Ultraprocessed Food and Risk of Cancer: Mechanistic Pathways and Public Health Implications
Simple Summary
Abstract
1. Introduction
2. Defining Ultra-Processed Foods: NOVA Classification and Core Characteristics
3. Molecular Mechanisms Linking UPFs to Inflammatory Diseases
4. Carcinogenic Compounds in UPFs
5. Epidemiological Evidence Linking UPFs to Cancer
6. Future Directions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
DAL | Dietary acid load |
EDCs | Endocrine-disrupting chemicals |
HCAs | Heterocyclic amines |
LMICs | Low- and middle-income countries |
NDMA | N-nitrosodimethylamine |
PAHs | Polycyclic aromatic hydrocarbons |
UPFs | Ultra-processed foods |
References
- World Health Organization. Global Cancer Burden Growing, amidst Mounting Need for Services. Saudi Med. J. 2024, 45, 326–327. [Google Scholar]
- Wang, L.; Du, M.; Wang, K.; Khandpur, N.; Rossato, S.L.; Drouin-Chartier, J.P.; Steele, E.M.; Giovannucci, E.; Song, M.; Zhang, F.F. Association of Ultra-Processed Food Consumption with Colorectal Cancer Risk among Men and Women: Results from Three Prospective US Cohort Studies. BMJ 2022, 378, e068921. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Zhang, L.; Shao, Z. Consumption of Processed and Pickled Food and Esophageal Cancer Risk: A Systematic Review and Meta-Analysis. Bull. Cancer 2018, 105, 992–1002. [Google Scholar] [CrossRef] [PubMed]
- Jemal, A.; Center, M.M.; DeSantis, C.; Ward, E.M. Global Patterns of Cancer Incidence and Mortality Rates and Trends. Cancer Epidemiol. Biomark. Prev. 2010, 19, 1893–1907. [Google Scholar] [CrossRef]
- Bamodu, O.A.; Chung, C.-C. Cancer Care Disparities: Overcoming Barriers to Cancer Control in Low- and Middle-Income Countries. JCO Glob. Oncol. 2024, 10, e2300439. [Google Scholar] [CrossRef]
- Wood, G.; Wakeham, K. Cancer in the Tropics. In Manson’s Tropical Diseases; Elsevier: Amsterdam, The Netherlands, 2024; pp. 886–897. [Google Scholar]
- Schmid, D.; Leitzmann, M.F. Television Viewing and Time Spent Sedentary in Relation to Cancer Risk: A Meta-Analysis. J. Natl. Cancer Inst. 2014, 106, dju098. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Lawrence, M.; Costa Louzada, M.L.; Pereira Machado, P. Ultra-Processed Foods, Diet Quality, and Health Using the NOVA Classification System; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019. [Google Scholar]
- Fiolet, T.; Srour, B.; Sellem, L.; Kesse-Guyot, E.; Allès, B.; Méjean, C.; Deschasaux, M.; Fassier, P.; Latino-Martel, P.; Beslay, M.; et al. Consumption of Ultra-Processed Foods and Cancer Risk: Results from NutriNet-Santé Prospective Cohort. BMJ 2018, 360, k322. [Google Scholar] [CrossRef]
- Alexandrov, L.B.; Ju, Y.S.; Haase, K.; Van Loo, P.; Martincorena, I.; Nik-Zainal, S.; Totoki, Y.; Fujimoto, A.; Nakagawa, H.; Shibata, T.; et al. Mutational Signatures Associated with Tobacco Smoking in Human Cancer. Science 2016, 354, 618–622. [Google Scholar] [CrossRef]
- Tang, M.; Lee, H.-W.; Weng, M.; Wang, H.-T.; Hu, Y.; Chen, L.-C.; Park, S.-H.; Chan, H.; Xu, J.; Wu, X.-R.; et al. DNA Damage, DNA Repair and Carcinogenicity: Tobacco Smoke versus Electronic Cigarette Aerosol. Mutat. Res./Rev. Mutat. Res. 2022, 789, 108409. [Google Scholar] [CrossRef]
