NPM1-Mutated AML: Deciphering the Molecular and Clinical Puzzle in the Era of Novel Treatment Strategies
Simple Summary
Abstract
1. NPM1-Mutated AML: An Overview of Its Definition, Subtypes and Classification
1.1. Background
1.2. NPM1 Mutational Landscape
1.3. Geographic and Ethnic Variations in NPM1 Mutation Prevalence
1.4. Classification of NPM1-Mutated AML
1.5. NPM1 as a Genetic Driver Mutation in AML Initiation: The Never-Alone, Usual Suspect
1.6. The Role of Genomic Instability and Additional Mutations in AML Development
1.7. NPM1 as an MRD Marker in AML
1.8. The Order of Mutations in AML Development
1.9. The Functional Impact of NPM1 Mutations on Leukemia Biology
2. Clinical and Laboratory Characteristics of NPM1-Mutated AML
2.1. Chromosomal Aberrations of NPM1-Mutated AML
2.2. Demographics, Clinical Presentation and Immunophenotypic Features
2.3. Diagnostic Challenges of NPM1-Mutated AML
2.4. Essential Diagnostics for Investigating and Treating NPM1-Mutated AML
3. The Prognostic Complexity of NPM1-Mutated AML
4. Targeted Agents
4.1. NPM1-Mutated AML and Exportin 1 (XPO1)
4.2. NPM1-Mutated AML and Menin-KMT2A Inhibitors
4.3. NPM1-Mutated AML, Knockout and Knock-In Phenotype
4.4. NPM1-Mutated AML, All-Trans Retinoic Acid (ATRA) and Arsenic Trioxide (ATO)
4.5. NPM1-Mutated AML and Vitamin C and D Supplements
5. Optimal Treatment Approach for NPM1-Mutated AML in 2025
5.1. General Treatment Decisions and Standard Chemotherapy Regimens
5.2. Emerging Clinical Trials for NPM1-Mutated AML
6. Immunotherapies—Immunomodulatory Drugs
6.1. Checkpoint Inhibitors
6.2. Lenalidomide
6.3. Imiquimod Analogs
7. Unmet Needs—CAR-T Cells: Proposed Future Directions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
A | |
AZA | Azacitidine |
ALCL | Anaplastic large cell lymphoma |
ALL | Acute Lymphoblastic Leukemia |
AML | Acute Myeloid Leukemia |
ANKRD26 | Ankyring Repeat Domain Containing protein 26 |
APL | Acute promyelocytic leukemia |
ARF | Alternative Reading Frame |
ASXL1 | Additional Sex Combs-like 1 |
ATO | Arsenic trioxide |
ATRA | All-trans retinoic acid |
B | |
BCL-2 | B-cell lymphoma-2 |
BCL-XL | B-cell lymphoma extra large |
BCOR | BCL6 corepressor |
BCORL1 | BCL6 corepressor-like 1 |
BM | Bone Marrow |
BRAF | V-Raf Murine Sarcoma Viral Oncogene Homolog B1 |
C | |
CAR | Chimeric Antigen Receptor |
CBF | Core Binding Factor |
CBL | Casitas B-lineage Lymphoma |
CD | Cluster of Differentiation |
CEBPA | CCAAT enhancer binding protein alpha |
CH | Clonal Hematopoiesis |
CNS | Central Nervous System |
CR | Complete Remission |
CRISPR | Clustered Regularly Interspaced Short Palindromic Repeats |
CSF3R | Colony Stimulating Factor 3 receptor |
D | |
DDX41 | DEAD Box helicase 41 |
DNA | Deoxyribonucleic acid |
DNMT3A | DNA (cytosine-5)-methyltransferase 3A |
E | |
EFS | Event-Free Survival |
ELN | European Leukemia Net |
ETV6 | ETS variant transcription factor 6 |
EZH2 | Enhancer of Zeste Homolog 2 |
F | |
FAB | French–American–British Classification |
FDA | Food and Drug Administration |
FLT3-ITD | FMS-like tyrosine kinase 3 internal tandem duplication |
FLT3-TKD | FMS-like tyrosine kinase 3 tyrosine kinase domain |
FOXM1 | Forkhead box M1 |
G | |
GATA2 | GATA Binding protein 2 |
GPR56 | G protein coupled receptor 56 |
GO | Gemtuzumab ozogamicin |
H | |
HDAC | Histone Deacetylase |
HiDAC | High-Dose Cytarabine |
HLA | Human Leukocyte Antigen |
HLF | Hepatic Leukemia Factor |
HMA | Hypomethylating agent |
HSCT | Hematopoietic Stem Cell Transplantation |
HOX | Homeobox |
I | |
ICC | International Consensus Classification |
IDAC | Intermediate Dose Cytarabine |
IDH1 | Isocitrate Dehydrogenase 1 |
IDH 2 | Isocitrate Dehydrogenase 2 |
IHC | Immunohistochemistry |
J | |
JAK2 | Janus Kinase 2 |
K | |
KMT2A | Lysine Methyltransferase 2A |
KIT | KIT protooncogene, receptor tyrosine kinase |
KPT-330 | Selinexor |
KPT-8602 | Eltaxenor |
KO | Knockout |
KO-539 | Ziftomenib |
KRAS | Kirsten rat sarcoma viral oncogene homolog |
M | |
MDS | Myelodysplastic Syndrome |
MCL1 | Myeloid Cell Leukemia sequence 1 |
MEIS1 | Myeloid Ecotropic viral Integration site 1 |
MEIS-SMC4 | Myeloid Ecotropic viral Integration site 1-Structural Maintenance of Chromosome 4 |
MLL | Mixed Lineage Leukemia |
MPNs | Myeloproliferative Neoplasms |
MRGs | Myelodysplasia related gene mutations |
MRD | Measurable Residual Disease |
MRD-LL | Measurable Residual Disease at Low Level |
N | |
NCCN | National Comprehensive Cancer Network |
ND | Newly Diagnosed |
NF1 | Neurofibromatosis type 1 |
NGS | Next-Generation Sequencing |
NHL | Non-Hodgkin lymphoma |
NK | Natural Killer |
NPM1 | Nucleophosmin 1 |
NPM1wt | NPM1 wild type |
NRAS | Neuroblastoma RAS viral oncogene homolog |
O | |
ORR | Overall Response Rate |
OS | Overall Survival |
P | |
PB | Peripheral Blood |
PBX3 | Pre-B-cell leukemia transcription factor 3 |
PD-1 | Programmed (Cell) Death 1 |
PD-L1 | Programmed (Cell) Death Ligand 1 |
PFS | Progression-free survival |
PHF6 | Plant Homeodomain Finger Protein 6 |
PPM1D | Protein phosphatase magnesium-dependent 1 delta |
PRC1 | Polycomb repressive complex 1 |
PRC2 | Polycomb repressive complex 2 |
PTPN11 | Protein Tyrosine Phosphatase Non-Receptor Type 11 |
R | |
RNA | Ribonucleic acid |
RP2D | Recommended phase 2 dose |
R/R AML | Relapsed or refractory acute myeloid leukemia |
RT-qPCR | Quantitative Reverse Transcription Polymerase Chain Reaction |
RUNX1 | Runt-related transcription factor 1 |
S | |
SETBP1 | Set Binding Protein 1 |
SF3B1 | Splicing Factor 3B Subunit 1 |
SINE | Selective Inhibitors of Nuclear Export |
SNDX-5613 | Revumenib |
SRSF2 | Serine/Arginine-rich Splicing Factor 2 |
STAG2 | Stromal Antigen 2 |
STAT5 | Signal transducer and activator of transcription 5 |
T | |
TCR | T-cell receptor |
TET2 | TET methylcytosine dioxygenase 2 |
TP53 | Tumor Protein p53 |
U | |
U2AF1 | U2 small nuclear RNA auxiliary factor 1 |
V | |
VAF | Varied Allele Frequency |
VEN | Venetoclax |
W | |
WHO | World Health Organization |
WT1 | Wilms Tumor 1 |
X | |
XPO1 | Exportin 1 |
Z | |
ZRSR2 | Zinc finger (CCCH type), RNA-binding motif and serine/arginine rich 2 |
References
- Falini, B.; Mecucci, C.; Tiacci, E.; Alcalay, M.; Rosati, R.; Pasqualucci, L.; La Starza, R.; Diverio, D.; Colombo, E.; Santucci, A.; et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. New Engl. J. Med. 2005, 352, 254–266. [Google Scholar] [CrossRef] [PubMed]
- Falini, B.; Martelli, M.P.; Bolli, N.; Bonasso, R.; Ghia, E.; Pallotta, M.T.; Diverio, D.; Nicoletti, I.; Pacini, R.; Tabarrini, A.; et al. Immunohistochemistry predicts nucleophosmin (NPM) mutations in acute myeloid leukemia. Blood 2006, 108, 1999–2005. [Google Scholar] [CrossRef]
- Hindley, A.; Catherwood, M.A.; McMullin, M.F.; Mills, K.I. Significance of NPM1 Gene Mutations in AML. Int. J. Mol. Sci. 2021, 22, 10040. [Google Scholar] [CrossRef] [PubMed]
- Falini, B. NPM1-mutated acute myeloid leukemia: New pathogenetic and therapeutic insights and open questions. Am. J. Hematol. 2023, 98, 1452–1464. [Google Scholar] [CrossRef]
- Box, J.K.; Paquet, N.; Adams, M.N.; Boucher, D.; Bolderson, E.; O’Byrne, K.J.; Richard, D.J. Nucleophosmin: From structure and function to disease development. BMC Mol. Biol. 2016, 17, 19. [Google Scholar] [CrossRef]
- Zarka, J.; Short, N.J.; Kanagal-Shamanna, R.; Issa, G.C. Nucleophosmin 1 Mutations in Acute Myeloid Leukemia. Genes 2020, 11, 649. [Google Scholar] [CrossRef] [PubMed]
- Falini, B.; Brunetti, L.; Sportoletti, P.; Martelli, M.P. NPM1-mutated acute myeloid leukemia: From bench to bedside. Blood 2020, 136, 1707–1721. [Google Scholar] [CrossRef]
- Brunetti, L.; Gundry, M.C.; Goodell, M.A. New insights into the biology of acute myeloid leukemia with mutated NPM1. Int. J. Hematol. 2019, 110, 150–160. [Google Scholar] [CrossRef]
- Cela, I.; Di Matteo, A.; Federici, L. Nucleophosmin in Its Interaction with Ligands. Int. J. Mol. Sci. 2020, 21, 4885. [Google Scholar] [CrossRef]
- Falini, B.; Brunetti, L.; Martelli, M.P. How I diagnose and treat NPM1-mutated AML. Blood 2021, 137, 589–599. [Google Scholar] [CrossRef]
- Falini, B.; Sciabolacci, S.; Falini, L.; Brunetti, L.; Martelli, M.P. Diagnostic and therapeutic pitfalls in NPM1-mutated AML: Notes from the field. Leukemia 2021, 35, 3113–3126. [Google Scholar] [CrossRef]
- Falini, B.; Martelli, M.P.; Brunetti, L. Mutant NPM1: Nuclear export and the mechanism of leukemogenesis. Am. J. Hematol. 2023, 98, 550–552. [Google Scholar] [CrossRef]
- Kunchala, P.; Kuravi, S.; Jensen, R.; McGuirk, J.; Balusu, R. When the good go bad: Mutant NPM1 in acute myeloid leukemia. Blood Rev. 2018, 32, 167–183. [Google Scholar] [CrossRef] [PubMed]
- Angenendt, L.; Röllig, C.; Montesinos, P.; Martínez-Cuadrón, D.; Barragan, E.; García, R.; Botella, C.; Martínez, P.; Ravandi, F.; Kadia, T.; et al. Chromosomal Abnormalities and Prognosis in NPM1-Mutated Acute Myeloid Leukemia: A Pooled Analysis of Individual Patient Data From Nine International Cohorts. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019, 37, 2632–2642. [Google Scholar] [CrossRef] [PubMed]
- Alpermann, T.; Schnittger, S.; Eder, C.; Dicker, F.; Meggendorfer, M.; Kern, W.; Schmid, C.; Aul, C.; Staib, P.; Wendtner, C.M.; et al. Molecular subtypes of NPM1 mutations have different clinical profiles, specific patterns of accompanying molecular mutations and varying outcomes in intermediate risk acute myeloid leukemia. Haematologica 2016, 101, e55–e58. [Google Scholar] [CrossRef]
- Bailey, G.D.; Doolan, L.; Baskar, A.; Smith, L.C.; Seedhouse, C.H. Preferential transcription of the mutated allele in NPM1 mutated acute myeloid leukaemia. Sci. Rep. 2020, 10, 17695. [Google Scholar] [CrossRef] [PubMed]
- Testa, U.; Pelosi, E.; Castelli, G. Genetic, Phenotypic, and Clinical Heterogeneity of NPM1-Mutant Acute Myeloid Leukemias. Biomedicines 2023, 11, 1805. [Google Scholar] [CrossRef]
