Circulating Tumor DNA in Muscle-Invasive Bladder Cancer: Implications for Prognosis and Treatment Personalization
Simple Summary
Abstract
1. Introduction
2. Biological Basis and Detection of Circulating Tumor DNA
3. ctDNA in Preoperative Risk Assessment
4. The Role of ctDNA in MRD Monitoring and Personalizing Adjuvant Treatment
5. Challenges and Future Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Powles, T.; Bellmunt, J.; Comperat, E.; De Santis, M.; Huddart, R.; Loriot, Y.; Necchi, A.; Valderrama, B.P.; Ravaud, A.; Shariat, S.F.; et al. Bladder cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2022, 33, 244–258. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.S.; Bochner, B.H.; Chou, R.; Dreicer, R.; Kamat, A.M.; Lerner, S.P.; Lotan, Y.; Meeks, J.J.; Michalski, J.M.; Morgan, T.M.; et al. Treatment of Non-Metastatic Muscle-Invasive Bladder Cancer: AUA/ASCO/ASTRO/SUO Guideline. J. Urol. 2017, 198, 552–559. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van der Heijden, A.G.; Bruins, H.M.; Carrion, A.; Cathomas, R.; Compérat, E.; Dimitropoulos, K.; Efstathiou, J.A.; Fietkau, R.; Kailavasan, M.; Lorch, A.; et al. European Association of Urology Guidelines on Muscle-invasive and Metastatic Bladder Cancer: Summary of the 2025 Guidelines. Eur. Urol. 2025, 87, 582–600. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.; Joshi, M.; Meijer, R.P.; Glantz, M.; Holder, S.; Harvey, H.A.; Kaag, M.; Fransen van de Putte, E.E.; Horenblas, S.; Drabick, J.J. Neoadjuvant Chemotherapy for Muscle-Invasive Bladder Cancer: A Systematic Review and Two-Step Meta-Analysis. Oncologist 2016, 21, 708–715. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rose, K.M.; Huelster, H.L.; Meeks, J.J.; Faltas, B.M.; Sonpavde, G.P.; Lerner, S.P.; Ross, J.S.; Spiess, P.E.; Grass, G.D.; Jain, R.K.; et al. Circulating and urinary tumour DNA in urothelial carcinoma—Upper tract, lower tract and metastatic disease. Nat. Rev. Urol. 2023, 20, 406–419. [Google Scholar] [CrossRef] [PubMed]
- Gale, D.; Heider, K.; Ruiz-Valdepenas, A.; Hackinger, S.; Perry, M.; Marsico, G.; Rundell, V.; Wulff, J.; Sharma, G.; Knock, H.; et al. Residual ctDNA after treatment predicts early relapse in patients with early-stage non-small cell lung cancer. Ann. Oncol. 2022, 33, 500–510. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Powles, T.; Assaf, Z.J.; Degaonkar, V.; Grivas, P.; Hussain, M.; Oudard, S.; Gschwend, J.E.; Albers, P.; Castellano, D.; Nishiyama, H.; et al. Updated Overall Survival by Circulating Tumor DNA Status from the Phase 3 IMvigor010 Trial: Adjuvant Atezolizumab Versus Observation in Muscle-invasive Urothelial Carcinoma. Eur. Urol. 2024, 85, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Tie, J.; Cohen, J.D.; Wang, Y.; Christie, M.; Simons, K.; Lee, M.; Wong, R.; Kosmider, S.; Ananda, S.; McKendrick, J.; et al. Circulating Tumor DNA Analyses as Markers of Recurrence Risk and Benefit of Adjuvant Therapy for Stage III Colon Cancer. JAMA Oncol. 2019, 5, 1710–1717. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pellini, B.; Chaudhuri, A.A. Circulating Tumor DNA Minimal Residual Disease Detection of Non-Small-Cell Lung Cancer Treated With Curative Intent. J. Clin. Oncol. 2022, 40, 567–575. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lindskrog, S.V.; Birkenkamp-Demtröder, K.; Nordentoft, I.; Laliotis, G.; Lamy, P.; Christensen, E.; Renner, D.; Andreasen, T.G.; Lange, N.; Sharma, S.; et al. Circulating Tumor DNA Analysis in Advanced Urothelial Carcinoma: Insights from Biological Analysis and Extended Clinical Follow-up. Clin. Cancer Res. 2023, 29, 4797–4807. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sfakianos, J.P.; Basu, A.; Laliotis, G.; Cumarasamy, S.; Rich, J.M.; Kommalapati, A.; Glover, M.; Mahmood, T.; Tillu, N.; Hoimes, C.J.; et al. Association of Tumor-informed Circulating Tumor DNA Detectability Before and After Radical Cystectomy with Disease-free Survival in Patients with Bladder Cancer. Eur. Urol. Oncol. 2025, 8, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Powles, T.; Assaf, Z.J.; Davarpanah, N.; Banchereau, R.; Szabados, B.E.; Yuen, K.C.; Grivas, P.; Hussain, M.; Oudard, S.; Gschwend, J.E.; et al. ctDNA guiding adjuvant immunotherapy in urothelial carcinoma. Nature 2021, 595, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Bellmunt, J.; Hussain, M.; Gschwend, J.E.; Albers, P.; Oudard, S.; Castellano, D.; Daneshmand, S.; Nishiyama, H.; Majchrowicz, M.; Degaonkar, V.; et al. Adjuvant atezolizumab versus observation in muscle-invasive urothelial carcinoma (IMvigor010): A multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2021, 22, 525–537. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kustanovich, A.; Schwartz, R.; Peretz, T.; Grinshpun, A. Life and death of circulating cell-free DNA. Cancer Biol. Ther. 2019, 20, 1057–1067. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jahr, S.; Hentze, H.; Englisch, S.; Hardt, D.; Fackelmayer, F.O.; Hesch, R.D.; Knippers, R. DNA fragments in the blood plasma of cancer patients: Quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001, 61, 1659–1665. [Google Scholar] [PubMed]
- Jiang, P.; Lo, Y.M.D. The Long and Short of Circulating Cell-Free DNA and the Ins and Outs of Molecular Diagnostics. Trends Genet. 2016, 32, 360–371. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Su, L.; Qian, C. Circulating tumor DNA: A promising biomarker in the liquid biopsy of cancer. Oncotarget 2016, 7, 48832–48841. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yao, W.; Mei, C.; Nan, X.; Hui, L. Evaluation and comparison of in vitro degradation kinetics of DNA in serum, urine and saliva: A qualitative study. Gene 2016, 590, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Yong, E. Cancer biomarkers: Written in blood. Nature 2014, 511, 524–526. [Google Scholar] [CrossRef]
- Adalsteinsson, V.A.; Ha, G.; Freeman, S.S.; Choudhury, A.D.; Stover, D.G.; Parsons, H.A.; Gydush, G.; Reed, S.C.; Rotem, D.; Rhoades, J.; et al. Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors. Nat. Commun. 2017, 8, 1324. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pei, X.M.; Yeung, M.H.Y.; Wong, A.N.N.; Tsang, H.F.; Yu, A.C.S.; Yim, A.K.Y.; Wong, S.C.C. Targeted Sequencing Approach and Its Clinical Applications for the Molecular Diagnosis of Human Diseases. Cells 2023, 12, 493. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Christensen, E.; Nordentoft, I.; Vang, S.; Birkenkamp-Demtröder, K.; Jensen, J.B.; Agerbæk, M.; Pedersen, J.S.; Dyrskjøt, L. Optimized targeted sequencing of cell-free plasma DNA from bladder cancer patients. Sci. Rep. 2018, 8, 1917. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carrasco, R.; Ingelmo-Torres, M.; Trullas, R.; Roldán, F.L.; Rodríguez-Carunchio, L.; Juez, L.; Sureda, J.; Alcaraz, A.; Mengual, L.; Izquierdo, L. Tumor-Agnostic Circulating Tumor DNA Testing for Monitoring Muscle-Invasive Bladder Cancer. Int. J. Mol. Sci. 2023, 24, 16578. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Borkowska, E.M.; Traczyk-Borszyńska, M.; Kutwin, P.; Pietrusiński, M.; Jabłonowski, Z.; Borowiec, M. Usefulness of droplet digital PCR and Sanger sequencing for detection of FGFR3 mutation in bladder cancer. Urol. Oncol. 2019, 37, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, J.J.G.; Hamilton, G.; Hurst, C.D.; Fraser, S.; Orange, C.; Knowles, M.A.; Jones, R.J.; Leung, H.Y.; Iwata, T. Monitoring of urothelial cancer disease status after treatment by digital droplet PCR liquid biopsy assays. Urol. Oncol. 2020, 38, 737.e1–737.e10. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Chen, J.; Huang, Y.; Zhang, Y.; Ni, Y.; Xu, N.; Zhao, F.; Tang, Y.; Liu, H.; Sun, G.; et al. Prognostic significance of circulating tumor DNA in urothelial carcinoma: A systematic review and meta-analysis. Int. J. Surg. 2024, 110, 3923–3936. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Herranz, R.; Oto, J.; Plana, E.; Fernández-Pardo, Á.; Cana, F.; Martínez-Sarmiento, M.; Vera-Donoso, C.D.; España, F.; Medina, P. Circulating Cell-Free DNA in Liquid Biopsies as Potential Biomarker for Bladder Cancer: A Systematic Review. Cancers 2021, 13, 1448. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huelster, H.L.; Gould, B.; Schiftan, E.A.; Camperlengo, L.; Davaro, F.; Rose, K.M.; Soupir, A.C.; Jia, S.; Zheng, T.; Sexton, W.J.; et al. Novel Use of Circulating Tumor DNA to Identify Muscle-invasive and Non-organ-confined Upper Tract Urothelial Carcinoma. Eur. Urol. 2024, 85, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Kamalov, D.; Tivtikyan, A.; Balatsky, A.; Samokhodskaya, L.; Okhobotov, D.; Kozlova, P.; Pisarev, E.; Zvereva, M.; Kamalov, A. Urine TERT promoter mutations-based tumor DNA detection in patients with bladder cancer: A pilot study. Mol. Clin. Oncol. 2021, 15, 253. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dudley, J.C.; Schroers-Martin, J.; Lazzareschi, D.V.; Shi, W.Y.; Chen, S.B.; Esfahani, M.S.; Trivedi, D.; Chabon, J.J.; Chaudhuri, A.A.; Stehr, H.; et al. Detection and Surveillance of Bladder Cancer Using Urine Tumor DNA. Cancer Discov. 2019, 9, 500–509. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Christensen, E.; Birkenkamp-Demtröder, K.; Nordentoft, I.; Høyer, S.; van der Keur, K.; van Kessel, K.; Zwarthoff, E.; Agerbæk, M.; Ørntoft, T.F.; Jensen, J.B.; et al. Liquid Biopsy Analysis of FGFR3 and PIK3CA Hotspot Mutations for Disease Surveillance in Bladder Cancer. Eur. Urol. 2017, 71, 961–969. [Google Scholar] [CrossRef] [PubMed]
- Christensen, E.; Birkenkamp-Demtröder, K.; Sethi, H.; Shchegrova, S.; Salari, R.; Nordentoft, I.; Wu, H.T.; Knudsen, M.; Lamy, P.; Lindskrog, S.V.; et al. Early Detection of Metastatic Relapse and Monitoring of Therapeutic Efficacy by Ultra-Deep Sequencing of Plasma Cell-Free DNA in Patients With Urothelial Bladder Carcinoma. J. Clin. Oncol. 2019, 37, 1547–1557. [Google Scholar] [CrossRef] [PubMed]
- Szabados, B.; Kockx, M.; Assaf, Z.J.; van Dam, P.J.; Rodriguez-Vida, A.; Duran, I.; Crabb, S.J.; Van Der Heijden, M.S.; Pous, A.F.; Gravis, G.; et al. Final Results of Neoadjuvant Atezolizumab in Cisplatin-ineligible Patients with Muscle-invasive Urothelial Cancer of the Bladder. Eur. Urol. 2022, 82, 212–222. [Google Scholar] [CrossRef] [PubMed]