- Li, M.D. DNA Methylation Analysis Reveals a Strong Connection Between Tobacco Smoking and Cancer Pathogenesis. In Tobacco Smoking Addiction: Epidemiology, Genetics, Mechanisms, and Treatment; Springer: Singapore, 2018; pp. 303–317. [Google Scholar]
- Nooshinfar, E.; Bashash, D.; Abbasalizadeh, M.; Safaroghli-Azar, A.; Sadreazami, P.; Esmaeil Akbari, M. The Molecular Mechanisms of Tobacco in Cancer Pathogenesis. Int. J. Cancer Manag. 2017, 10, e7902. [Google Scholar] [CrossRef]
- Giles, E.D.; Purcell, S.A.; Olson, J.; Vrieling, A.; Hirko, K.A.; Woodruff, K.; Playdon, M.C.; Thomas, G.A.; Gilmore, L.A.; Moberly, H.K.; et al. Trends in Diet and Cancer Research: A Bibliometric and Visualization Analysis. Cancers 2023, 15, 3761. [Google Scholar] [CrossRef] [PubMed]
- Abnet, C.C. Carcinogenic Food Contaminants. Cancer Investig. 2007, 25, 189–196. [Google Scholar] [CrossRef]
- Agamy, N. Dietary Carcinogens and Anticancer Effect of Bioactive Food Components. J. High Inst. Public Health 2015, 45, 32–41. [Google Scholar] [CrossRef]
- Kobets, T.; Smith, B.P.C.; Williams, G.M. Food-Borne Chemical Carcinogens and the Evidence for Human Cancer Risk. Foods 2022, 11, 2828. [Google Scholar] [CrossRef]
- Das, P.; Kemisetti, D.; Jahan, F.I.; Spriha, S.E.; Raka, S.C. A Comprehensive Review on the Formation of Carcinogens from Food Products with Respect to Different Cooking Methods. J. Pharm. Res. Int. 2021, 33, 360–372. [Google Scholar] [CrossRef]
- Zalaquett, N.; Lidoriki, I.; Lampou, M.; Saab, J.; Hadkhale, K.; Christophi, C.; Kales, S.N. Adherence to the Mediterranean Diet and the Risk of Head and Neck Cancer: A Systematic Review and Meta-Analysis of Case–Control Studies. Nutrients 2025, 17, 287. [Google Scholar] [CrossRef] [PubMed]
- Demirci, Ü.; Karaağaç, R.M.; Pınarlı Falakacılar, Ç.; Yıldırım Kaptanoğlu, A. Effect of Mediterranean Diet on Breast Cancer: Meta-Analysis. Türkiye Halk Sağlığı Derg. 2024, 22, 327–338. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, J. A Bibliometric Analysis of Mediterranean Diet on Cancer from 2012 to 2021. Front. Nutr. 2023, 10, 1128432. [Google Scholar] [CrossRef]
- Morze, J.; Danielewicz, A.; Przybyłowicz, K.; Zeng, H.; Hoffmann, G.; Schwingshackl, L. An Updated Systematic Review and Meta-Analysis on Adherence to Mediterranean Diet and Risk of Cancer. Eur. J. Nutr. 2021, 60, 1561–1586. [Google Scholar] [CrossRef]
- Supe, U.R.; Menghani, Y.R.; Trivedi, R.V.; Umekar, M.J. Consumption of Ultra-Processed Foods and Their Link with Increasing Risk of Cancer. GSC Biol. Pharm. Sci. 2022, 20, 6–16. [Google Scholar] [CrossRef]
- Wu, Q. Health Hazards of Ultra-Processed Foods and The Challenges Facing Humanity. Highlights Sci. Eng. Technol. 2023, 66, 61–67. [Google Scholar] [CrossRef]
- Huybrechts, I.; Romieu, I.; Kandpur, N.; Katsikari, K.; Torres-Mejia, G.; Sanchez, G.I.; Garmendia, M.L.; Porras, C.; Biessy, C.; Gunter, M.J.; et al. Ultra-Processed Food Consumption and Breast Cancer Risk. Proc. Nutr. Soc. 2020, 79, E182. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, C.; Cui, L.; Fenfen, E.; Shang, W.; Wang, Z.; Song, G.; Yang, K.; Li, X. Consumption of Ultra-Processed Foods and Multiple Health Outcomes: An Umbrella Study of Meta-Analyses. Food Chem. 2024, 434, 137460. [Google Scholar] [CrossRef]