- Tregnago, C.; Benetton, M.; Padrin, D.; Polato, K.; Borella, G.; Da Ros, A.; Marchetti, A.; Porcù, E.; Del Bufalo, F.; Mecucci, C.; et al. NPM1 Mutational Status Underlines Different Biological Features in Pediatric AML. Cancers 2021, 13, 3457. [Google Scholar] [CrossRef]
- Döhner, H.; Dolnik, A.; Tang, L.; Seymour, J.F.; Minden, M.D.; Stone, R.M.; Del Castillo, T.B.; Al-Ali, H.K.; Santini, V.; Vyas, P.; et al. Cytogenetics and gene mutations influence survival in older patients with acute myeloid leukemia treated with azacitidine or conventional care. Leukemia 2018, 32, 2546–2557. [Google Scholar] [CrossRef]
- Wei, H.; Wang, Y.; Zhou, C.; Lin, D.; Liu, B.; Liu, K.; Qiu, S.; Gong, B.; Li, Y.; Zhang, G.; et al. Distinct genetic alteration profiles of acute myeloid leukemia between Caucasian and Eastern Asian population. J. Hematol. Oncol. 2018, 11, 18. [Google Scholar] [CrossRef]
- Suzuki, T.; Kiyoi, H.; Ozeki, K.; Tomita, A.; Yamaji, S.; Suzuki, R.; Kodera, Y.; Miyawaki, S.; Asou, N.; Kuriyama, K.; et al. Clinical characteristics and prognostic implications of NPM1 mutations in acute myeloid leukemia. Blood 2005, 106, 2854–2861. [Google Scholar] [CrossRef]
- Yan, L.; Chen, S.; Liang, J.; Feng, Y.; Cen, J.; He, J.; Chang, W.; Zhu, Z.; Pan, J.; Wu, Y.; et al. Analysis of NPM1 gene mutations in Chinese adults with acute myeloid leukemia. Int. J. Hematol. 2007, 86, 143–146. [Google Scholar] [CrossRef]
- Jin, J.; Wang, J.X.; Chen, F.F.; Wu, D.P.; Hu, J.; Zhou, J.F.; Hu, J.D.; Wang, J.M.; Li, J.Y.; Huang, X.J.; et al. Homoharringtonine-based induction regimens for patients with de-novo acute myeloid leukaemia: A multicentre, open-label, randomised, controlled phase 3 trial. Lancet. Oncol. 2013, 14, 599–608. [Google Scholar] [CrossRef]
- Papaemmanuil, E.; Gerstung, M.; Bullinger, L.; Gaidzik, V.I.; Paschka, P.; Roberts, N.D.; Potter, N.E.; Heuser, M.; Thol, F.; Bolli, N.; et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. New Engl. J. Med. 2016, 374, 2209–2221. [Google Scholar] [CrossRef] [PubMed]
- Grimwade, D.; Ivey, A.; Huntly, B.J. Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance. Blood 2016, 127, 29–41. [Google Scholar] [CrossRef]
- Bullinger, L.; Döhner, K.; Döhner, H. Genomics of Acute Myeloid Leukemia Diagnosis and Pathways. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2017, 35, 934–946. [Google Scholar] [CrossRef] [PubMed]
- Larkin, K.T.; Nicolet, D.; Kelly, B.J.; Mrózek, K.; LaHaye, S.; Miller, K.E.; Wijeratne, S.; Wheeler, G.; Kohlschmidt, J.; Blachly, J.S.; et al. High early death rates, treatment resistance, and short survival of Black adolescents and young adults with AML. Blood Adv. 2022, 6, 5570–5581. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, B.; Kohlschmidt, J.; Mrózek, K.; Zhao, Q.; Fisher, J.L.; Nicolet, D.; Walker, C.J.; Mims, A.S.; Oakes, C.; Giacopelli, B.; et al. Poor Survival and Differential Impact of Genetic Features of Black Patients with Acute Myeloid Leukemia. Cancer Discov. 2021, 11, 626–637. [Google Scholar] [CrossRef]
- Tazi, Y.; Arango-Ossa, J.E.; Zhou, Y.; Bernard, E.; Thomas, I.; Gilkes, A.; Freeman, S.; Pradat, Y.; Johnson, S.J.; Hills, R.; et al. Unified classification and risk-stratification in Acute Myeloid Leukemia. Nat. Commun. 2022, 13, 4622. [Google Scholar] [CrossRef]
- Arber, D.A.; Orazi, A.; Hasserjian, R.P.; Borowitz, M.J.; Calvo, K.R.; Kvasnicka, H.M.; Wang, S.A.; Bagg, A.; Barbui, T.; Branford, S.; et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: Integrating morphologic, clinical, and genomic data. Blood 2022, 140, 1200–1228. [Google Scholar] [CrossRef]
- Döhner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022, 140, 1345–1377. [Google Scholar] [CrossRef] [PubMed]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef] [PubMed]
- Chandra, D.J.; Lachowiez, C.A.; Loghavi, S. Practical considerations in clinical application of WHO 5th and ICC classification schemes for acute myeloid leukemia. Blood Rev. 2023, 64, 101156. [Google Scholar] [CrossRef] [PubMed]
- Shimony, S.; Stahl, M.; Stone, R.M. Acute myeloid leukemia: 2023 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 2023, 98, 502–526. [Google Scholar] [CrossRef]
- Vassiliou, G.S.; Cooper, J.L.; Rad, R.; Li, J.; Rice, S.; Uren, A.; Rad, L.; Ellis, P.; Andrews, R.; Banerjee, R.; et al. Mutant nucleophosmin and cooperating pathways drive leukemia initiation and progression in mice. Nat. Genet. 2011, 43, 470–475. [Google Scholar] [CrossRef]
- Muranyi, A.; Ammer, T.; Kechter, A.; Rawat, V.P.S.; Sinha, A.; Gonzalez-Menendez, I.; Quintanilla-Martinez, L.; Azoitei, A.; Günes, C.; Mupo, A.; et al. Npm1 haploinsufficiency in collaboration with MEIS1 is sufficient to induce AML in mice. Blood Adv. 2023, 7, 351–364. [Google Scholar] [CrossRef]
- Uckelmann, H.J.; Haarer, E.L.; Takeda, R.; Wong, E.M.; Hatton, C.; Marinaccio, C.; Perner, F.; Rajput, M.; Antonissen, N.J.C.; Wen, Y.; et al. Mutant NPM1 Directly Regulates Oncogenic Transcription in Acute Myeloid Leukemia. Cancer Discov. 2023, 13, 746–765. [Google Scholar] [CrossRef]
- Krivtsov, A.V.; Evans, K.; Gadrey, J.Y.; Eschle, B.K.; Hatton, C.; Uckelmann, H.J.; Ross, K.N.; Perner, F.; Olsen, S.N.; Pritchard, T.; et al. A Menin-MLL Inhibitor Induces Specific Chromatin Changes and Eradicates Disease in Models of MLL-Rearranged Leukemia. Cancer Cell 2019, 36, 660–673.e611. [Google Scholar] [CrossRef]
- Welch, J.S.; Ley, T.J.; Link, D.C.; Miller, C.A.; Larson, D.E.; Koboldt, D.C.; Wartman, L.D.; Lamprecht, T.L.; Liu, F.; Xia, J.; et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 2012, 150, 264–278. [Google Scholar] [CrossRef]
- Zuckerman, T.; Rowe, J.M. Shifting therapeutic paradigms in induction and consolidation for older adults with acute myeloid leukemia. Curr. Opin. Hematol. 2019, 26, 51–57. [Google Scholar] [CrossRef]
- Dillon, R.; Potter, N.; Freeman, S.; Russell, N. How we use molecular minimal residual disease (MRD) testing in acute myeloid leukaemia (AML). Br. J. Haematol. 2021, 193, 231–244. [Google Scholar] [CrossRef]
- Heuser, M.; Freeman, S.D.; Ossenkoppele, G.J.; Buccisano, F.; Hourigan, C.S.; Ngai, L.L.; Tettero, J.M.; Bachas, C.; Baer, C.; Béné, M.C.; et al. 2021 Update on MRD in acute myeloid leukemia: A consensus document from the European LeukemiaNet MRD Working Party. Blood 2021, 138, 2753–2767. [Google Scholar] [CrossRef] [PubMed]
- Heuser, M.; Shahswar, R. Mutation- and MRD-informed treatment decisions for the transplant-eligible AML patient. Hematol. Am. Soc. Hematol. Educ. Program 2024, 2024, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Cloos, J.; Ngai, L.L.; Heuser, M. Understanding differential technologies for detection of MRD and how to incorporate into clinical practice. Hematol. Am. Soc. Hematol. Educ. Program 2023, 2023, 682–690. [Google Scholar] [CrossRef]
- Othman, J.; Tiong, I.S.; O’Nions, J.; Dennis, M.; Mokretar, K.; Ivey, A.; Austin, M.; Latif, A.L.; Amer, M.; Chan, W.Y.; et al. Molecular MRD is strongly prognostic in patients with NPM1-mutated AML receiving venetoclax-based nonintensive therapy. Blood 2024, 143, 336–341. [Google Scholar] [CrossRef]
- Sahasrabudhe, K.D.; Mims, A.S. MRD in AML: Who, what, when, where, and how? Blood 2024, 143, 296–298. [Google Scholar] [CrossRef]
- Sango, J.; Carcamo, S.; Sirenko, M.; Maiti, A.; Mansour, H.; Ulukaya, G.; Tomalin, L.E.; Cruz-Rodriguez, N.; Wang, T.; Olszewska, M.; et al. RAS-mutant leukaemia stem cells drive clinical resistance to venetoclax. Nature 2024, 636, 241–250. [Google Scholar] [CrossRef]
- Khan, I.; Gartel, A.L. The antagonistic duality of NPM1 mutations in AML. Blood Adv. 2022, 6, 4028–4030. [Google Scholar] [CrossRef]
- Garg, S.; Reyes-Palomares, A.; He, L.; Bergeron, A.; Lavallée, V.P.; Lemieux, S.; Gendron, P.; Rohde, C.; Xia, J.; Jagdhane, P.; et al. Hepatic leukemia factor is a novel leukemic stem cell regulator in DNMT3A, NPM1, and FLT3-ITD triple-mutated AML. Blood 2019, 134, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zeng, Z.; Li, X.; Qin, W.; Cai, X.; Chen, S.; Lu, X. Clinical features and prognostic significance of DNMT3A, FLT3, and NPM1 mutations in de novo acute myeloid leukemia patients. Int. J. Lab. Hematol. 2023, 45, 899–907. [Google Scholar] [CrossRef]
- Thiede, C.; Koch, S.; Creutzig, E.; Steudel, C.; Illmer, T.; Schaich, M.; Ehninger, G. Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood 2006, 107, 4011–4020. [Google Scholar] [CrossRef] [PubMed]
- Haferlach, C.; Mecucci, C.; Schnittger, S.; Kohlmann, A.; Mancini, M.; Cuneo, A.; Testoni, N.; Rege-Cambrin, G.; Santucci, A.; Vignetti, M.; et al. AML with mutated NPM1 carrying a normal or aberrant karyotype show overlapping biologic, pathologic, immunophenotypic, and prognostic features. Blood 2009, 114, 3024–3032. [Google Scholar] [CrossRef]
- Liu, J.; Han, W.; Cai, X.; Wang, Z.; Cao, L.; Hua, H.; Jia, Z.; Chao, H.; Lu, X.; Shen, H. Molecular genetic and clinical characterization of acute myeloid leukemia with trisomy 8 as the sole chromosome abnormality. Hematology 2022, 27, 565–574. [Google Scholar] [CrossRef]
- Larsson, N.; Lilljebjörn, H.; Lassen, C.; Johansson, B.; Fioretos, T. Myeloid malignancies with acquired trisomy 21 as the sole cytogenetic change are clinically highly variable and display a heterogeneous pattern of copy number alterations and mutations. Eur. J. Haematol. 2012, 88, 136–143. [Google Scholar] [CrossRef]
- Kayser, S.; Martínez-Cuadrón, D.; Hanoun, M.; Stölzel, F.; Gil, C.; Reinhardt, H.C.; Aguiar, E.; Schäfer-Eckart, K.; Burgues, J.M.B.; Steffen, B.; et al. Characteristics and outcome of patients with acute myeloid leukemia and trisomy 4. Haematologica 2023, 108, 34–41. [Google Scholar] [CrossRef]
- Herold, T.; Metzeler, K.H.; Vosberg, S.; Hartmann, L.; Jurinovic, V.; Opatz, S.; Konstandin, N.P.; Schneider, S.; Zellmeier, E.; Ksienzyk, B.; et al. Acute myeloid leukemia with del(9q) is characterized by frequent mutations of NPM1, DNMT3A, WT1 and low expression of TLE4. Genes Chromosomes Cancer 2017, 56, 75–86. [Google Scholar] [CrossRef]
