Neural Network-Based Composite Risk Scoring for Stratification of Fecal Immunochemical Test-Positive Patients in Colorectal Cancer Screening: Findings from South-West Oltenia
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.1.1. Disadvantaged-Group Feature Encoding
2.1.2. Algorithmic Bias Assessment
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. Sensitivity Analysis and Weighting
2.5. Sample Selection and Management of FIT-Positive Patients
2.6. Colonoscopy Quality Metrics
2.7. Statistical Analysis
2.8. Model Trening
2.9. Machine Learning Model Validation
3. Results
- Screening reach: 51,437 individuals tested; FIT-positivity: 6.27%.
- Colonoscopy uptake: 1550 of 2825 FIT-positive subjects (53.1%) completed colonoscopy; no significant demographic or comorbidity differences versus non-completers.
- Diagnostic yield: Overall CRC prevalence: 13.9%; adenoma detection rate: 44.4%; sigmoid-descending colon most frequently affected (56.5%).
- Quality indicators: Mean withdrawal time: 10.9 min; mean Boston score: 7.6; all metrics met ESGE standards.
- AI stratification: Autoencoder + K-means identified five distinct clusters; Cluster 0 (FIT > 2000 ng mL−1, age > 65 y) showed a 51% malignancy rate.
- Risk scoring: Composite score (five domains; AUC = 0.93) and simplified score (three factors; AUC = 0.70) out-performed FIT alone (AUC = 0.79) and reduced unnecessary colonoscopies by up to 95%, while retaining 100% negative predictive value for CRC.
3.1. General Characteristics of Study Participants
3.2. Clustering Analysis and Validation
3.2.1. Clustering Methodology
3.2.2. Determining the Optimal Number of Clusters
3.2.3. Cluster Characteristics and Distribution
3.3. Neural Network Model Training and Performance
3.3.1. Neural Network Model Training
3.3.2. Model Performance Metrics
Loss and Accuracy
ROC Curves, AUC Scores, and Uncertainty Quantification
3.3.3. Cluster Visualization Using Principal Component Analysis (PCA)
3.4. Comparative Analysis of Comorbidities and Socio-Economic Factors
3.4.1. Comorbidities and Medication Use
3.4.2. Education and Residential Environment
3.5. Development and Validation of the Composite Risk Scoring System
Proposed Risk Scoring System
3.6. Risk Stratification, Diagnostic Yield, and Health-Economic Impact
3.6.1. From Score to Clinical Action
3.6.2. Cumulative Performance at Every Threshold
3.6.3. Cost-Effectiveness
3.7. Case Examples
3.7.1. Case 1: High-Risk Patient
3.7.2. Case 2: Low-Risk Patient
3.8. Summary of Risk Score Validation
3.9. Particularities of Cluster 2
3.10. Fairness Assessment
3.11. Integrative Risk Stratification: Validation and Practical Implications
4. Discussion
4.1. Neural Network and Identification of Distinct Clusters
4.2. Benefits of the Composite Score for Optimizing Triage
4.3. Comparison of the Proposed Score with Existing Models
4.4. Practical Implications and Public Health Policy
4.5. Model Generalizability, Implementation, and Future Directions
4.6. Case Examples and Visual Confirmation
5. Study Limitations
6. Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADR | Adenoma detection rate |
AI | Artificial intelligence |
AUC-ROC | Area under the curve–receiver operating characteristic |
BBPS | Boston Bowel Preparation Scale |
CRC | Colorectal cancer |
DNN | Deep neural network |
EHR | Electronic health record |
ESGE | European Society of Gastrointestinal Endoscopy |
FFNN | Feed-forward neural network |
FIT | Fecal immunochemical test |
IQR | Interquartile range |
IPTW | Inverse-probability-of-treatment weighting |
K-Means | K-Means clustering algorithm |
MICE | Multiple imputation by chained equations |
MSE | Mean Squared Error |
PCA | Principal Component Analysis |
PPV | Positive predictive value |
ReLU | Rectified Linear Unit |
ROC | Receiver operating characteristic |
SHAP | SHapley Additive exPlanations |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Fidler, M.M.; Soerjomataram, I.; Bray, F. A global view on cancer incidence and national levels of the human development index. Int. J. Cancer. 2016, 139, 2436–2446. [Google Scholar] [CrossRef] [PubMed]