- Chang, K.; Millett, C.; Rauber, F.; Levy, R.B.; Huybrechts, I.; Kliemann, N.; Gunter, M.J.; Vamos, E.P. Ultra-Processed Food Consumption, Cancer Risk, and Cancer Mortality: A Prospective Cohort Study of the UK Biobank. Lancet 2022, 400, S31. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, X.; Yu, D.; Wang, L.; Shrubsole, M.J.; Zheng, W.; Sudenga, S.L.; Zhang, X. Ultra-Processed Products and Risk of Liver Cancer: A Prospective Cohort Study. Clin. Nutr. 2024, 43, 2298–2304. [Google Scholar] [CrossRef]
- Campanella, A.; Tatoli, R.; Bonfiglio, C.; Donghia, R.; Cuccaro, F.; Giannelli, G. Ultra-Processed Food Consumption as a Risk Factor for Gastrointestinal Cancer and Other Causes of Mortality in Southern Italy: A Competing Risk Approach. Nutrients 2024, 16, 1994. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.A.; Cannon, G.; Moubarac, J.C.; Levy, R.B.; Louzada, M.L.C.; Jaime, P.C. The Un Decade of Nutrition, the NOVA Food Classification and the Trouble with Ultra-Processing. Public Health Nutr. 2018, 21, 5–17. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.C.; Louzada, M.L.C.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-Processed Foods: What They Are and How to Identify Them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef]
- Monteiro, C.A. Nutrition and Health. The Issue Is Not Food, nor Nutrients, so Much as Processing. Public Health Nutr. 2009, 12, 729–731. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Levy, R.B.; Claro, R.M.; de Castro, I.R.R.; Cannon, G. A New Classification of Foods Based on the Extent and Purpose of Their Processing. Cad. Saúde Pública 2010, 26, 2039–2049. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Levy, R.; Moubarac, J.-C.; Jaime, P.; Martins, A.P.; Canella, D.; Louzada, M.; Parra, D. NOVA. The Star Shines Bright. World Nutr. 2016, 7, 28–38. [Google Scholar]
- Monteiro, C. Food Guide Pyramids, and What’s the Matter with Bread [Commentary]. World Nutr. 2011, 2, 22–41. [Google Scholar]
- Gupta, S.; Hawk, T.; Aggarwal, A.; Drewnowski, A. Characterizing Ultra-Processed Foods by Energy Density, Nutrient Density, and Cost. Front. Nutr. 2019, 6, 70. [Google Scholar] [CrossRef]
- Mendoza-Velázquez, A.; Lara-Arévalo, J.; Siqueira, K.B.; Guzmán-Rodríguez, M.; Drewnowski, A. Affordable Nutrient Density in Brazil: Nutrient Profiling in Relation to Food Cost and NOVA Category Assignments. Nutrients 2022, 14, 4256. [Google Scholar] [CrossRef]
- Maldonado-Pereira, L.; Barnaba, C.; de Los Campos, G.; Medina-Meza, I.G. Evaluation of the Nutritional Quality of Ultra-processed Foods (Ready to Eat + Fast Food): Fatty Acids, Sugar, and Sodium. J. Food Sci. 2022, 87, 3659–3676. [Google Scholar] [CrossRef]
- Luiten, C.M.; Steenhuis, I.H.M.; Eyles, H.; Mhurchu, C.N.; Waterlander, W.E. Ultra-Processed Foods Have the Worst Nutrient Profile, yet They Are the Most Available Packaged Products in a Sample of New Zealand Supermarkets. Public Health Nutr. 2016, 19, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Levy, R.B.; Barata, M.F.; Leite, M.A.; Andrade, G.C. How and Why Ultra-Processed Foods Harm Human Health. Proc. Nutr. Soc. 2024, 83, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Chazelas, E.; Deschasaux, M.; Srour, B.; Kesse-Guyot, E.; Julia, C.; Alles, B.; Druesne-Pecollo, N.; Galan, P.; Hercberg, S.; Latino-Martel, P.; et al. Food Additives: Distribution and Co-Occurrence in 126,000 Food Products of the French Market. Sci. Rep. 2020, 10, 3980. [Google Scholar] [CrossRef] [PubMed]