- Shreenivas, A.; Janku, F.; Gouda, M.A.; Chen, H.Z.; George, B.; Kato, S.; Kurzrock, R. ALK fusions in the pan-cancer setting: Another tumor-agnostic target? NPJ Precis. Oncol. 2023, 7, 101. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.S.; Ali, S.M.; Fasan, O.; Block, J.; Pal, S.; Elvin, J.A.; Schrock, A.B.; Suh, J.; Nozad, S.; Kim, S.; et al. ALK Fusions in a Wide Variety of Tumor Types Respond to Anti-ALK Targeted Therapy. Oncologist 2017, 22, 1444–1450. [Google Scholar] [CrossRef] [PubMed]
- Maxson, J.E.; Davare, M.A.; Luty, S.B.; Eide, C.A.; Chang, B.H.; Loriaux, M.M.; Tognon, C.E.; Bottomly, D.; Wilmot, B.; McWeeney, S.K.; et al. Therapeutically Targetable ALK Mutations in Leukemia. Cancer Res. 2015, 75, 2146–2150. [Google Scholar] [CrossRef]
- Shekar, M.; Llaurador Caraballo, G.; Punia, J.N.; Curry, C.V.; Fisher, K.E.; Redell, M.S. ALK Fusion in an Adolescent with Acute Myeloid Leukemia: A Case Report and Review of the Literature. Biomedicines 2023, 11, 1842. [Google Scholar] [CrossRef]
- Manselle, M.K.; Ries, R.E.; Hylkema, T.; Leonti, A.; Kirkey, D.C.; Furlan, S.N.; Meshinchi, S. Functional consequence and therapeutic targeting of cryptic ALK fusions in monosomy 7 acute myeloid leukemia. Pediatr. Blood Cancer 2023, 70, e30180. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Liesveld, J.L. NPM 1 Mutations in AML-The Landscape in 2023. Cancers 2023, 15, 1177. [Google Scholar] [CrossRef]
- Chen, W.; Konoplev, S.; Medeiros, L.J.; Koeppen, H.; Leventaki, V.; Vadhan-Raj, S.; Jones, D.; Kantarjian, H.M.; Falini, B.; Bueso-Ramos, C.E. Cuplike nuclei (prominent nuclear invaginations) in acute myeloid leukemia are highly associated with FLT3 internal tandem duplication and NPM1 mutation. Cancer 2009, 115, 5481–5489. [Google Scholar] [CrossRef] [PubMed]
- Naseem, S.; Binota, J.; Varma, N.; Virk, H.; Varma, S.; Malhotra, P. NPM1 and FLT3-ITD/TKD Gene Mutations in Acute Myeloid Leukemia. Int. J. Hematol.-Oncol. Stem Cell Res. 2021, 15, 15–26. [Google Scholar] [CrossRef]
- Cheng, Z.; Hu, K.; Tian, L.; Dai, Y.; Pang, Y.; Cui, W.; Zhao, H.; Qin, T.; Han, Y.; Hu, N.; et al. Clinical and biological implications of mutational spectrum in acute myeloid leukemia of FAB subtypes M4 and M5. Cancer Gene Ther. 2018, 25, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Yang, B.; Wu, W.; Liu, X.; Li, H. The correlation of next-generation sequencing-based genotypic profiles with clinicopathologic characteristics in NPM1-mutated acute myeloid leukemia. BMC Cancer 2021, 21, 788. [Google Scholar] [CrossRef]
- De Propris, M.S.; Raponi, S.; Diverio, D.; Milani, M.L.; Meloni, G.; Falini, B.; Foà, R.; Guarini, A. High CD33 expression levels in acute myeloid leukemia cells carrying the nucleophosmin (NPM1) mutation. Haematologica 2011, 96, 1548–1551. [Google Scholar] [CrossRef]
- Martelli, M.P.; Manes, N.; Pettirossi, V.; Liso, A.; Pacini, R.; Mannucci, R.; Zei, T.; Bolli, N.; di Raimondo, F.; Specchia, G.; et al. Absence of nucleophosmin leukaemic mutants in B and T cells from AML with NPM1 mutations: Implications for the cell of origin of NPMc+ AML. Leukemia 2008, 22, 195–198. [Google Scholar] [CrossRef]
- Albiero, E.; Madeo, D.; Bolli, N.; Giaretta, I.; Bona, E.D.; Martelli, M.F.; Nicoletti, I.; Rodeghiero, F.; Falini, B. Identification and functional characterization of a cytoplasmic nucleophosmin leukaemic mutant generated by a novel exon-11 NPM1 mutation. Leukemia 2007, 21, 1099–1103. [Google Scholar] [CrossRef]
- Martelli, M.P.; Rossi, R.; Venanzi, A.; Meggendorfer, M.; Perriello, V.M.; Martino, G.; Spinelli, O.; Ciurnelli, R.; Varasano, E.; Brunetti, L.; et al. Novel NPM1 exon 5 mutations and gene fusions leading to aberrant cytoplasmic nucleophosmin in AML. Blood 2021, 138, 2696–2701. [Google Scholar] [CrossRef]
- Mariano, A.R.; Colombo, E.; Luzi, L.; Martinelli, P.; Volorio, S.; Bernard, L.; Meani, N.; Bergomas, R.; Alcalay, M.; Pelicci, P.G. Cytoplasmic localization of NPM in myeloid leukemias is dictated by gain-of-function mutations that create a functional nuclear export signal. Oncogene 2006, 25, 4376–4380. [Google Scholar] [CrossRef] [PubMed]
- Chua, C.C.; Anstee, N.; Flensburg, C.; Teh, C.; Ivey, A.; Amin, N.; Thijssen, R.; Bohlander, S.K.; Kakadia, P.M.; Xu, Z.; et al. Venetoclax has potent efficacy in NPM1 mutated AML with acquired resistance associated with either perturbed pro-survival signalling or NPM1 wild-type populations. Blood 2023, 142 (Suppl. S1), 423–425. [Google Scholar] [CrossRef]
- Chua, C.C.; Loo, S.; Fong, C.Y.; Ting, S.B.; Tiong, I.S.; Fleming, S.; Anstee, N.S.; Ivey, A.; Ashby, M.; Teh, T.C.; et al. Final analysis of the phase 1b Chemotherapy and Venetoclax in Elderly Acute Myeloid Leukemia Trial (CAVEAT). Blood Adv. 2025, 9, 1827–1835. [Google Scholar] [CrossRef]
- Fabozzi, F.; Mastronuzzi, A. Genetic Predisposition to Hematologic Malignancies in Childhood and Adolescence. Mediterr. J. Hematol. Infect. Dis. 2023, 15, e2023032. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Long, N.; Anekpuritanang, T.; Bottomly, D.; Savage, J.C.; Lee, T.; Solis-Ruiz, J.; Borate, U.; Wilmot, B.; Tognon, C.; et al. Identification and prioritization of myeloid malignancy germline variants in a large cohort of adult patients with AML. Blood 2022, 139, 1208–1221. [Google Scholar] [CrossRef]
- Cheloor Kovilakam, S.; Gu, M.; Dunn, W.G.; Marando, L.; Barcena, C.; Nik-Zainal, S.; Mohorianu, I.; Kar, S.P.; Fabre, M.A.; Quiros, P.M.; et al. Prevalence and significance of DDX41 gene variants in the general population. Blood 2023, 142, 1185–1192. [Google Scholar] [CrossRef]
- Lachowiez, C.A.; DiNardo, C.D.; Morita, K.; Furudate, K.; Wang, F.; Tanaka, T.; Wang, S.A.; Kadia, T.M.; Daver, N.; Short, N.J.; et al. Longitudinal Next Generation Sequencing Reveals the Clonal Hierarchy of IDH Mutated Clones and Impact on Survival in NPM1 Mutated AML. Blood ASH Annu. Meet. Abstr. 2021, 138 (Suppl. S1), 607. [Google Scholar] [CrossRef]
- Döhner, H.; DiNardo, C.D.; Appelbaum, F.R.; Craddock, C.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; Larson, R.A.; et al. Genetic risk classification for adults with AML receiving less-intensive therapies: The 2024 ELN recommendations. Blood 2024, 144, 2169–2173. [Google Scholar] [CrossRef]
- Döhner, H.; Pratz, K.W.; DiNardo, C.D.; Wei, A.H.; Jonas, B.A.; Pullarkat, V.A.; Thirman, M.J.; Récher, C.; Schuh, A.C.; Babu, S.; et al. Genetic risk stratification and outcomes among treatment-naive patients with AML treated with venetoclax and azacitidine. Blood 2024, 144, 2211–2222. [Google Scholar] [CrossRef]
- Lachowiez, C.A.; Ravikumar, V.I.; Othman, J.; O’Nions, J.; Peters, D.T.; McMahon, C.; Swords, R.; Cook, R.; Saultz, J.N.; Tyner, J.W.; et al. Refined ELN 2024 risk stratification improves survival prognostication following venetoclax-based therapy in AML. Blood 2024, 144, 2788–2792. [Google Scholar] [CrossRef]
- Pratcorona, M.; Brunet, S.; Nomdedéu, J.; Ribera, J.M.; Tormo, M.; Duarte, R.; Escoda, L.; Guàrdia, R.; Queipo de Llano, M.P.; Salamero, O.; et al. Favorable outcome of patients with acute myeloid leukemia harboring a low-allelic burden FLT3-ITD mutation and concomitant NPM1 mutation: Relevance to post-remission therapy. Blood 2013, 121, 2734–2738. [Google Scholar] [CrossRef] [PubMed]
- Castaigne, S.; Pautas, C.; Terré, C.; Raffoux, E.; Bordessoule, D.; Bastie, J.N.; Legrand, O.; Thomas, X.; Turlure, P.; Reman, O.; et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): A randomised, open-label, phase 3 study. Lancet 2012, 379, 1508–1516. [Google Scholar] [CrossRef] [PubMed]
- Schlenk, R.F.; Paschka, P.; Krzykalla, J.; Weber, D.; Kapp-Schwoerer, S.; Gaidzik, V.I.; Leis, C.; Fiedler, W.; Kindler, T.; Schroeder, T.; et al. Gemtuzumab Ozogamicin in NPM1-Mutated Acute Myeloid Leukemia: Early Results From the Prospective Randomized AMLSG 09-09 Phase III Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 623–632. [Google Scholar] [CrossRef]
- Hills, R.K.; Castaigne, S.; Appelbaum, F.R.; Delaunay, J.; Petersdorf, S.; Othus, M.; Estey, E.H.; Dombret, H.; Chevret, S.; Ifrah, N.; et al. Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: A meta-analysis of individual patient data from randomised controlled trials. Lancet Oncol. 2014, 15, 986–996. [Google Scholar] [CrossRef] [PubMed]
- DiNardo, C.D.; Jonas, B.A.; Pullarkat, V.; Thirman, M.J.; Garcia, J.S.; Wei, A.H.; Konopleva, M.; Döhner, H.; Letai, A.; Fenaux, P.; et al. Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. New Engl. J. Med. 2020, 383, 617–629. [Google Scholar] [CrossRef]
- Pratz, K.W.; Jonas, B.A.; Pullarkat, V.A.; Thirman, M.J.; Garcia, J.S.; Fiedler, W.; Yamamoto, K.; Wang, J.; Yoon, S.S.; Wolach, O.; et al. Long-Term Follow-up of the Phase 3 Viale-a Clinical Trial of Venetoclax Plus Azacitidine for Patients with Untreated Acute Myeloid Leukemia Ineligible for Intensive Chemotherapy. Blood ASH Annu. Meet. Abstr. 2022, 140 (Suppl. S1), 529–531. [Google Scholar] [CrossRef]
- Stone, R.M.; Mandrekar, S.J.; Sanford, B.L.; Laumann, K.; Geyer, S.; Bloomfield, C.D.; Thiede, C.; Prior, T.W.; Döhner, K.; Marcucci, G.; et al. Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation. New Engl. J. Med. 2017, 377, 454–464. [Google Scholar] [CrossRef]
- Eisfeld, A.K.; Kohlschmidt, J.; Mims, A.; Nicolet, D.; Walker, C.J.; Blachly, J.S.; Carroll, A.J.; Papaioannou, D.; Kolitz, J.E.; Powell, B.E.; et al. Additional gene mutations may refine the 2017 European LeukemiaNet classification in adult patients with de novo acute myeloid leukemia aged <60 years. Leukemia 2020, 34, 3215–3227. [Google Scholar] [CrossRef]
- Lachowiez, C.A.; Reville, P.K.; Kantarjian, H.; Jabbour, E.; Borthakur, G.; Daver, N.; Issa, G.; Furudate, K.; Tanaka, T.; Pierce, S.; et al. Contemporary outcomes in IDH-mutated acute myeloid leukemia: The impact of co-occurring NPM1 mutations and venetoclax-based treatment. Am. J. Hematol. 2022, 97, 1443–1452. [Google Scholar] [CrossRef]