- van Dorp, J.; Pipinikas, C.; Suelmann, B.B.M.; Mehra, N.; van Dijk, N.; Marsico, G.; van Montfoort, M.L.; Hackinger, S.; Braaf, L.M.; Amarante, T.; et al. High- or low-dose preoperative ipilimumab plus nivolumab in stage III urothelial cancer: The phase 1B NABUCCO trial. Nat. Med. 2023, 29, 588–592. [Google Scholar] [CrossRef] [PubMed]
- Drakaki, A.; Powles, T.B.; Wang, Y.; Bupathi, M.; Joshi, M.; Fleming, M.T.; Gomez de Liano Lista, A.; Morales Barrera, R.; Pili, R.; Boulos, S.; et al. Circulating tumor DNA (ctDNA) clearance with neoadjuvant durvalumab + tremelimumab + enfortumab vedotin for cisplatin-ineligible muscle-invasive bladder cancer: VOLGA trial. Ann. Oncol. 2024, 35, S1135–S1169. [Google Scholar] [CrossRef]
- Carrasco, R.; Ingelmo-Torres, M.; Gómez, A.; Trullas, R.; Roldán, F.L.; Ajami, T.; Moreno, D.; Rodríguez-Carunchio, L.; Alcaraz, A.; Izquierdo, L.; et al. Cell-Free DNA as a Prognostic Biomarker for Monitoring Muscle-Invasive Bladder Cancer. Int. J. Mol. Sci. 2022, 23, 11732. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jackson-Spence, F.; Toms, C.; O’Mahony, L.F.; Choy, J.; Flanders, L.; Szabados, B.; Powles, T. IMvigor011: A study of adjuvant atezolizumab in patients with high-risk MIBC who are ctDNA+ post-surgery. Future Oncol. 2023, 19, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Bjerggaard Jensen, J.; Birkenkamp-Demtröder, K.; Nordentoft, I.; Milling, R.V.; Körner, S.K.; Brandt, S.B.; Knudsen, M.; Lam, G.W.; Dohn, L.H.; Fabrin, K.; et al. 1960O Identification of bladder cancer patients that could benefit from early post-cystectomy immunotherapy based on serial circulating tumour DNA (ctDNA) testing: Preliminary results from the TOMBOLA trial. Ann. Oncol. 2024, 35, S1133. [Google Scholar] [CrossRef]
- Guercio, B.J.; Sarfaty, M.; Teo, M.Y.; Ratna, N.; Duzgol, C.; Funt, S.A.; Lee, C.H.; Aggen, D.H.; Regazzi, A.M.; Chen, Z.; et al. Clinical and Genomic Landscape of FGFR3-Altered Urothelial Carcinoma and Treatment Outcomes with Erdafitinib: A Real-World Experience. Clin. Cancer Res. 2023, 29, 4586–4595. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ben-David, R.; Tillu, N.; Cumarasamy, S.; Alerasool, P.; Rich, J.M.; Kaufmann, B.; Elkun, Y.; Attalla, K.; Mehrazin, R.; Wiklund, P.; et al. Longitudinal Tumor-informed Circulating Tumor DNA Status Predicts Disease Upstaging and Poor Prognosis for Patients Undergoing Radical Cystectomy. Eur. Urol. Oncol. 2024, 7, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Crupi, E.; de Padua, T.C.; Marandino, L.; Raggi, D.; Dyrskjøt, L.; Spiess, P.E.; Sonpavde, G.P.; Kamat, A.M.; Necchi, A. Circulating tumor DNA as a Predictive and Prognostic Biomarker in the Perioperative Treatment of Muscle-invasive Bladder Cancer: A Systematic Review. Eur. Urol. Oncol. 2024, 7, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Sternberg, C.N.; Donat, S.M.; Bellmunt, J.; Millikan, R.E.; Stadler, W.; De Mulder, P.; Sherif, A.; von der Maase, H.; Tsukamoto, T.; Soloway, M.S. Chemotherapy for bladder cancer: Treatment guidelines for neoadjuvant chemotherapy, bladder preservation, adjuvant chemotherapy, and metastatic cancer. Urology 2007, 69, 62–79. [Google Scholar] [CrossRef] [PubMed]