- Buckley, J.P.; Kim, H.; Wong, E.; Rebholz, C.M. Ultra-Processed Food Consumption and Exposure to Phthalates and Bisphenols in the US National Health and Nutrition Examination Survey, 2013–2014. Environ. Int. 2019, 131, 105057. [Google Scholar] [CrossRef]
- de Borba, V.S.; Barbosa, S.C.; Kupski, L.; Primel, E.G. Acrylamide, Hydroxymethylfurfural and Furfural in Ready-to-Eat Foods Consumed by Child Population: Presence, Risk Assessment and Future Perspectives. Food Chem. 2024, 457, 140086. [Google Scholar] [CrossRef]
- Naspolini, N.F.; Machado, P.P.; Moreira, J.C.; Asmus, C.I.R.F.; Meyer, A. Maternal Consumption of Ultra-Processed Foods and Newborn Exposure to Perfluoroalkyl Substances (PFAS). Cad. Saúde Pública 2021, 37, e00152021. [Google Scholar] [CrossRef] [PubMed]
- IDEC—Instituto de Defesa de Consumidores. Pesquisa Detecta Agrotóxicos Em Ultraprocessados de Origem Animal. Available online: https://idec.org.br/release/pesquisa-detecta-agrotoxicos-em-ultraprocessados-de-origem-animal (accessed on 15 May 2025).
- Campbell, N.; Mialon, M.; Reilly, K.; Browne, S.; Finucane, F.M. How Are Frames Generated? Insights from the Industry Lobby against the Sugar Tax in Ireland. Soc. Sci. Med. 2020, 264, 113215. [Google Scholar] [CrossRef] [PubMed]
- Mialon, M.; Gomes, F.d.S. Public Health and the Ultra-Processed Food and Drink Products Industry: Corporate Political Activity of Major Transnationals in Latin America and the Caribbean. Public Health Nutr. 2019, 22, 1898–1908. [Google Scholar] [CrossRef]
- Lauber, K.; Rutter, H.; Gilmore, A.B. Big Food and the World Health Organization: A Qualitative Study of Industry Attempts to Influence Global-Level Non-Communicable Disease Policy. BMJ Glob. Health 2021, 6, e005216. [Google Scholar] [CrossRef]
- Aravena-Rivas, Y.; Heilmann, A.; Watt, R.G.; Broomhead, T.; Tsakos, G. Analysis of Public Records of Lobbying Practices of the Ultra-Processed Sugary Food and Drink Industries in Chile: A Qualitative Study. Lancet Reg. Health-Am. 2024, 35, 100794. [Google Scholar] [CrossRef] [PubMed]
- Canhada, S.L.; Vigo, Á.; Levy, R.; Luft, V.C.; da Fonseca, M.d.J.M.; Giatti, L.; Molina, M.d.C.B.; Duncan, B.B.; Schmidt, M.I. Association between Ultra-Processed Food Consumption and the Incidence of Type 2 Diabetes: The ELSA-Brasil Cohort. Diabetol. Metab. Syndr. 2023, 15, 233. [Google Scholar] [CrossRef]
- Nardocci, M.; Polsky, J.Y.; Moubarac, J.C. Consumption of Ultra-Processed Foods Is Associated with Obesity, Diabetes and Hypertension in Canadian Adults. Can. J. Public Health 2021, 112, 421–429. [Google Scholar] [CrossRef]
- Rauber, F.; Chang, K.; Vamos, E.P.; da Costa Louzada, M.L.; Monteiro, C.A.; Millett, C.; Levy, R.B. Ultra-Processed Food Consumption and Risk of Obesity: A Prospective Cohort Study of UK Biobank. Eur. J. Nutr. 2021, 60, 2169–2180. [Google Scholar] [CrossRef]