- Green, C.L.; Evans, C.M.; Zhao, L.; Hills, R.K.; Burnett, A.K.; Linch, D.C.; Gale, R.E. The prognostic significance of IDH2 mutations in AML depends on the location of the mutation. Blood 2011, 118, 409–412. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Tiong, I.S.; Quaglieri, A.; MacRaild, S.; Loghavi, S.; Brown, F.C.; Thijssen, R.; Pomilio, G.; Ivey, A.; Salmon, J.M.; et al. Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML. Blood 2020, 135, 791–803. [Google Scholar] [CrossRef] [PubMed]
- Fruchtman, H.; Avigan, Z.M.; Waksal, J.A.; Brennan, N.; Mascarenhas, J.O. Management of isocitrate dehydrogenase 1/2 mutated acute myeloid leukemia. Leukemia 2024, 38, 927–935. [Google Scholar] [CrossRef]
- Fleming, S.; Tsai, C.H.; Döhner, H.; Döhner, K.; Papaemmanuil, E.; Tien, H.F.; Reynolds, J.; Wei, A.H.; Hou, H.A. Machine Learning of Genomic Factors in 1,961 Patients with Acute Myeloid Leukemia Identifies Patients with Very Good or Very Poor Prognosis Who Do Not Benefit from Allogeneic Hematopoietic Cell Transplant in First Remission. Blood ASH Annu. Meet. Abstr. 2021, 138 (Suppl. S1), 225. [Google Scholar] [CrossRef]
- Bill, M.; Eckardt, J.N.; Rausch, C.; Metzeler, K.H.; Spiekermann, K.; Stasik, S.; Sauer, T.; Scholl, S.; Hochhaus, A.; Crysandt, M.; et al. Secondary-type mutations do not impact the favorable outome of NPM1-mutated acute myeloid leukemia patients-results from a large cohort of intensively treated patients. Blood 2023, 142 (Suppl. S1), 721–724. [Google Scholar] [CrossRef]
- Eckardt, J.N.; Bill, M.; Rausch, C.; Metzeler, K.; Spiekermann, K.; Stasik, S.; Sauer, T.; Scholl, S.; Hochhaus, A.; Crysandt, M.; et al. Secondary-type mutations do not impact outcome in NPM1-mutated acute myeloid leukemia-implications for the European LeukemiaNet risk classification. Leukemia 2023, 37, 2282–2285. [Google Scholar] [CrossRef]
- Lachowiez, C.A.; Asimonitis, G.; Bernard, E.; Tang, I.; Tazi, Y.; Gilkes, A.; Thomas, I.; Bullinger, L.; Dohner, K.; Dohner, H.; et al. Influence of bone marrow blast enumeration and co-occuring myelodysplasia related gene mutations in NPM1-mutated myeloid malignancies. Blood 2023, 142 (Suppl. S1), 818–820. [Google Scholar] [CrossRef]
- Wang, Y.; Quesada, A.E.; Zuo, Z.; Medeiros, L.J.; Yin, C.C.; Li, S.; Xu, J.; Borthakur, G.; Li, Y.; Yang, C.; et al. The Impact of Mutation of Myelodysplasia-Related Genes in De Novo Acute Myeloid Leukemia Carrying NPM1 Mutation. Cancers 2022, 15, 198. [Google Scholar] [CrossRef] [PubMed]
- Wright, M.F.; Pozdnyakova, O.; Hasserjian, R.P.; Aggarwal, N.; Shaver, A.C.; Weinberg, O.K.; Irlmeier, R.; Koyama, T.; Seegmiller, A.C.; Strickland, S.A.; et al. Secondary-type mutations do not impact prognosis in acute myelogenous leukemia AML with mutated NPM1. Am. J. Hematol. 2022, 97, E462–E465. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Zarif, M.; Eladl, E.; Capo-Chichi, J.M.; Smith, A.C.; Atenafu, E.G.; Tierens, A.; Minden, M.D.; Schuh, A.; Chang, H. NPM1-mutated AML-MRC diagnosed on the basis of history of MDS or MDS/MPN frequently harbours secondary-type mutations and confers inferior outcome compared to AML with mutated NPM1. Leuk. Res. 2022, 118, 106869. [Google Scholar] [CrossRef]
- Mrózek, K.; Kohlschmidt, J.; Blachly, J.S.; Nicolet, D.; Carroll, A.J.; Archer, K.J.; Mims, A.S.; Larkin, K.T.; Orwick, S.; Oakes, C.C.; et al. Outcome prediction by the 2022 European LeukemiaNet genetic-risk classification for adults with acute myeloid leukemia: An Alliance study. Leukemia 2023, 37, 788–798. [Google Scholar] [CrossRef]
- Cocciardi, S.; Saadati, M.; Weiß, N.; Späth, D.; Kapp-Schwoerer, S.; Schneider, I.; Meid, A.; Gaidzik, V.I.; Skambraks, S.; Fiedler, W.; et al. Impact of myelodysplasia-related and additional gene mutations in intensively treated patients with NPM1-mutated AML. Hemasphere 2025, 9, e70060. [Google Scholar] [CrossRef] [PubMed]
- Stade, K.; Ford, C.S.; Guthrie, C.; Weis, K. Exportin 1 (Crm1p) is an essential nuclear export factor. Cell 1997, 90, 1041–1050. [Google Scholar] [CrossRef]
- Pianigiani, G.; Gagliardi, A.; Mezzasoma, F.; Rocchio, F.; Tini, V.; Bigerna, B.; Sportoletti, P.; Caruso, S.; Marra, A.; Peruzzi, S.; et al. Prolonged XPO1 inhibition is essential for optimal antileukemic activity in NPM1-mutated AML. Blood Adv. 2022, 6, 5938–5949. [Google Scholar] [CrossRef] [PubMed]
- Ranieri, R.; Pianigiani, G.; Sciabolacci, S.; Perriello, V.M.; Marra, A.; Cardinali, V.; Pierangeli, S.; Milano, F.; Gionfriddo, I.; Brunetti, L.; et al. Current status and future perspectives in targeted therapy of NPM1-mutated AML. Leukemia 2022, 36, 2351–2367. [Google Scholar] [CrossRef] [PubMed]
- Alcalay, M.; Tiacci, E.; Bergomas, R.; Bigerna, B.; Venturini, E.; Minardi, S.P.; Meani, N.; Diverio, D.; Bernard, L.; Tizzoni, L.; et al. Acute myeloid leukemia bearing cytoplasmic nucleophosmin (NPMc+ AML) shows a distinct gene expression profile characterized by up-regulation of genes involved in stem-cell maintenance. Blood 2005, 106, 899–902. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, B.; Mao, F.; Xu, J.; Miao, H.; Zou, Z.; Phuc Khoa, L.T.; Jang, Y.; Cai, S.; Witkin, M.; et al. HOXA9 Reprograms the Enhancer Landscape to Promote Leukemogenesis. Cancer Cell 2018, 34, 643–658.e645. [Google Scholar] [CrossRef]
- Chen, S.L.; Qin, Z.Y.; Hu, F.; Wang, Y.; Dai, Y.J.; Liang, Y. The Role of the HOXA Gene Family in Acute Myeloid Leukemia. Genes 2019, 10, 621. [Google Scholar] [CrossRef]
- Garzon, R.; Savona, M.; Baz, R.; Andreeff, M.; Gabrail, N.; Gutierrez, M.; Savoie, L.; Mau-Sorensen, P.M.; Wagner-Johnston, N.; Yee, K.; et al. A phase 1 clinical trial of single-agent selinexor in acute myeloid leukemia. Blood 2017, 129, 3165–3174. [Google Scholar] [CrossRef]
- Etchin, J.; Montero, J.; Berezovskaya, A.; Le, B.T.; Kentsis, A.; Christie, A.L.; Conway, A.S.; Chen, W.C.; Reed, C.; Mansour, M.R.; et al. Activity of a selective inhibitor of nuclear export, selinexor (KPT-330), against AML-initiating cells engrafted into immunosuppressed NSG mice. Leukemia 2016, 30, 190–199. [Google Scholar] [CrossRef]
- Fischer, M.A.; Friedlander, S.Y.; Arrate, M.P.; Chang, H.; Gorska, A.E.; Fuller, L.D.; Ramsey, H.E.; Kashyap, T.; Argueta, C.; Debler, S.; et al. Venetoclax response is enhanced by selective inhibitor of nuclear export compounds in hematologic malignancies. Blood Adv. 2020, 4, 586–598. [Google Scholar] [CrossRef]
- Yu, H.; Wu, S.; Liu, S.; Li, X.; Gai, Y.; Lin, H.; Wang, Y.; Edwards, H.; Ge, Y.; Wang, G. Venetoclax enhances DNA damage induced by XPO1 inhibitors: A novel mechanism underlying the synergistic antileukaemic effect in acute myeloid leukaemia. J. Cell Mol. Med. 2022, 26, 2646–2657. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, Y.; Liu, D.; Wang, X.; Zhu, Y.; Tong, J.; Chen, E.; Xue, L.; Zhao, N.; Liang, T.; et al. Selinexor Synergistically Promotes the Antileukemia Activity of Venetoclax in Acute Myeloid Leukemia by Inhibiting Glycolytic Function and Downregulating the Expression of DNA Replication Genes. Immunotargets Ther. 2023, 12, 135–147. [Google Scholar] [CrossRef]
- Mill, C.P.; Fiskus, W.; Das, K.; Davis, J.A.; Birdwell, C.E.; Kadia, T.M.; DiNardo, C.D.; Daver, N.; Takahashi, K.; Sasaki, K.; et al. Causal linkage of presence of mutant NPM1 to efficacy of novel therapeutic agents against AML cells with mutant NPM1. Leukemia 2023, 37, 1336–1348. [Google Scholar] [CrossRef]
- Brunetti, L.; Gundry, M.C.; Sorcini, D.; Guzman, A.G.; Huang, Y.H.; Ramabadran, R.; Gionfriddo, I.; Mezzasoma, F.; Milano, F.; Nabet, B.; et al. Mutant NPM1 Maintains the Leukemic State through HOX Expression. Cancer Cell 2018, 34, 499–512.e499. [Google Scholar] [CrossRef] [PubMed]
- Klossowski, S.; Miao, H.; Kempinska, K.; Wu, T.; Purohit, T.; Kim, E.; Linhares, B.M.; Chen, D.; Jih, G.; Perkey, E.; et al. Menin inhibitor MI-3454 induces remission in MLL1-rearranged and NPM1-mutated models of leukemia. J. Clin. Investig. 2020, 130, 981–997. [Google Scholar] [CrossRef] [PubMed]
- Issa, G.C.; Aldoss, I.; DiPersio, J.F.; Cuglievan, B.; Stone, R.M.; Arellano, M.L.; Thirman, M.J.; Patel, M.R.; Dickens, D.; Shenoy, S.; et al. The Menin Inhibitor SNDX-5613 (revumenib) Leads to Durable Responses in Patients (Pts) with KMT2A-Rearranged or NPM1 Mutant AML: Updated Results of a Phase (Ph) 1 Study. Blood ASH Annu. Meet. Abstr. 2022, 140 (Suppl. S1), 150–152. [Google Scholar] [CrossRef]
- Aldoss, I.; Issa, G.C.; Blachly, J.S.; Thirman, M.J.; Mannis, G.N.; Arellano, M.L.; DiPersio, J.F.; Traer, E.; Zwaan, C.M.; Shukla, N.; et al. Updated Results and Longer Follow-up from the AUGMENT-101 Phase 2 Study of Revumenib in All Patients with Relapsed or Refractory (R/R) KMT2Ar Acute Leukemia. Blood 2024, 144 (Suppl. S1), 211–214. [Google Scholar] [CrossRef]
- Issa, G.C.; Aldoss, I.; Thirman, M.J.; DiPersio, J.; Arellano, M.; Blachly, J.S.; Mannis, G.N.; Perl, A.; Dickens, D.S.; McMahon, C.M.; et al. Menin Inhibition With Revumenib for KMT2A-Rearranged Relapsed or Refractory Acute Leukemia (AUGMENT-101). J. Clin. Oncol. Off. J. Am. Soc. of. Clinical. Oncology 2025, 43, 75–84. [Google Scholar] [CrossRef]
- Bataller, A.; Guijarro, F.; Caye-Eude, A.; Strullu, M.; Sterin, A.; Molina, O.; Chevallier, P.; Zaliova, M.; Zuna, J.; Mozas, P.; et al. KMT2A-CBL rearrangements in acute leukemias: Clinical characteristics and genetic breakpoints. Blood Adv. 2021, 5, 5617–5620. [Google Scholar] [CrossRef]
- Shukla, N.; Guest, E.; Tasian, S.K.; Breese, E.; Schafer, E.; DiPersio, J.; Issa, G.C.; Silverman, L.B.; Stieglitz, E.; Pollard, J.; et al. Safety and activity of Revumenib in combination with fludarabine/cytarabine (FLA) in patients with relapsed/refractory acute leukemias (P540). HemaSphere 2024, 8, 891–893. [Google Scholar]