- Cavallone, L.; Aldamry, M.; Lafleur, J.; Lan, C.; Gonzalez Ginestet, P.; Alirezaie, N.; Ferrario, C.; Aguilar-Mahecha, A.; Basik, M. A Study of Pre-Analytical Variables and Optimization of Extraction Method for Circulating Tumor DNA Measurements by Digital Droplet PCR. Cancer Epidemiol. Biomark. Prev. 2019, 28, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Huang, X.; Li, X.; Guo, Q.; Xu, W.; Zhao, M.; Wang, X.; Wang, L.; Lou, J. Performance comparison of commercial kits for isolating and detecting circulating tumor DNA. Scand. J. Clin. Lab. Investig. 2021, 81, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Ungerer, V.; Bronkhorst, A.J.; Holdenrieder, S. Preanalytical variables that affect the outcome of cell-free DNA measurements. Crit. Rev. Clin. Lab. Sci. 2020, 57, 484–507. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Rasmussen, M.H.; Christensen, M.H.; Frydendahl, A.; Maretty, L.; Andersen, C.L.; Besenbacher, S. Evaluating Bioinformatics Processing of Somatic Variant Detection in cfDNA Using Targeted Sequencing with UMIs. Int. J. Mol. Sci. 2024, 25, 11439. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, J.; Dai, D.; Tian, J.; Li, L.; Bai, J.; Xu, Y.; Wang, Z.; Tang, A. Circulating Tumor DNA Analyses Predict Disease Recurrence in Non-Muscle-Invasive Bladder Cancer. Front. Oncol. 2021, 11, 657483. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, F.; Tang, M.; Cui, L.; Bai, J.; Yu, J.; Gao, J.; Nie, X.; Li, X.; Xia, X.; Yi, X.; et al. Prognostic and predictive impact of molecular tumor burden index in non-small cell lung cancer patients. Thorac. Cancer 2023, 14, 3097–3107. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vandekerkhove, G.; Todenhöfer, T.; Annala, M.; Struss, W.J.; Wong, A.; Beja, K.; Ritch, E.; Brahmbhatt, S.; Volik, S.V.; Hennenlotter, J.; et al. Circulating Tumor DNA Reveals Clinically Actionable Somatic Genome of Metastatic Bladder Cancer. Clin. Cancer Res. 2017, 23, 6487–6497. [Google Scholar] [CrossRef] [PubMed]
- Ferro, M.; Falagario, U.G.; Barone, B.; Maggi, M.; Crocetto, F.; Busetto, G.M.; Giudice, F.D.; Terracciano, D.; Lucarelli, G.; Lasorsa, F.; et al. Artificial Intelligence in the Advanced Diagnosis of Bladder Cancer-Comprehensive Literature Review and Future Advancement. Diagnostics 2023, 13, 2308. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Feature | Tumor-Informed Testing | Tumor-Agnostic Testing |
---|---|---|
Basis of Testing | Patient-specific mutations identified from tumor tissue | Standardized gene panels covering common mutations |
Sensitivity | High (especially for MRD detection) | Moderate to low (may miss low ctDNA levels) |
Specificity | High (targets known tumor mutations) | Lower (risk of false positives from clonal hematopoiesis) |
Turnaround Time | Longer (requires tumor sequencing and assay design) | Faster (no need for tumor tissue sequencing) |
Mutation Coverage | Limited to known mutations in the original tumor | Broader, may detect de novo mutations |
Clinical Utility | Best for monitoring MRD and treatment response | Useful when tumor tissue is unavailable or rapid testing needed |
Cost | Higher (custom assay development) | Lower to moderate |
Limitations | Requires tumor sample and more time | Less sensitive; may miss low-frequency variants |
Study/Trial | Design and Setting | Population | Key Findings |
---|---|---|---|