- Lane, M.M.; Davis, J.A.; Beattie, S.; Gómez-Donoso, C.; Loughman, A.; O’Neil, A.; Jacka, F.; Berk, M.; Page, R.; Marx, W.; et al. Ultraprocessed Food and Chronic Noncommunicable Diseases: A Systematic Review and Meta-Analysis of 43 Observational Studies. Obes. Rev. 2021, 22, e13146. [Google Scholar] [CrossRef]
- Pu, J.Y.; Xu, W.; Zhu, Q.; Sun, W.P.; Hu, J.J.; Cai, D.; Zhang, J.Y.; Gong, J.P.; Xiong, B.; Zhong, G.C. Prediagnosis Ultra-Processed Food Consumption and Prognosis of Patients with Colorectal, Lung, Prostate, or Breast Cancer: A Large Prospective Multicenter Study. Front. Nutr. 2023, 10, 1258242. [Google Scholar] [CrossRef]
- Lian, Y.; Wang, G.-P.; Chen, G.-Q.; Chen, H.-N.; Zhang, G.-Y. Association between Ultra-Processed Foods and Risk of Cancer: A Systematic Review and Meta-Analysis. Front. Nutr. 2023, 10, 1175994. [Google Scholar] [CrossRef] [PubMed]
- Martínez Leo, E.E.; Peñafiel, A.M.; Hernández Escalante, V.M.; Cabrera Araujo, Z.M. Ultra-Processed Diet, Systemic Oxidative Stress, and Breach of Immunologic Tolerance. Nutrition 2021, 91–92, 111419. [Google Scholar] [CrossRef]
- Mete, B.; Sadıkoğlu, H.M.; Demirhindi, H.; Melekoglu, E.; Barutcu, A.; Makca, T.; Atun Utuk, F. The Association between Ultra-processed Food Consumption and Low-grade Inflammation in Childhood: A Cross-sectional Study. Nutr. Bull. 2024, 49, 538–549. [Google Scholar] [CrossRef]
- Tristan Asensi, M.; Napoletano, A.; Sofi, F.; Dinu, M. Low-Grade Inflammation and Ultra-Processed Foods Consumption: A Review. Nutrients 2023, 15, 1546. [Google Scholar] [CrossRef] [PubMed]
- Mignogna, C.; Costanzo, S.; Di Castelnuovo, A.; Ruggiero, E.; Shivappa, N.; Hebert, J.R.; Esposito, S.; De Curtis, A.; Persichillo, M.; Cerletti, C.; et al. The Inflammatory Potential of the Diet as a Link between Food Processing and Low-Grade Inflammation: An Analysis on 21,315 Participants to the Moli-Sani Study. Clin. Nutr. 2022, 41, 2226–2234. [Google Scholar] [CrossRef]
- Majdan, M.; Bobrowska-Korczak, B. Active Compounds in Fruits and Inflammation in the Body. Nutrients 2022, 14, 2496. [Google Scholar] [CrossRef] [PubMed]
- Srour, B.; Kordahi, M.C.; Bonazzi, E.; Deschasaux-Tanguy, M.; Touvier, M.; Chassaing, B. Ultra-Processed Foods and Human Health: From Epidemiological Evidence to Mechanistic Insights. Lancet Gastroenterol. Hepatol. 2022, 7, 1128–1140. [Google Scholar] [CrossRef]
- Zinöcker, M.; Lindseth, I. The Western Diet–Microbiome-Host Interaction and Its Role in Metabolic Disease. Nutrients 2018, 10, 365. [Google Scholar] [CrossRef]
- Alagiakrishnan, K.; Morgadinho, J.; Halverson, T. Approach to the Diagnosis and Management of Dysbiosis. Front. Nutr. 2024, 11, 1330903. [Google Scholar] [CrossRef]
- Whelan, K.; Bancil, A.S.; Lindsay, J.O.; Chassaing, B. Ultra-Processed Foods and Food Additives in Gut Health and Disease. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 406–427. [Google Scholar] [CrossRef]
- Atzeni, A.; Martínez, M.Á.; Babio, N.; Konstanti, P.; Tinahones, F.J.; Vioque, J.; Corella, D.; Fitó, M.; Vidal, J.; Moreno-Indias, I.; et al. Association between Ultra-Processed Food Consumption and Gut Microbiota in Senior Subjects with Overweight/Obesity and Metabolic Syndrome. Front. Nutr. 2022, 9, 976547. [Google Scholar] [CrossRef] [PubMed]