- Fathi, A.T.; Issa, G.C.; Wang, E.S.; Erba, H.; Kaplan Altman, J.; Balasubramanian, S.K.; Roboz, G.J.; Schiller, G.J.; McMahon, C.M.; Palmisiano, N.D.; et al. Ziftomenib Combined with Venetoclax/Azacitidine in Relapsed/Refractory NPM1-m or KMT2A-r Acute Myeloid Leukemia: Interim Phase 1a Results from KOMET-007. Blood 2024, 144 (Suppl. S1), 2880–2882. [Google Scholar] [CrossRef]
- Döhner, H.; Weber, D.; Krzykalla, J.; Fiedler, W.; Kühn, M.W.M.; Schroeder, T.; Mayer, K.; Lübbert, M.; Wattad, M.; Götze, K.; et al. Intensive chemotherapy with or without gemtuzumab ozogamicin in patients with NPM1-mutated acute myeloid leukaemia (AMLSG 09-09): A randomised, open-label, multicentre, phase 3 trial. Lancet. Haematol. 2023, 10, e495–e509. [Google Scholar] [CrossRef]
- Schlenk, R.F.; Weber, D.; Krzykalla, J.; Kindler, T.; Wulf, G.; Hertenstein, B.; Salih, H.R.; Südhoff, T.; Krauter, J.; Martens, U.; et al. Randomized phase-III study of low-dose cytarabine and etoposide + /- all-trans retinoic acid in older unfit patients with NPM1-mutated acute myeloid leukemia. Sci. Rep. 2023, 13, 14809. [Google Scholar] [CrossRef] [PubMed]
- Orvain, C.; Bertoli, S.; Peterlin, P.; Desbrosses, Y.; Dumas, P.Y.; Iat, A.; Hospital, M.A.; Carre, M.; Tavernier, E.; Riou, J.; et al. Molecular relapse after first-line intensive therapy in patients with CBF or NPM1-mutated acute myeloid leukemia-a FILO study. Leukemia 2024, 38, 1949–1957. [Google Scholar] [CrossRef] [PubMed]
- Zeidner, J.F.; Yuda, J.; Watts, J.M.; Levis, M.; Erba, H.; Fukushima, K.; Shima, T.; Palmisiano, N.D.; Wang, E.S.; Borate, U.; et al. Phase 1 Results: First-in-Human Phase 1/2 Study of the Menin-MLL Inhibitor Enzomenib (DSP-5336) in Patients with Relapsed or Refractory Acute Leukemia. Blood 2024, 144 (Suppl. S1), 213–216. [Google Scholar] [CrossRef]
- Recher, C.; O’Nions, J.; Aldoss, I.; Pierola, A.A.; Allred, A.; Alonso-Dominguez, J.M.; Barreyro, L.; Bories, P.; Curtis, M.; Daskalakis, N.; et al. Phase 1b Study of Menin-KMT2A Inhibitor Bleximenib in Combination with Intensive Chemotherapy in Newly Diagnosed Acute Myeloid Leukemia with KMT2Ar or NPM1 Alterations. Blood 2024, 144 (Suppl. S1), 215–218. [Google Scholar] [CrossRef]
- Issa, G.C.; Cuglievan, B.; Daver, N.; DiNardo, C.D.; Farhat, A.; Short, N.J.; McCall, D.; Pike, A.; Tan, S.; Kammerer, B.; et al. Phase I/II Study of the All-Oral Combination of Revumenib (SNDX-5613) with Decitabine/Cedazuridine (ASTX727) and Venetoclax (SAVE) in R/R AML. Blood 2024, 144 (Suppl. S1), 216–218. [Google Scholar] [CrossRef]
- Kretschmer, L.; Ruhnke, L.; Schliemann, C.; Fransecky, L.; Steffen, B.; Kaufmann, M.; Burchert, A.; Schmid, C.; Hanoun, M.; Sauer, T.; et al. Trial in Progress: A Randomized-Controlled Phase 2 Study Evaluating Venetoclax Plus Azacitidine Versus Intensive Chemotherapy in Adult Patients with Newly Diagnosed, NPM1-Mutated AML- the SAL/AMLCG Vincent Trial. Blood 2024, 144 (Suppl. S1), 1527.1521–1527.1523. [Google Scholar] [CrossRef]
- Sartor, C.; Candoni, A.; Piciocchi, A.; Marsili, G.; Fazi, P.; Papayannidis, C.; Paolini, S.; Cristiano, G.; Maurillo, L.; Tiribelli, M.; et al. Venetoclax and Azacitidine for Relapse Prevention in NPM1-Mutated Acute Myeloid Leukemia in Molecular Failure: Results from the Ongoing Gimema AML2521 Phase 2 Trial. Blood 2024, 144 (Suppl. S1), 2893–2894. [Google Scholar] [CrossRef]
- Erba, H.P.; Fathi, A.T.; Issa, G.C.; Altman, J.K.; Montesinos, P.; Patnaik, M.M.; Foran, J.M.; De Botton, S.; Baer, M.R.; Schiller, G.J.; et al. Update on a Phase 1/2 First-in-Human Study of the Menin-KMT2A (MLL) Inhibitor Ziftomenib (KO-539) in Patients with Relapsed or Refractory Acute Myeloid Leukemia. Blood ASH Annu. Meet. Abstr. 2022, 140 (Suppl. S1), 153–156. [Google Scholar] [CrossRef]
- Zeidan, A.M.; Wang, E.S.; Issa, G.C.; Erba, H.; Kaplan Altman, J.; Balasubramanian, S.K.; Strickland, S.A.; Roboz, G.J.; Schiller, G.J.; McMahon, C.M.; et al. Ziftomenib Combined with Intensive Induction (7+3) in Newly Diagnosed NPM1-m or KMT2A-r Acute Myeloid Leukemia: Interim Phase 1a Results from KOMET-007. Blood 2024, 144 (Suppl. S1), 214–216. [Google Scholar] [CrossRef]
- Searle, E.; Recher, C.; Abdul-Hay, M.; Abedin, S.; Aldoss, I.; Pierola, A.A.; Alonso-Dominguez, J.M.; Chevallier, P.; Cost, C.; Daskalakis, N.; et al. Bleximenib Dose Optimization and Determination of RP2D from a Phase 1 Study in Relapsed/Refractory Acute Leukemia Patients with KMT2A and NPM1 Alterations. Blood 2024, 144 (Suppl. S1), 212–214. [Google Scholar] [CrossRef]
- Uckelmann, H.J.; Kim, S.M.; Wong, E.M.; Hatton, C.; Giovinazzo, H.; Gadrey, J.Y.; Krivtsov, A.V.; Rücker, F.G.; Döhner, K.; McGeehan, G.M.; et al. Therapeutic targeting of preleukemia cells in a mouse model of NPM1 mutant acute myeloid leukemia. Science 2020, 367, 586–590. [Google Scholar] [CrossRef]
- Hu, Z.B.; Minden, M.D.; McCulloch, E.A. Phosphorylation of BCL-2 after exposure of human leukemic cells to retinoic acid. Blood 1998, 92, 1768–1775. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.B.; Minden, M.D.; McCulloch, E.A. Direct evidence for the participation of bcl-2 in the regulation by retinoic acid of the Ara-C sensitivity of leukemic stem cells. Leukemia 1995, 9, 1667–1673. [Google Scholar] [PubMed]
- Balusu, R.; Fiskus, W.; Rao, R.; Chong, D.G.; Nalluri, S.; Mudunuru, U.; Ma, H.; Chen, L.; Venkannagari, S.; Ha, K.; et al. Targeting levels or oligomerization of nucleophosmin 1 induces differentiation and loss of survival of human AML cells with mutant NPM1. Blood 2011, 118, 3096–3106. [Google Scholar] [CrossRef]
- Martelli, M.P.; Gionfriddo, I.; Mezzasoma, F.; Milano, F.; Pierangeli, S.; Mulas, F.; Pacini, R.; Tabarrini, A.; Pettirossi, V.; Rossi, R.; et al. Arsenic trioxide and all-trans retinoic acid target NPM1 mutant oncoprotein levels and induce apoptosis in NPM1-mutated AML cells. Blood 2015, 125, 3455–3465. [Google Scholar] [CrossRef]
- El Hajj, H.; Dassouki, Z.; Berthier, C.; Raffoux, E.; Ades, L.; Legrand, O.; Hleihel, R.; Sahin, U.; Tawil, N.; Salameh, A.; et al. Retinoic acid and arsenic trioxide trigger degradation of mutated NPM1, resulting in apoptosis of AML cells. Blood 2015, 125, 3447–3454. [Google Scholar] [CrossRef]
- Grant, S. ATRA and ATO team up against NPM1. Blood 2015, 125, 3369–3371. [Google Scholar] [CrossRef]
- Burnett, A.K.; Hills, R.K.; Green, C.; Jenkinson, S.; Koo, K.; Patel, Y.; Guy, C.; Gilkes, A.; Milligan, D.W.; Goldstone, A.H.; et al. The impact on outcome of the addition of all-trans retinoic acid to intensive chemotherapy in younger patients with nonacute promyelocytic acute myeloid leukemia: Overall results and results in genotypic subgroups defined by mutations in NPM1, FLT3, and CEBPA. Blood 2010, 115, 948–956. [Google Scholar] [CrossRef]
- Schlenk, R.F.; Lübbert, M.; Benner, A.; Lamparter, A.; Krauter, J.; Herr, W.; Martin, H.; Salih, H.R.; Kündgen, A.; Horst, H.A.; et al. All-trans retinoic acid as adjunct to intensive treatment in younger adult patients with acute myeloid leukemia: Results of the randomized AMLSG 07-04 study. Ann. Hematol. 2016, 95, 1931–1942. [Google Scholar] [CrossRef]
- Schlenk, R.F.; Fröhling, S.; Hartmann, F.; Fischer, J.T.; Glasmacher, A.; del Valle, F.; Grimminger, W.; Götze, K.; Waterhouse, C.; Schoch, R.; et al. Phase III study of all-trans retinoic acid in previously untreated patients 61 years or older with acute myeloid leukemia. Leukemia 2004, 18, 1798–1803. [Google Scholar] [CrossRef]
- Mouchel, P.L.; Bérard, E.; Tavitian, S.; Gadaud, N.; Vergez, F.; Rieu, J.B.; Luquet, I.; Sarry, A.; Huguet, F.; Largeaud, L.; et al. Vitamin C and D supplementation in acute myeloid leukemia. Blood Adv. 2023, 7, 6886–6897. [Google Scholar] [CrossRef] [PubMed]
- Wei, A.H.; Döhner, H.; Pocock, C.; Montesinos, P.; Afanasyev, B.; Dombret, H.; Ravandi, F.; Sayar, H.; Jang, J.H.; Porkka, K.; et al. Oral Azacitidine Maintenance Therapy for Acute Myeloid Leukemia in First Remission. New Engl. J. Med. 2020, 383, 2526–2537. [Google Scholar] [CrossRef]
- Othman, J.; Potter, N.; Ivey, A.; Tazi, Y.; Papaemmanuil, E.; Jovanovic, J.; Freeman, S.D.; Gilkes, A.; Gale, R.; Rapoz-D’Silva, T.; et al. Molecular, clinical, and therapeutic determinants of outcome in NPM1-mutated AML. Blood 2024, 144, 714–728. [Google Scholar] [CrossRef] [PubMed]
- Dillon, R.; Hills, R.; Freeman, S.; Potter, N.; Jovanovic, J.; Ivey, A.; Kanda, A.S.; Runglall, M.; Foot, N.; Valganon, M.; et al. Molecular MRD status and outcome after transplantation in NPM1-mutated AML. Blood 2020, 135, 680–688. [Google Scholar] [CrossRef]
- Lambert, J.; Pautas, C.; Terré, C.; Raffoux, E.; Turlure, P.; Caillot, D.; Legrand, O.; Thomas, X.; Gardin, C.; Gogat-Marchant, K.; et al. Gemtuzumab ozogamicin for de novo acute myeloid leukemia: Final efficacy and safety updates from the open-label, phase III ALFA-0701 trial. Haematologica 2019, 104, 113–119. [Google Scholar] [CrossRef]
- Kapp-Schwoerer, S.; Weber, D.; Corbacioglu, A.; Gaidzik, V.I.; Paschka, P.; Krönke, J.; Theis, F.; Rücker, F.G.; Teleanu, M.V.; Panina, E.; et al. Impact of gemtuzumab ozogamicin on MRD and relapse risk in patients with NPM1-mutated AML: Results from the AMLSG 09-09 trial. Blood 2020, 136, 3041–3050. [Google Scholar] [CrossRef] [PubMed]
- Burnett, A.K.; Hills, R.K.; Milligan, D.; Kjeldsen, L.; Kell, J.; Russell, N.H.; Yin, J.A.; Hunter, A.; Goldstone, A.H.; Wheatley, K. Identification of patients with acute myeloblastic leukemia who benefit from the addition of gemtuzumab ozogamicin: Results of the MRC AML15 trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2011, 29, 369–377. [Google Scholar] [CrossRef]
- Burnett, A.K.; Russell, N.H.; Hills, R.K.; Kell, J.; Freeman, S.; Kjeldsen, L.; Hunter, A.E.; Yin, J.; Craddock, C.F.; Dufva, I.H.; et al. Addition of gemtuzumab ozogamicin to induction chemotherapy improves survival in older patients with acute myeloid leukemia. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2012, 30, 3924–3931. [Google Scholar] [CrossRef]