Christensen et al. | Prospective observational | 68 patients with localized MIBC receiving neoadjuvant cisplatin-based chemotherapy | ctDNA clearance during NAC was associated with a 3-year RFS of 88% versus 46% in patients with persistent ctDNA. ctDNA dynamics predicted pathological response and long-term outcome. |
ABACUS (NCT02662309) | Phase II, single-arm trial | 95 cisplatin-ineligible MIBC patients received neoadjuvant atezolizumab | ctDNA negativity or clearance post-treatment was associated with pathological complete response and no relapse. Persistent ctDNA predicted increased recurrence risk. |
NABUCCO (NCT03387761) | Phase I/II | 24 patients with high-risk, operable MIBC treated with neoadjuvant ipilimumab + nivolumab | Patients ctDNA-negative at surgery had 88% PFS at 12 months. Those with detectable ctDNA had significantly poorer outcomes. |
IMvigor010 (NCT02450331) | Phase III RCT | 809 high-risk post-cystectomy MIBC patients randomized to adjuvant atezolizumab vs observation | Although the trial was negative overall, ctDNA-positive patients derived DFS benefit from atezolizumab (HR 0.58), while ctDNA-negative patients did not. |
IMvigor011 (NCT04660344) | Phase III RCT (ongoing) | Post-cystectomy patients with ctDNA+ randomized to atezolizumab or placebo | Aims to validate ctDNA-guided adjuvant immunotherapy. DFS is the primary endpoint in ctDNA + group. |
TOMBOLA (NCT04138628) | Phase II (ongoing) | ctDNA-guided surveillance post-cystectomy with atezolizumab initiated upon ctDNA detection | Early data: relapse rate of ~3% among ctDNA-negative patients. Supports risk-adapted surveillance. |
MODERN (NCT05987241) | Phase II/III RCT (ongoing) | Postoperative MIBC patients stratified by ctDNA status | CtDNA + patients receive nivolumab ± relatlimab. Study evaluates efficacy of immunotherapy escalation based on molecular risk. |
VOLGA (NCT04960709) | Phase III RCT (ongoing) | Cisplatin-eligible MIBC patients receiving neoadjuvant chemo-immunotherapy | ctDNA MRD monitoring integrated as an endpoint. Preliminary findings suggest ctDNA clearance predicts pCR and improved survival. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsimperis, S.; Tzelves, L.; Feretzakis, G.; Bellos, T.; Tsikopoulos, I.; Kostakopoulos, N.; Skolarikos, A. Circulating Tumor DNA in Muscle-Invasive Bladder Cancer: Implications for Prognosis and Treatment Personalization. Cancers 2025, 17, 1908. https://doi.org/10.3390/cancers17121908
Katsimperis S, Tzelves L, Feretzakis G, Bellos T, Tsikopoulos I, Kostakopoulos N, Skolarikos A. Circulating Tumor DNA in Muscle-Invasive Bladder Cancer: Implications for Prognosis and Treatment Personalization. Cancers. 2025; 17(12):1908. https://doi.org/10.3390/cancers17121908
Chicago/Turabian StyleKatsimperis, Stamatios, Lazaros Tzelves, Georgios Feretzakis, Themistoklis Bellos, Ioannis Tsikopoulos, Nikolaos Kostakopoulos, and Andreas Skolarikos. 2025. "Circulating Tumor DNA in Muscle-Invasive Bladder Cancer: Implications for Prognosis and Treatment Personalization" Cancers 17, no. 12: 1908. https://doi.org/10.3390/cancers17121908
APA StyleKatsimperis, S., Tzelves, L., Feretzakis, G., Bellos, T., Tsikopoulos, I., Kostakopoulos, N., & Skolarikos, A. (2025). Circulating Tumor DNA in Muscle-Invasive Bladder Cancer: Implications for Prognosis and Treatment Personalization. Cancers, 17(12), 1908. https://doi.org/10.3390/cancers17121908