- Faggiani, L.D.; de França, P.; Seabra, S.G.; Sabino, E.C.; Qi, L.; Cardoso, M.A. Effect of Ultra-Processed Food Consumption on the Gut Microbiota in the First Year of Life: Findings from the MINA–Brazil Birth Cohort Study. Clin. Nutr. 2025, 46, 181–190. [Google Scholar] [CrossRef]
- Cuevas-Sierra, A.; Milagro, F.I.; Aranaz, P.; Martínez, J.A.; Riezu-Boj, J.I. Gut Microbiota Differences According to Ultra-Processed Food Consumption in a Spanish Population. Nutrients 2021, 13, 2710. [Google Scholar] [CrossRef] [PubMed]
- Capra, B.T.; Hudson, S.; Helder, M.; Laskaridou, E.; Johnson, A.L.; Gilmore, C.; Marinik, E.; Hedrick, V.E.; Savla, J.; David, L.A.; et al. Ultra-Processed Food Intake, Gut Microbiome, and Glucose Homeostasis in Mid-Life Adults: Background, Design, and Methods of a Controlled Feeding Trial. Contemp. Clin. Trials 2024, 137, 107427. [Google Scholar] [CrossRef]
- Fardet, A. Minimally Processed Foods Are More Satiating and Less Hyperglycemic than Ultra-Processed Foods: A Preliminary Study with 98 Ready-to-Eat Foods. Food Funct. 2016, 7, 2338–2346. [Google Scholar] [CrossRef] [PubMed]
- Sacks, F.M.; Lichtenstein, A.H.; Wu, J.H.Y.; Appel, L.J.; Creager, M.A.; Kris-Etherton, P.M.; Miller, M.; Rimm, E.B.; Rudel, L.L.; Robinson, J.G.; et al. Dietary Fats and Cardiovascular Disease: A Presidential Advisory From the American Heart Association. Circulation 2017, 136, 3. [Google Scholar] [CrossRef]
- Mendonça, R.d.D.; Lopes, A.C.S.; Pimenta, A.M.; Gea, A.; Martinez-Gonzalez, M.A.; Bes-Rastrollo, M. Ultra-Processed Food Consumption and the Incidence of Hypertension in a Mediterranean Cohort: The Seguimiento Universidad de Navarra Project. Am. J. Hypertens. 2017, 30, 358–366. [Google Scholar] [CrossRef]
- Monge, A.; Silva Canella, D.; López-Olmedo, N.; Lajous, M.; Cortés-Valencia, A.; Stern, D. Ultraprocessed Beverages and Processed Meats Increase the Incidence of Hypertension in Mexican Women. Br. J. Nutr. 2021, 126, 600–611. [Google Scholar] [CrossRef]
- Rivera, N.; Du, S.; Bernard, L.; Kim, H.; Matsushita, K.; Rebholz, C.M. Ultra-Processed Food Consumption and Risk of Incident Hypertension in US Middle-Aged Adults. J. Am. Heart Assoc. 2024, 13, 17. [Google Scholar] [CrossRef]
- Scaranni, P.d.O.d.S.; Cardoso, L.d.O.; Chor, D.; Melo, E.C.P.; Matos, S.M.A.; Giatti, L.; Barreto, S.M.; da Fonseca, M.d.J.M. Ultra-Processed Foods, Changes in Blood Pressure and Incidence of Hypertension: The Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Public Health Nutr. 2021, 24, 3352–3360. [Google Scholar] [CrossRef]
- Oladele, C.R.; Khandpur, N.; Johnson, S.; Yuan, Y.; Wambugu, V.; Plante, T.B.; Lovasi, G.S.; Judd, S. Ultra-Processed Food Consumption and Hypertension Risk in the REGARDS Cohort Study. Hypertension 2024, 81, 2520–2528. [Google Scholar] [CrossRef] [PubMed]
- Juul, F.; Vaidean, G.; Parekh, N. Ultra-Processed Foods and Cardiovascular Diseases: Potential Mechanisms of Action. Adv. Nutr. 2021, 12, 1673–1680. [Google Scholar] [CrossRef] [PubMed]
- Rancière, F.; Lyons, J.G.; Loh, V.H.Y.; Botton, J.; Galloway, T.; Wang, T.; Shaw, J.E.; Magliano, D.J. Bisphenol A and the Risk of Cardiometabolic Disorders: A Systematic Review with Meta-Analysis of the Epidemiological Evidence. Environ. Health 2015, 14, 46. [Google Scholar] [CrossRef]