- Jimenez-Chillon, C.; Dillon, R.; Russell, N. Optimal post-remission consolidation therapy in patients with AML. Acta Haematol. 2023, 147, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Mayer, R.J.; Davis, R.B.; Schiffer, C.A.; Berg, D.T.; Powell, B.L.; Schulman, P.; Omura, G.A.; Moore, J.O.; McIntyre, O.R.; Frei, E. Cancer and Leukemia Group B. Intensive postremission chemotherapy in adults with acute myeloid leukemia. New Engl. J. Med. 1994, 331, 896–903. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017, 129, 424–447. [Google Scholar] [CrossRef]
- Sartor, C.; Brunetti, L.; Audisio, E.; Cignetti, A.; Zannoni, L.; Cristiano, G.; Nanni, J.; Ciruolo, R.; Zingarelli, F.; Ottaviani, E.; et al. A venetoclax and azacitidine bridge-to-transplant strategy for NPM1-mutated acute myeloid leukaemia in molecular failure. Br. J. Haematol. 2023, 202, 599–607. [Google Scholar] [CrossRef]
- Huang, Z.W.; Zhang, X.N.; Zhang, L.; Liu, L.L.; Zhang, J.W.; Sun, Y.X.; Xu, J.Q.; Liu, Q.; Long, Z.J. STAT5 promotes PD-L1 expression by facilitating histone lactylation to drive immunosuppression in acute myeloid leukemia. Signal Transduct. Target. Ther. 2023, 8, 391. [Google Scholar] [CrossRef] [PubMed]
- Greiner, J.; Mohamed, E.; Fletcher, D.M.; Schuler, P.J.; Schrezenmeier, H.; Götz, M.; Guinn, B.A. Immunotherapeutic Potential of Mutated NPM1 for the Treatment of Acute Myeloid Leukemia. Cancers 2024, 16, 3443. [Google Scholar] [CrossRef]
- Abaza, Y.; Zeidan, A.M. Immune Checkpoint Inhibition in Acute Myeloid Leukemia and Myelodysplastic Syndromes. Cells 2022, 11, 2249. [Google Scholar] [CrossRef]
- Daver, N. Immune checkpoint inhibitors in acute myeloid leukemia. Best. Pr. Res. Clin. Haematol. 2021, 34, 101247. [Google Scholar] [CrossRef]
- Daver, N.; Basu, S.; Garcia-Manero, G.; Cortes, J.E.; Ravandi, F.; Jabbour, E.J.; Hendrickson, S.; Pierce, S.; Ning, J.; Konopleva, M.; et al. Phase IB/II Study of Nivolumab in Combination with Azacytidine (AZA) in Patients (pts) with Relapsed Acute Myeloid Leukemia (AML). Blood 2016, 128, 763. [Google Scholar] [CrossRef]
- Stempel, J.M.; Uy, G.L.; Dinner, S.N.; Gojo, I.; Reed, D.; Roy, R.; Byrd, K.P.; Yerrabothala, S.; Lai, C.E.; Doucette, K.; et al. Efficacy and Safety of Pembrolizumab Added to Azacitidine Plus Venetoclax for Patients with Acute Myeloid Leukemia: Results from an Investigator-Initiated, Multi-Center, CTEP-Sponsored Randomized, Phase II Trial (BLAST AML-2). Blood 2024, 144 (Suppl. S1), 736–738. [Google Scholar] [CrossRef]
- Fehniger, T.A.; Uy, G.L.; Trinkaus, K.; Nelson, A.D.; Demland, J.; Abboud, C.N.; Cashen, A.F.; Stockerl-Goldstein, K.E.; Westervelt, P.; DiPersio, J.F.; et al. A phase 2 study of high-dose lenalidomide as initial therapy for older patients with acute myeloid leukemia. Blood 2011, 117, 1828–1833. [Google Scholar] [CrossRef]
- Hütter-Krönke, M.L.; Fiedler, W.; Kündgen, A.; Krauter, J.; von Lilienfeld-Toal, M.; Döhner, H.; Schlenk, R.F. Continuous high dosing of lenalidomide in relapsed, refractory or older newly diagnosed acute myeloid leukemia patients not suitable for other treatment options-results from a phase I study. Haematologica 2019, 104, e63–e64. [Google Scholar] [CrossRef]
- Löwenberg, B.; Pabst, T.; Maertens, J.; Gradowska, P.; Biemond, B.J.; Spertini, O.; Vellenga, E.; Griskevicius, L.; Tick, L.W.; Jongen-Lavrencic, M.; et al. Addition of lenalidomide to intensive treatment in younger and middle-aged adults with newly diagnosed AML: The HOVON-SAKK-132 trial. Blood Adv. 2021, 5, 1110–1121. [Google Scholar] [CrossRef]
- Guinn, B.A.; Schuler, P.J.; Schrezenmeier, H.; Hofmann, S.; Weiss, J.; Bulach, C.; Götz, M.; Greiner, J. A Combination of the Immunotherapeutic Drug Anti-Programmed Death 1 with Lenalidomide Enhances Specific T Cell Immune Responses against Acute Myeloid Leukemia Cells. Int. J. Mol. Sci. 2023, 24, 9285. [Google Scholar] [CrossRef]
- Bourgeois, W.; Cutler, J.A.; Aubrey, B.J.; Wenge, D.V.; Perner, F.; Martucci, C.; Henrich, J.A.; Klega, K.; Nowak, R.P.; Donovan, K.A.; et al. Mezigdomide is effective alone and in combination with menin inhibition in preclinical models of KMT2A-r and NPM1c AML. Blood 2024, 143, 1513–1527. [Google Scholar] [CrossRef]
- Skayneh, H.; Jishi, B.; Hleihel, R.; Hamie, M.; El Hajj, R.; Deleuze-Masquefa, C.; Bonnet, P.A.; El Sabban, M.; El Hajj, H. EAPB0503, an Imidazoquinoxaline Derivative Modulates SENP3/ARF Mediated SUMOylation, and Induces NPM1c Degradation in NPM1 Mutant AML. Int. J. Mol. Sci. 2022, 23, 3421. [Google Scholar] [CrossRef]
- Makhoul, P.; Hleihel, R.; Itani, S.; Hamie, M.; Pagniagua-Gayraud, S.; Patinote, C.; Richaud, M.; Merhi, R.A.; El-Sabban, M.; Galas, S.; et al. The Novel Imiqualine EAPB02303 Is a Potent Drug for Treating Acute Myeloid Leukemia. Biomolecules 2025, 15, 741. [Google Scholar] [CrossRef]
- Mardiana, S.; Gill, S. CAR T Cells for Acute Myeloid Leukemia: State of the Art and Future Directions. Front. Oncol. 2020, 10, 697. [Google Scholar] [CrossRef]
- Fiorenza, S.; Turtle, C.J. CAR-T Cell Therapy for Acute Myeloid Leukemia: Preclinical Rationale, Current Clinical Progress, and Barriers to Success. BioDrugs 2021, 35, 281–302. [Google Scholar] [CrossRef]
- Xie, G.; Ivica, N.A.; Jia, B.; Li, Y.; Dong, H.; Liang, Y.; Brown, D.; Romee, R.; Chen, J. CAR-T cells targeting a nucleophosmin neoepitope exhibit potent specific activity in mouse models of acute myeloid leukaemia. Nat. Biomed. Eng. 2021, 5, 399–413. [Google Scholar] [CrossRef]
- Dong, H.; Ham, J.D.; Hu, G.; Xie, G.; Vergara, J.; Liang, Y.; Ali, A.; Tarannum, M.; Donner, H.; Baginska, J.; et al. Memory-like NK cells armed with a neoepitope-specific CAR exhibit potent activity against NPM1 mutated acute myeloid leukemia. Proc. Natl. Acad. Sci. USA 2022, 119, e2122379119. [Google Scholar] [CrossRef]
- Wang, R.; Xu, P.; Chang, L.L.; Zhang, S.Z.; Zhu, H.H. Targeted therapy in NPM1-mutated AML: Knowns and unknowns. Front. Oncol. 2022, 12, 972606. [Google Scholar] [CrossRef]
- Perriello, V.M.; Gionfriddo, I.; Rossi, R.; Milano, F.; Mezzasoma, F.; Marra, A.; Spinelli, O.; Rambaldi, A.; Annibali, O.; Avvisati, G.; et al. CD123 Is Consistently Expressed on NPM1-Mutated AML Cells. Cancers 2021, 13, 496. [Google Scholar] [CrossRef]
- Perriello, V.M.; Rotiroti, M.C.; Pisani, I.; Galimberti, S.; Alberti, G.; Pianigiani, G.; Ciaurro, V.; Marra, A.; Sabino, M.; Tini, V.; et al. IL-3-zetakine combined with a CD33 costimulatory receptor as a dual CAR approach for safer and selective targeting of AML. Blood Adv. 2023, 7, 2855–2871. [Google Scholar] [CrossRef]
- van der Lee, D.I.; Reijmers, R.M.; Honders, M.W.; Hagedoorn, R.S.; de Jong, R.C.; Kester, M.G.; van der Steen, D.M.; de Ru, A.H.; Kweekel, C.; Bijen, H.M.; et al. Mutated nucleophosmin 1 as immunotherapy target in acute myeloid leukemia. J. Clin. Investig. 2019, 129, 774–785. [Google Scholar] [CrossRef]
Mutations/Prognostic Risk Group | Treatment |
---|---|
Fit: NPM1mut/FLT-ITDwt/DNMT3Awt/WT1wt NPM1mut/IDH1mut ? NPM1mut/DNMT3Amut/NRASG12/13-mut NPM1mut/IDH2mut NPM1mut/FLT-ITDmut/cohesinmut NPM1mut/NRASmut/cohesinmut Döhner H et al., Blood 2022 (ELN) [31] Favorable Unfit: NPM1mut/FLT-ITDwt/NRASwt/KRASwt/TP53wt Döhner H et al., Blood 2024 (ELN) [78] | Fit: Intensive chemotherapy Induction: 7 + 3 regimen Consolidation treatment No HSCT Gemtuzumab Ozogamicin—GO (either in induction and/or consolidation depending on the applied protocol) Pratcorona M et al., Blood 2013 [81] Castaigne S et al., Lancet 2012 [82] Schlenk RF et al., J Clin Oncol 2020 [83] Hills RK et al., Lancet Oncol 2014 [84] Döhner H et al., Blood 2022 (ELN) [31] Unfit or >75 yrs: Venetoclax + HMA DiNardo CD et al., N Engl J Med 2020 [85] Pratz KW et al., Blood 2022 [86] |
Fit: NPM1mut/FLT-ITDmut NPM1mut/FLT-ITDmut/DNMT3Amut ? NPM1mut/IDH1mut ? Döhner H et al., Blood 2022 (ELN) [31] Intermediate Unfit: NPM1mut/FLT-ITDmut NPM1mut/KRASmut NPM1mut/NRASmut Döhner H et al., Blood 2024 (ELN) [78] | Fit: Intensive chemotherapy Induction: 7 + 3 regimen plus Midostaurin (d. 8–21 of induction) Consolidation treatment plus Midostaurin (all cycles of consolidation) HSCT Stone RM et al., N Engl J Med 2017 [87] Döhner H et al., Blood 2022 (ELN) [31] Unfit or >75 yrs: Venetoclax + HMA DiNardo CD et al., N Engl J Med 2020 [85] Pratz KW et al., Blood 2022 [86] |
Fit: NPM1mut/WT1mut NPM1mut/adverse risk cytogenetics NPM1mut/FLT-ITDmut/DNMT3Amut ? Döhner H et al., Blood 2022 (ELN) [31] Adverse Unfit: TP53mut Döhner H et al., Blood 2024 (ELN) [78] | Fit: Intensive chemotherapy Induction: 7 + 3 regimen plus Midostaurin (d. 8–21 of induction) Consolidation treatment plus Midostaurin (all cycles of consolidation) HSCT Stone RM et al., N Engl J Med 2017 [87] Döhner H et al., Blood 2022 (ELN) [31] Unfit or >75 yrs: Venetoclax + HMA DiNardo CD et al., N Engl J Med 2020 [85] Pratz KW et al., Blood 2022 [86] |
Reference | Trial Phase | Title of the Trial | Targeted Drugs—Dose | Study Population | Response Rates | Grade 3–4 Toxicity | Study Status | Clinical Trial Identifier |
---|---|---|---|---|---|---|---|---|
Shukla N et al., HemaSphere 2024 [120] | Phase I, non- randomized, open-label, interventional, dose- escalation, parallel assignment | A study of Revumenib in combination with chemotherapy in participants with relapsed/refractory acute leukemia (AUGMENT-102) | Revumenib: 113–163 mg/dose, per os, q12h × 28d FLA chemotherapy: – Fludarabine: 30 mg/m2 IV, days 1–5 – Cytarabine: 2000 mg/m2 IV, days 1–5 | ITT: 27 pts DL1: 9 pts DL2: 18 pts Median age: 6 y (range: 0.8–78) <18 y: 20 pts (74%) <2 y: 5 pts (19%) KMT2Ar: 24 pts (89%) NPM1m: 2 pts (7%) NUP98r: 1 pt (4%) ≥3 prior therapies: 19 pts (70%) Prior HSCT: 11 pts (41%) | DL1 (n = 9): CRc: 4 pts (44%) Stable disease: 1 pt (11%) Progressive disease: 2 pts (22%) Death before assessment: 2 pts (22%) DL2 (n = 18): CRc: 9 pts (50%) Stable disease: 6 pts (33%) Progressive disease: 3 pts (17%) MRD negativity in CRc pts: 12/13 (92%) Median time to response: 1.0 mo (DL2) Median duration of response: Not reached (95% CI: 9.2 mo – NR) | Grade 3 ALT ↑ (DL1) Grade 4 neutropenia (DL2, post-HSCT pt) QTc prolongation (≥grade 2): 4 pts (15%) No grade 3 QTc prolongation No differentiation syndrome (DS) 1 death due to sepsis (DL1) Most common AEs (>50%): anemia, thrombocytopenia | Completed | NCT05326516 |
