |
Yes, pack-years | |||
≤30 | 1107 (14.0%) | 971 (14.5%) | |
>30 | 406 (5.1%) | 192 (2.9%) | |
Alcohol drinking | <0.001 | ||
Yes | 2230 (28.2%) | 1310 (19.6%) | |
No | 5669 (71.8%) | 5388 (80.4%) | |
Alcohol flushing | <0.001 | ||
Yes | 268 (3.4%) | 96 (1.4%) | |
No | 7631 (96.6%) | 6602 (98.6%) | |
Hot food preference | <0.001 | ||
Yes | 3915 (49.6%) | 2889 (43.1%) | |
No | 3984 (50.4%) | 3809 (56.9%) | |
Pickled food preference | <0.001 | ||
High | 938 (11.9%) | 198 (3.0%) | |
Low | 6961 (88.1%) | 6500 (97.0%) | |
Tooth loss | <0.001 | ||
≤4 | 6734 (85.3%) | 5961 (89.0%) | |
>4 | 1165 (14.7%) | 737 (11.0%) | |
Family history | <0.001 | ||
Yes | 1250 (15.8%) | 586 (8.7%) | |
No | 6649 (84.2%) | 6112 (91.3%) | |
Detected lesions | 0.006 | ||
HGIN | 41 (0.5%) | 30 (0.4%) | |
early ESCC | 27 (0.3%) | 32 (0.5%) | |
advanced ESCC | 86 (1.1%) | 37 (0.6%) | |
Patients with high-grade lesions | 153 (1.9%) | 98 (1.5%) |
Variable | Regression Coefficient (95%CI) | Adjusted OR (95%CI) | p Value | Assigned Scores |
---|---|---|---|---|
Age, years | ||||
40–49 | Reference | 0 | ||
50–59 | 1.360 (0.425–2.577) | 3.895 (1.530–13.152) | 0.011 | 4 |
60–69 | 2.396 (1.498–3.594) | 10.974 (4.471–36.390) | <0.001 | 6.5 |
>69 | 3.320 (2.388–4.537) | 27.656 (10.894–93.415) | <0.001 | 9.5 |
Sex | ||||
Female | Reference | 0 | ||
Male | 0.850 (0.443–1.269) | 2.340 (1.558–3.559) | <0.001 | 2.5 |
Residence | ||||
Urban | Reference | 0 | ||
Rural | 0.358 (0.016–0.699) | 1.431 (1.016–2.012) | 0.040 | 1 |
BMI, kg/m2 | ||||
>22 | Reference | 0 | ||
≤22 | 0.549 (0.206–0.886) | 1.731 (1.229–2.425) | 0.002 | 1.5 |
Cigarette smoking | ||||
No | Reference | 0 | ||
Yes, pack-years | ||||
≤30 | 0.462 (0.014–0.896) | 1.587 (1.014–2.449) | 0.039 | 1.5 |
>30 | 0.703 (0.206–1.180) | 2.019 (1.229–3.256) | 0.005 | 2 |
Pickled food preference | ||||
Low | Reference | 0 | ||
High | 0.497 (0.062–0.905) | 1.643 (1.064–2.472) | 0.021 | 1.5 |
Tooth loss | ||||
≤4 | Reference | 0 | ||
>4 | 0.501 (0.133–0.862) | 1.651 (1.142–2.368) | 0.007 | 1.5 |
Family history | ||||
No | Reference | 0 | ||
Yes | 0.475 (0.051–0.874) | 1.609 (1.052–2.395) | 0.023 | 1.5 |
Variable | Training Cohort | Validation Cohort |
---|---|---|
High-risk individuals (n, %) | 2606 (32.7) | 1632 (24.4) |
True high-grade lesions cases (n) | 129 | 76 |
Sensitivity (%, 95%CI) | ||
High-grade lesions cases | 84.3 (77.6–89.7) | 77.6 (68.0–85.4) |
HGIN | 82.9 (67.9–92.9) | 70.0 (50.6–85.3) |
Early ESCC | 81.5 (61.9–93.7) | 81.3 (63.6–92.8) |
Advanced ESCC | 86.1 (76.9–92.6) | 81.1 (64.9–92.0) |
Specificity (%, 95%CI) | 68.3 (67.3–69.4) | 76.4 (75.4–77.4) |
Accuracy rate (%, 95%CI) | 68.6 (67.6–69.7) | 76.4 (75.4–77.5) |
PPV (%, 95%CI) | 5.0 (4.7–5.4) | 4.7 (4.2–5.2) |
NPV (%, 95%CI) | 99.5 (99.3–99.7) | 99.6 (99.4–99.7) |
Positive LR (95%CI) | 2.662 (2.468–2.872) | 3.289 (2.932–3.690) |
Negative LR (95%CI) | 0.230 (0.159–0.332) | 0.294 (0.203–0.425) |
NNS | 20 | 21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, Y.; Gao, Y.; Jiang, H.; Li, Q.; Wang, Y.; Zhang, Y.; Li, Z.; Xu, J.; Wang, L. Development and Validation of a Score-Based Model for Estimating Esophageal Squamous Cell Carcinoma and Precancerous Lesions Risk in an Opportunistic Screening Population. Cancers 2025, 17, 2138. https://doi.org/10.3390/cancers17132138
Bian Y, Gao Y, Jiang H, Li Q, Wang Y, Zhang Y, Li Z, Xu J, Wang L. Development and Validation of a Score-Based Model for Estimating Esophageal Squamous Cell Carcinoma and Precancerous Lesions Risk in an Opportunistic Screening Population. Cancers. 2025; 17(13):2138. https://doi.org/10.3390/cancers17132138
Chicago/Turabian StyleBian, Yan, Ye Gao, Huishan Jiang, Qiuxin Li, Yuling Wang, Yanrong Zhang, Zhaoshen Li, Jinfang Xu, and Luowei Wang. 2025. "Development and Validation of a Score-Based Model for Estimating Esophageal Squamous Cell Carcinoma and Precancerous Lesions Risk in an Opportunistic Screening Population" Cancers 17, no. 13: 2138. https://doi.org/10.3390/cancers17132138
APA StyleBian, Y., Gao, Y., Jiang, H., Li, Q., Wang, Y., Zhang, Y., Li, Z., Xu, J., & Wang, L. (2025). Development and Validation of a Score-Based Model for Estimating Esophageal Squamous Cell Carcinoma and Precancerous Lesions Risk in an Opportunistic Screening Population. Cancers, 17(13), 2138. https://doi.org/10.3390/cancers17132138