- Reha-Krantz, L.J. Mutagens. In Brenner’s Encyclopedia of Genetics; Elsevier: Amsterdam, The Netherlands, 2013; pp. 528–532. [Google Scholar]
- Molognoni, L.; Daguer, H.; Motta, G.E.; Merlo, T.C.; Lindner, J.D.D. Interactions of Preservatives in Meat Processing: Formation of Carcinogenic Compounds, Analytical Methods, and Inhibitory Agents. Food Res. Int. 2019, 125, 108608. [Google Scholar] [CrossRef]
- Paula Neto, H.A.; Ausina, P.; Gomez, L.S.; Leandro, J.G.B.; Zancan, P.; Sola-Penna, M. Effects of Food Additives on Immune Cells As Contributors to Body Weight Gain and Immune-Mediated Metabolic Dysregulation. Front. Immunol. 2017, 8, 1478. [Google Scholar] [CrossRef]
- Stefanidou, M.; Alevisopoulos, G.; Chatziioannou, A.; Koutselinis, A. Assessing Food Additive Toxicity Using a Cell Model. Vet. Hum. Toxicol. 2003, 45, 103–105. [Google Scholar] [PubMed]
- Barzegar, F.; Nabizadeh, S.; Kamankesh, M.; Ghasemi, J.B.; Mohammadi, A. Recent Advances in Natural Product-Based Nanoemulsions as Promising Substitutes for Hazardous Synthetic Food Additives: A New Revolution in Food Processing. Food Bioprocess Technol. 2024, 17, 1087–1108. [Google Scholar] [CrossRef]
- Behsnilian, D.; Butz, P.; Greiner, R.; Lautenschlaeger, R. Process-Induced Undesirable Compounds: Chances of Non-Thermal Approaches. Meat Sci. 2014, 98, 392–403. [Google Scholar] [CrossRef]
- Zahir, A.; Khan, I.A.; Nasim, M.; Azizi, M.N.; Azi, F. Food Process Contaminants: Formation, Occurrence, Risk Assessment and Mitigation Strategies—A Review. Food Addit. Contam. Part A 2024, 41, 1242–1274. [Google Scholar] [CrossRef]
- Subramanian, S.K.; Brahmbhatt, B.; Bailey-Lundberg, J.M.; Thosani, N.C.; Mutha, P. Lifestyle Medicine for the Prevention and Treatment of Pancreatitis and Pancreatic Cancer. Diagnostics 2024, 14, 614. [Google Scholar] [CrossRef]
- Baer, I.; de la Calle, B.; Taylor, P. 3-MCPD in Food Other than Soy Sauce or Hydrolysed Vegetable Protein (HVP). Anal. Bioanal. Chem. 2010, 396, 443–456. [Google Scholar] [CrossRef] [PubMed]
- Takami, T.; Kaposi-Novak, P.; Uchida, K.; Gomez-Quiroz, L.E.; Conner, E.A.; Factor, V.M.; Thorgeirsson, S.S. Loss of Hepatocyte Growth Factor/c-Met Signaling Pathway Accelerates Early Stages of N-Nitrosodiethylamine Induced Hepatocarcinogenesis. Cancer Res. 2007, 67, 9844–9851. [Google Scholar] [CrossRef] [PubMed]
- Merugu, N.K.; Manapuram, S.; Chakraborty, T.; Karanam, S.K.; Imandi, S.B. Mutagens in Commercial Food Processing and Its Microbial Transformation. Food Sci. Biotechnol. 2023, 32, 599–620. [Google Scholar] [CrossRef]
- Bulanda, S.; Janoszka, B. Consumption of Thermally Processed Meat Containing Carcinogenic Compounds (Polycyclic Aromatic Hydrocarbons and Heterocyclic Aromatic Amines) versus a Risk of Some Cancers in Humans and the Possibility of Reducing Their Formation by Natural Food Additives—A Literature Review. Int. J. Environ. Res. Public Health 2022, 19, 4781. [Google Scholar] [CrossRef]
- Agarwal, A.; Gandhi, S.; Tripathi, A.D.; Gupta, A.; Iammarino, M.; Sidhu, J.K. Food Contamination from Packaging Material with Special Focus on the Bisphenol-A. Crit. Rev. Biotechnol. 2025, 45, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yin, Y.; Zhou, W.; Li, H.; Hu, B.; Cui, Y.; Zhou, R.; Wang, P.; Fu, J. Convenient Self-Heating Instant Food Causes Significant Increasing Human Exposure to Organophosphate Esters. Environ. Health 2024, 2, 52–61. [Google Scholar] [CrossRef]