Fathi AT et al., Blood 2024 [121] | Phase I, non- randomized, interventional, open- label, parallel assignment | A study to investigate the safety and tolerability of Ziftomenib in combination with venetoclax/azacitidine, venetoclax, or 7 + 3 in patients with AML: Ziftomenib/VEN/AZA (R/R) Ziftomenib/7 + 3 (first line) Ziftomenib/VEN/AZA (first line) Ziftomenib/VEN (R/R) (KOMET-007) | Ziftomenib: 200/400/600 mg, per os, once daily, from Day 8 onwards VEN: per label; days 1–28, per os AZA: 75 mg/m2, SC or IV; days 1–7/28-day cycle | ITT: 54 pts NPM1-m cohort: 26 pts KMT2A-r cohort: 28 pts Median age: 53 years (range: 22–86) Female: 56% Prior venetoclax: 69% Prior HSCT: 30% Menin inhibitor-experienced: 20% Median prior therapies: 2 (range: 1–8) | NPM1-m (n = 22): ORR: 68% CRc: 50% Median duration of CRc: 23.4 weeks 6-mo OS rate: 77% KMT2A-r (n = 27): ORR: 33% CRc: 15% Median duration of CRc: not reached 6-mo OS rate: 43% | Any Grade ≥ 3 AEs (all patients): – Platelet count ↓: 31% – Anemia: 26% – Febrile neutropenia: 26% | Recruiting | NCT05735184 |
Döhner H et al., Lancet Haematol 2023 [122] | Phase III, randomized, two-arm, open-label, interventional | Study of chemotherapy in combination with all-trans retinoic acid (ATRA) with or without gemtuzumab ozogamicin in patients with acute myeloid leukemia (AML) and mutant nucleophosmin-1 (NPM1) gene mutation: chemotherapy with ATRA and GO vs. chemotherapy with ATRA without GO | GO: 3 mg/m2, IV; Day 1 of induction cycles 1 and 2 + consolidation cycle 1 IDA: 12 mg/m2, IV; Days 1, 3, 5 (Cycle 1), Days 1, 3 (Cycle 2) Ara-C: 100 mg/m2, IV, Days 1–7 ETO: 100 mg/m2, IV; Days 1–3 (reduced to 2 days in Cycle 2) ATRA: 45 mg/m2 PO; Days 6–8 → 15 mg/m2 PO; Days 9–21 HDAC (consolidation): 3000 mg/m2 q12h; Days 1–3 (1000 mg/m2 if >60 yrs) | ITT: 588 pts – GO group: 292 pts – Control group: 296 pts Median age: 58.7 yrs Female: 54% FLT3-ITD+: 17%, DNMT3A+: 51% De novo AML: 93% Favorable ELN risk: 90% | CR/CRi: 90% (control) vs. 86% (GO) CR: 58% (control) vs. 47% (GO) CR/CRh: 72% (control) vs. 67% (GO) 2-year OS: 69% (control) vs. 73% (GO) 2-year CIR: 37% (control) vs. 25% (GO) Statistically significant relapse reduction with GO (p = 0.0028) | Most common Grade 3–4 AEs (GO group): Febrile neutropenia: 44% Thrombocytopenia: 90% Pneumonia: 25% Sepsis: 29% Grade 5 AEs (GO group): – Deaths from sepsis/infection: 6% | Completed | NCT00893399 |
Schlenk R et al., Scientific Reports 2023 [123] | Phase III, randomized, two-arm, open-label, interventional, multicenter | Study of low-dose cytarabine and etoposide with or without all-trans retinoic acid in older patients not eligible for intensive chemotherapy with acute myeloid leukemia and NPM1 mutation: low-dose cytarabine- etoposide without ATRA vs. low-dose cytarabine-etoposide with ATRA | ATRA: 45 mg/m2 PO; days 8–28 → reduced to 45 mg/m2 days 8–10, then 15 mg/m2 days 11–28 Cytarabine: 20 mg/day SC, BID; days 1–7 (per cycle) Etoposide: 50 mg/m2/day IV, days 1–3 (Cycle 1); → 100 mg/day PO/IV; days 1–3 (Cycles 2–6) | ITT: 144 pts – ATRA arm: 72 pts – Control arm: 72 pts Median age: 76.8 yrs (range: 63.8–91.8) Male: 51.4% FLT3-ITD+: 27.1% De novo AML: 87.5% | CR/CRi: 33.3% (ATRA) vs. 36.1% (CONTROL) Median OS: 5.0 mo (ATRA) vs. 9.2 mo (CONTROL); p = 0.023 2-yr OS rate: 7% (ATRA) vs. 10% (CONTROL) | Infections (Cycle ≥ 2): 59% (ATRA) vs. 32% (CONTROL); p = 0.01 Early death (first 2 cycles): 18.1% (ATRA) vs. 8.5% (CONTROL); p = 0.09 Gastrointestinal AEs ≥ grade 3: 6 pts (ATRA) vs. 4 pts (CONTROL) Pulmonary AEs ≥ grade 3: 5 pts (ATRA) vs. 0 pts (CONTROL) No significant differences in CTCAE grade 3–4 toxicities during Cycle 1 | Completed | NCT01237808 |
Orvain C et al., Leukemia 2024 [124] | Retrospective, observational | Outcome of patients with CBF and/or NPM1- mutated AML in first molecular relapse | Induction therapy: – Daunorubicin: 60–90 mg/m2, IV, days 1–3 – Idarubicin: 8–9 mg/m2, IV, days 1–5 – Cytarabine: 200 mg/m2, IV, days 1–7 Consolidation: – Intermediate/high-dose cytarabine: 1.5–3 g/m2/12 h × 3 days Salvage therapy after relapse – Upfront allo-HCT: 15% – Intensive chemotherapy: 63% – non-intensive (e.g., AZA, VEN, FLT3/IDH inhibitors): 20% | ITT: 303 pts – CBF AML: 47% – NPM1-mutated AML: 53% – Age: 18–60 yrs (median ~47 yrs) – No allo-HCT in 1st CR – Monitored for MRD after intensive therapy Relapse categories: – No relapse: 153 pts (51%) – Molecular relapse: 95 pts (31%) – Upfront morphologic relapse: 55 pts (18%) | 3-year OS (based on relapse type): – Preemptive therapy (molecular relapse): 78% –Molecular→Morphologic relapse: 52% – Upfront morphologic relapse: 51% p = 0.02 Preemptive therapy subgroups (3-year OS): – Upfront allo-HCT: 92% – Intensive chemotherapy: 79% – Non-intensive therapy: 58% p = 0.09 | Specific grade 3–4 AE rates not numerically detailed | Unknown | NCT04931992 |
Zeidner JF et al., Blood 2024 [125] | Phase I, II, open-label, interventional, dose- escalation, dose- expansion, non- randomized | A study of Enzomenib (DSP-5336) in relapsed/refractory AML/ALL with or without MLL rearrangement or NPM1 mutation | Enzomenib (DSP-5336): – Oral administration, BID (twice daily) – Dose range: 40 mg → 300 mg BID – Active dose: ≥140 mg BID | ITT: 81 patients – Arm A: 31 pts – Arm B: 50 pts | Patients treated with active doses (≥140 mg BID) and no prior menin inhibitor: KMT2Ar (n = 22): – ORR (CR + CRi + MLFS): 59.1% – CR + CRh: 22.7% NPM1m (n = 13): – ORR: 53.8% – CR + CRh: 23.1% Other mutations: – 1 AML pt achieved CR Median time to response: – ORR and CR + CRh: 1.0 month | Treatment-related AEs ≥10%: – Vomiting: 14.8% – Nausea: 13.6% – Only 1 pt had grade 3 vomiting/nausea Any-grade AEs ≥ 20%: – Nausea: 39.5% – Vomiting: 29.6% – Febrile neutropenia, diarrhea, hypokalemia: 22.2% – Appetite loss, headache: 21.0% | Recruiting | NCT04988555 |
Recher C et al., Blood 2024 [126] | Phase Ib, interventional, non-randomized, 3 arms | A study of bleximenib (JNJ-75276617) in combination with acute myeloid leukemia (AML) directed therapies: Arm A (R/R): JNJ-75276617, VEN, AZA Arm B (ND, chemo-ineligible): JNJ-75276617, VEN, AZA Arm C (ND, chemo-eligible): JNJ-75276617, cytarabine, daunorubicin or idarubicin | Bleximenib ≥ 30 mg BID (oral) Cytarabine 200 mg/m2/day + Daunorubicin 60 mg/m2/day IV or Idarubicin 12 mg/m2/day IV (7 + 3 regimen) Consolidation: Intermediate-dose cytarabine + Bleximenib Maintenance: Bleximenib up to 12 months (if no transplant) | 22 newly diagnosed AML patients 11 with NPM1 mutation, 11 with KMT2A rearrangement | ORR: 93% CR: 79%, CR/CRh: 86% ORR by genotype: - NPM1m: 100%, - KMT2Ar: 83% | - Febrile neutropenia: 64% -Thrombocytopenia: 68% - Anemia, neutropenia: 41% each - Leukopenia: 27% | Recruiting | NCT05453903 |
Issa GC et al., Blood 2024 [127] | Phase I/II, interventional, non-randomized, open-label, multi-center | Phase I/II Study of the ALL-Oral Combination of Revumenib (SNDX-5613) with Decitabine/Cedazuridine (ASTX727) and Venetoclax (SAVE) in R/R AML | Revumenib: 163 mg BID (oral, Days 1–28) Venetoclax: 400 mg daily (Days 1–28) Decitabine/Cedazuridine: 35 mg/100 mg daily | 21 patients with relapsed/refractory AML Median age: 67 years (range 22–80) 76% with KMT2A rearrangement, 19% with NPM1 mutation 76% had prior venetoclax exposure 24% had prior menin inhibitor treatment | Overall Response Rate (ORR): 67% CR/CRh: 38% Median time to response: 1 cycle ORR in menin inhibitor–naïve patients: 75% | Febrile neutropenia: 29% Anemia: 24% Thrombocytopenia: 24% Neutropenia: 19% | Recruiting | NCT05360160 |
Issa GC et al., J Clin Oncol 2025 [118] | Phase I, II, open-label, interventional, dose- escalation, dose- expansion, sequential assignment | A Study of Revumenib in R/R Leukemias Including Those With an MLL/KMT2A Gene Rearrangement or NPM1 Mutation (AUGMENT-101) | Revumenib: 163 mg PO BID (oral, twice daily) | - Total patients treated at RP2D: 57 - Diagnosed with relapsed/refractory acute leukemia - 94.7% had acute lymphoblastic leukemia (ALL) - 89.5% had KMT2A rearrangement | CR or CRh: 17 patients (29.8%) Median duration of response: 9.1 months MRD-negative response 14/17 patients (82.4%) | - Differentiation syndrome: 14.0% (any grade), 7.0% grade 3 - QTc prolongation: 12.3% grade ≥3 - Febrile neutropenia: 21.1% - Anemia: 15.8% -Thrombocytopenia: 12.3% - Neutropenia: 12.3% | Recruiting | NCT04065399 |
Kretschmer L et al., Blood 2024 [128] | Phase II, randomized, interventional | Venetoclax plus Azacitidine vs. Intensive Chemotherapy for fit patients with newly diagnosed NPM1-mutated AML (VINCENT) | Venetoclax (VEN): 400 mg PO QD on days 1–28 (initial ramp-up) Azacitidine (AZA): 75 mg/m2 SC QD on days 1–7 SOC (Standard of Care) Arm: DA + GO: Cytarabine 200 mg/m2 (days 1–7), Daunorubicin 60 mg/m2 (days 3–5), Gemtuzumab Ozogamicin 3 mg/m2 (days 1, 4, 7) HAM (for non-responders): Cytarabine 1000–3000 mg/m2 BID (days 1–3), Mitoxantrone 10 mg/m2 (days 3–5) IDAC (consolidation): Cytarabine 1000–1500 mg/m2 BID (days 1–3) | Newly diagnosed NPM1-mutated AML, FLT3-wildtype Sample Size: 146 patients randomized 1:1 (VEN/AZA vs. SOC) Enrollment started: April 2024; currently 18 centers active | Not yet reported | Not yet reported | Recruiting | NCT05904106 |