- Liu, M.; Li, A.; Meng, L.; Zhang, G.; Guan, X.; Zhu, J.; Li, Y.; Zhang, Q.; Jiang, G. Exposure to Novel Brominated Flame Retardants and Organophosphate Esters and Associations with Thyroid Cancer Risk: A Case–Control Study in Eastern China. Environ. Sci. Technol. 2022, 56, 17825–17835. [Google Scholar] [CrossRef]
- Tareke, E.; Rydberg, P.; Karlsson, P.; Eriksson, S.; Törnqvist, M. Analysis of Acrylamide, a Carcinogen Formed in Heated Foodstuffs. J. Agric. Food Chem. 2002, 50, 4998–5006. [Google Scholar] [CrossRef]
- Tricker, A.R.; Preussmann, R. Carcinogenic N-Nitrosamines in the Diet: Occurrence, Formation, Mechanisms and Carcinogenic Potential. Mutat. Res./Genet. Toxicol. 1991, 259, 277–289. [Google Scholar] [CrossRef]
- Shu, L.; Zhang, X.; Zhu, Q.; Lv, X.; Si, C. Association between Ultra-Processed Food Consumption and Risk of Breast Cancer: A Systematic Review and Dose-Response Meta-Analysis of Observational Studies. Front. Nutr. 2023, 10, 1250361. [Google Scholar] [CrossRef]
- Isaksen, I.M.; Dankel, S.N. Ultra-Processed Food Consumption and Cancer Risk: A Systematic Review and Meta-Analysis. Clin. Nutr. 2023, 42, 919–928. [Google Scholar] [CrossRef] [PubMed]
- Meine, G.C.; Picon, R.V.; Espírito Santo, P.A.; Sander, G.B. Ultra-Processed Food Consumption and Gastrointestinal Cancer Risk: A Systematic Review and Meta-Analysis. Am. J. Gastroenterol. 2024, 119, 1056–1065. [Google Scholar] [CrossRef] [PubMed]
- Michels, N.; Specht, I.O.; Heitmann, B.L.; Chajès, V.; Huybrechts, I. Dietary Trans-Fatty Acid Intake in Relation to Cancer Risk: A Systematic Review and Meta-Analysis. Nutr. Rev. 2021, 79, 758–776. [Google Scholar] [CrossRef]
- Wieërs, M.L.A.J.; Beynon-Cobb, B.; Visser, W.J.; Attaye, I. Dietary Acid Load in Health and Disease. Pflug. Arch. 2024, 476, 427–443. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization; Food and Agriculture Organization of the United Nations. What Are Healthy Diets? Joint Statement by the Food and Agriculture Organization of the United Nations and the World Health Organization; WHO; FAO: Geneva, Switzerland, 2024; ISBN 978-92-5-139083-2. [Google Scholar]
- Sing, F.; Backholer, K.; Shats, K. Key Barriers to Food Marketing Regulation: Global Survey Results; Unicef: New York, NY, USA, 2023. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menegassi, B.; Vinciguerra, M. Ultraprocessed Food and Risk of Cancer: Mechanistic Pathways and Public Health Implications. Cancers 2025, 17, 2064. https://doi.org/10.3390/cancers17132064
Menegassi B, Vinciguerra M. Ultraprocessed Food and Risk of Cancer: Mechanistic Pathways and Public Health Implications. Cancers. 2025; 17(13):2064. https://doi.org/10.3390/cancers17132064
Chicago/Turabian StyleMenegassi, Bruna, and Manlio Vinciguerra. 2025. "Ultraprocessed Food and Risk of Cancer: Mechanistic Pathways and Public Health Implications" Cancers 17, no. 13: 2064. https://doi.org/10.3390/cancers17132064
APA StyleMenegassi, B., & Vinciguerra, M. (2025). Ultraprocessed Food and Risk of Cancer: Mechanistic Pathways and Public Health Implications. Cancers, 17(13), 2064. https://doi.org/10.3390/cancers17132064