Sartor C et al., Blood 2024 [129] | Phase II, non-randomized, interventional, open-label | Venetoclax and Azacitidine for the management of molecular relapse/progression in adult NPM1-mutated AML: VEN-AZA as a bridge to transplant therapy (single arm) | Venetoclax (VEN): 400 mg PO QD on days 1–28 Azacitidine (AZA): 75 mg/m2 SC or IV on days 1–7 of each cycle | Total screened: 24 patients Eligible/enrolled: 20 patients Analyzed: 15 patients All in molecular relapse (NPM1-mutated AML), confirmed complete remission Median prior intensive chemotherapy cycles: ≥2 ECOG PS = 0 33% had FLT3-ITD, 20% had FLT3-TKD mutations at diagnosis | MRD-negative (NPM1m < 0.01%): 9/15 (60%) Molecular response ≥1 log reduction: 3/15 (20%) Overall molecular response: 80% Morphologic relapse: 0% while on treatment Bridged to alloSCT in CR or better: 13/15 (87%) Median time to MRDneg: 1.64 months Median time to alloSCT: 3.45 months All patients alive and in CR at 9.8-month median follow-up | Hematologic AEs ≥ G3: 7/15 patients (47%) - Neutropenia: 10 events -Thrombocytopenia: 3 events - Pancytopenia: 1 event Febrile neutropenia G3: 1 patient (7%) | Unknown | NCT04867928 |
NCT Identifier | Current Status | Phase and Type of the Trial | Intervention |
---|---|---|---|
1. NCT04689815 | Unknown | Prospective, open-label, phase II, interventional, single-group | Oral arsenic trioxide for NPM1-mutated AML: oral arsenic trioxide, ascorbic acid plus azacitidine (one arm) |
2. NCT05020665 | Terminated, due to challenges associated with study enrollment or with post-COVID impacts | Phase III, interventional, randomized, double-blind, placebo-controlled study | Entospletinib (SYK inhibitor) in combination with intensive induction and consolidation chemotherapy in adults with newly diagnosed NPM1-mutated AML: Intensive chemotherapy plus entospletinib vs. intensive chemotherapy plus placebo |
3. NCT04867928 | Unknown | Phase II, non-randomized, interventional, open-label | Venetoclax and Azacitidine for the management of molecular relapse/progression in adult NPM1-mutated AML: VEN-AZA as a bridge to transplant therapy (single arm) |
4. NCT04931992 | Unknown | Retrospective, observational | Outcome of patients with CBF and/or NPM1-mutated AML in first molecular relapse |
5. NCT05904106 | Recruiting | Phase II, randomized, interventional | Venetoclax plus Azacitidine vs. intensive chemotherapy for fit patients with newly diagnosed NPM1-mutated AML (VINCENT) |
6. NCT01237808 | Completed, no results posted | Phase III, randomized, two-arm, open-label, interventional, multicenter | Study of low-dose cytarabine and etoposide with or without all-trans retinoic acid in older patients not eligible for intensive chemotherapy with acute myeloid leukemia and NPM1 mutation: low-dose cytarabine-etoposide without ATRA vs. low-dose cytarabine-etoposide with ATRA |
7. NCT05886049 | Recruiting | Phase I, interventional | Testing the addition of an anti-cancer drug, SNDX-5613 to the standard chemotherapy treatment (daunorubicin and cytarabine) for newly diagnosed patients with acute myeloid leukemia that has changes in NPM1 or MLL/KMT2A gene |
8. NCT00893399 | Completed, no results posted | Phase III, randomized, two-arm, open-label, interventional | Study of chemotherapy in combination with all-trans retinoic acid (ATRA) with or without gemtuzumab ozogamicin in patients with acute myeloid leukemia (AML) and mutant nucleophosmin-1 (NPM1) gene mutation: chemotherapy with ATRA and GO vs. chemotherapy with ATRA without GO |
9. NCT06001788 | Recruiting | Interventional, phase I, non-randomized, open-label | Safety and tolerability of ziftomenib combinations in patients with relapsed/refractory acute myeloid leukemia: Ziftomenib plus FLAG-IDA, Ziftomenib plus low-dose cytarabine, Ziftomenib plus gilteritinib |
10. NCT05738538 | Available | Expanded access | Expanded access to ziftomenib |
11. NCT01835288 | Withdrawn | Phase II, interventional | Arsenic trioxide in treating patients with relapsed or refractory acute myeloid leukemia |
12. NCT04988555 | Recruiting | Phase I, II, open-label, interventional, dose-escalation, dose-expansion, non-randomized | A study of DSP-5336 in relapsed/refractory AML/ALL with or without MLL rearrangement or NPM1 mutation |
13. NCT05453903 | Recruiting | Phase Ib, interventional, non-randomized, 3 arms | A study of bleximenib (JNJ-75276617) in combination with acute myeloid leukemia (AML) directed therapies: Arm A (R/R): JNJ-75276617, VEN, AZA Arm B (ND, chemo-ineligible): JNJ-75276617, VEN, AZA Arm C (ND, chemo-eligible): JNJ-75276617, cytarabine, daunorubicin or idarubicin |
14. NCT05735184 | Recruiting | Phase I, non-randomized, interventional, open-label, parallel assignment | A study to investigate the safety and tolerability of Ziftomenib in combination with venetoclax/azacitidine, venetoclax, or 7 + 3 in patients with AML: Ziftomenib/VEN/AZA (R/R) Ziftomenib/7 + 3 (first line) Ziftomenib/VEN/AZA (first line) Ziftomenib/VEN (R/R) |
15. NCT04065399 | Recruiting | Phase I, II, open-label, interventional, dose-escalation, dose-expansion, sequential assignment | A study of Revumenib in R/R leukemias including those with an MLL/KMT2A gene rearrangement or NPM1 mutation (AUGMENT-101) |
16. NCT05521087 | Withdrawn | Phase I/Ib, interventional, non-randomized | A study of JNJ-75276617 in combination with conventional chemotherapy for pediatric and young adult participants with relapsed/refractory acute leukemias |
17. NCT05153330 | Active, not recruiting | Phase I, interventional, non-randomized | Study of BMF-219, a covalent menin inhibitor, in adult patients with AML, ALL (with KMT2A/MLL1r, NPM1 mutations), DLBCL, MM, and CLL/SLL |
18. NCT05326516 | Completed | Phase I, non-randomized, open-label, interventional, dose-escalation, parallel assignment | A study of Revumenib in combination with chemotherapy in participants with relapsed/refractory acute leukemia (AUGMENT-102) |
19. NCT04067336 | Recruiting | Phase I, II, randomized, open-label, parallel assignment, interventional, dose-escalation, dose-validation/expansion | First in human study of ziftomenib in relapsed or refractory acute myeloid leukemia (KO-MEN-001) |
20. NCT05918692 | Recruiting | Phase I, non-randomized, open-label, interventional, dose-escalation, dose-expansion, parallel assignment | A phase 1, study of BMF-500 in adults with acute leukemia |
21. NCT06226571 | Recruiting | Phase I, open-label, interventional, dose-escalation, dose-expansion | A study of SNDX-5613 (revumenib) in combination with intensive chemotherapy in participants with acute myeloid leukemias |
22. NCT06313437 | Recruiting | Phase I, non-randomized, open-label, interventional, single-arm | Revumenib in combination with 7 + 3 + midostaurin in AML |
23. NCT06652438 | Recruiting | Phase III, randomized, interventional, single-group | Revumenib in combination with azacitidine + venetoclax in patients NPM1-mutated or KMT2A-rearranged AML |
24. NCT06930352 | Not Yet Recruiting | Phase II, interventional, single-group | Ziftomenib for the treatment of patients with NPM1 mutated or KMT2A rearranged acute myeloid leukemia not eligible for standard therapy |
25. NCT06440135 | Recruiting | Phase I, open-label, interventional, single-group | Ziftomenib maintenance post allo-HCT |
26. NCT06222580 | Recruiting | Phase I, open-label, interventional | SNDX-5613 and gilteritinib for the treatment of relapsed or refractory FLT3-mutated acute myeloid leukemia and concurrent MLL-rearrangement or NPM1 mutation |
27. NCT06268574 | Recruiting | Phase II, open-label, interventional, single-group | Safety and efficacy of RVU120 for treatment of relapsed/refractory AML (RIVER-52) |
28. NCT06424340 | Recruiting | Phase I, II, open-label, interventional, single-group | MB-dNPM1-TCR.1 in relapsed/refractory AML |
29. NCT06852222 | Not Yet Recruiting | Phase III, randomized, double-blind, parallel assignment, interventional, placebo-controlled | A study of bleximenib, venetoclax and azacitidine for treatment of participants with acute myeloid leukemia (AML) (cAMeLot-2) |
30. NCT06575296 | Recruiting | Phase I, open-label, interventional, single-group | Revumenib for the treatment of acute leukemia in patients post-allogeneic stem cell transplant |
31. NCT06652438 | Recruiting | Phase III, randomized, interventional, single-group | Revumenib in combination With Azacitidine + Venetoclax in Patients NPM1-mutated or KMT2A-rearranged AML |
32. NCT05886049 | Recruiting | Phase I, open-label, single-group | Testing the addition of an anti-cancer drug, SNDX-5613, to the standard chemotherapy treatment (Daunorubicin and Cytarabine) for newly diagnosed patients with acute myeloid leukemia that has changes in NPM1 or MLL/KMT2A gene |
33. NCT05918913 | Available | Expanded access | Expanded access program for Revumenib |
34. NCT06440135 | Recruiting | Phase I, open-label, interventional, single-group | Ziftomenib maintenance post allo-HCT |
35. NCT06376162 | Recruiting | Phase I, open-label, interventional, single-group | Ziftomenib in combination with chemotherapy for children with relapsed/refractory acute leukemia |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diamantidis, M.D.; Vlachou, M.S.; Katsikavela, A.; Kalomoiri, S.; Bartzi, V.; Ikonomou, G. NPM1-Mutated AML: Deciphering the Molecular and Clinical Puzzle in the Era of Novel Treatment Strategies. Cancers 2025, 17, 2095. https://doi.org/10.3390/cancers17132095
Diamantidis MD, Vlachou MS, Katsikavela A, Kalomoiri S, Bartzi V, Ikonomou G. NPM1-Mutated AML: Deciphering the Molecular and Clinical Puzzle in the Era of Novel Treatment Strategies. Cancers. 2025; 17(13):2095. https://doi.org/10.3390/cancers17132095
Chicago/Turabian StyleDiamantidis, Michael D., Maria Smaragdi Vlachou, Anastasia Katsikavela, Smaragdi Kalomoiri, Vasiliki Bartzi, and Georgia Ikonomou. 2025. "NPM1-Mutated AML: Deciphering the Molecular and Clinical Puzzle in the Era of Novel Treatment Strategies" Cancers 17, no. 13: 2095. https://doi.org/10.3390/cancers17132095
APA StyleDiamantidis, M. D., Vlachou, M. S., Katsikavela, A., Kalomoiri, S., Bartzi, V., & Ikonomou, G. (2025). NPM1-Mutated AML: Deciphering the Molecular and Clinical Puzzle in the Era of Novel Treatment Strategies. Cancers, 17(13), 2095. https://doi.org/10.3390/cancers17132095