- Vuik, F.E.; Nieuwenburg, S.A.; Bardou, M.; Lansdorp-Vogelaar, I.; Dinis-Ribeiro, M.; Bento, M.J.; Dekker, E. Increasing incidence of colorectal cancer in young adults in Europe over the last 25 years. Gut 2019, 68, 1820–1826. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Fedewa, S.A.; Ahnen, D.J.; Meester, R.G.S.; Barzi, A.; Jemal, A. Colorectal cancer statistics, 2017. CA Cancer J. Clin. 2017, 67, 177–193. [Google Scholar] [CrossRef]
- US Preventive Services Task Force; Davidson, K.W.; Barry, M.J.; Mangione, C.M.; Cabana, M.; Caughey, A.B.; Davis, E.M.; Donahue, K.E.; Doubeni, C.A.; Krist, A.H.; et al. Screening for colorectal cancer: US Preventive Services Task Force recommendation statement. JAMA 2021, 325, 1965–1977. [Google Scholar] [CrossRef]
- Schreuders, E.H.; Ruco, A.; Rabeneck, L.; Schoen, R.E.; Sung, J.J.Y.; Young, G.P.; Kuipers, E.J. Colorectal cancer screening: A global overview of existing programmes. Gut 2015, 64, 1637–1649. [Google Scholar] [CrossRef]
- Cole, S.R.; Tucker, G.R.; Osborne, J.M.; Byrne, S.E.; Bampton, P.A.; Fraser, R.J.L.; Macrae, F.A.; Young, G.P. Shift to earlier stage at diagnosis as a consequence of the National Bowel Cancer Screening Program. Med. J. Aust. 2020, 212, 199–205. [Google Scholar] [CrossRef]
- Kirby, J.B.; Yabroff, K.R. Rural–urban differences in access to primary care: Beyond the usual source of care provider. Health Serv. Res. 2017, 52, 171–189. [Google Scholar] [CrossRef]
- Kaczmarek, K. Disparities in colorectal cancer screening participation in Eastern Europe: Analysis and recommendations. Eur. J. Public. Health 2024, 34, 112–118. [Google Scholar] [CrossRef]
- Lansdorp-Vogelaar, I.; Knudsen, A.B.; Brenner, H. Cost-effectiveness of colorectal cancer screening. Epidemiol. Rev. 2022, 44, 106–120. [Google Scholar] [CrossRef]
- Nartowt, B.J.; Hart, G.R.; Roffman, D.A.; Llor, X.; Ali, I.; Muhammad, W.; Liang, Y.; Deng, J. Scoring colorectal cancer risk with an artificial neural network based on self-reportable personal health data. PLoS ONE 2019, 14, e0221421. [Google Scholar] [CrossRef] [PubMed]
- Min, J.K.; Yang, H.J.; Kwak, M.S.; Cho, C.W.; Kim, S.; Ahn, K.S.; Park, S.K.; Cha, J.M.; Park, D.I. Deep Neural Network-Based Prediction of the Risk of Advanced Colorectal Neoplasia. Gut Liver. 2021, 15, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Tokutake, K.; Morelos-Gomez, A.; Hoshi, K.I.; Katouda, M.; Tejima, S.; Endo, M. Artificial intelligence for the prevention and prediction of colorectal neoplasms. J. Transl. Med. 2023, 21, 431. [Google Scholar] [CrossRef]
- Li, S.J.; Sharples, L.D.; Benton, S.C.; Blyuss, O.; Mathews, C.; Sasieni, P.; Duffy, S.W. Faecal immunochemical testing in bowel cancer screening: Estimating outcomes for different diagnostic policies. J. Med. Screen. 2021, 28, 277–285. [Google Scholar] [CrossRef]
- Yeoh, K.G.; Ho, K.Y.; Chiu, H.M.; Zhu, F.; Ching, J.Y.L.; Wu, D.C.; Matsuda, T.; Park, D.I.; Leung, W.K.; Sollano, J.; et al. The Asia-Pacific colorectal screening score: A tool for selecting candidates for screening colonoscopy. Gut 2011, 60, 1236–1241. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Z.; Liu, L.; Chen, Y.; Hu, H.; Luo, L.; Zheng, M. Evaluation of the FAST score in colorectal cancer risk stratification. J. Gastroenterol. Hepatol. 2022, 37, 936–942. [Google Scholar] [CrossRef]
- Frederiksen, B.L.; Jørgensen, T.; Brasso, K.; Holten, I.; Osler, M. Socioeconomic position and participation in colorectal cancer screening. Br. J. Cancer 2010, 103, 1496–1501. [Google Scholar] [CrossRef]
- Palmer, C.K.; Thomas, M.C.; Von Wagner, C.; Raine, R. Reasons for non-uptake in the NHS Bowel Cancer Screening. Br. J. Cancer. 2014, 110, 1705–1711. [Google Scholar] [CrossRef]
- Mansouri, D.; McMillan, D.C.; Grant, Y.; Crighton, E.M.; Horgan, P.G. Impact of socioeconomic deprivation on outcomes of colorectal cancer patients. Br. J. Surg. 2013, 100, 1056–1063. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, L.; Zhang, Y.; Jing, H.; Wei, L.; Li, Z.; Zhang, H.; Zhu, S.; Zhang, S.; Zhang, X. Colorectal Cancer Screening in a Population-Based Study. Front. Oncol. 2022, 12, 893183. [Google Scholar] [CrossRef]
- Rahimi, F.; Rezayatmand, R.; Shojaeenejad, J.; Tabesh, E.; Ravankhah, Z.; Adibi, P. Costs and outcomes of colorectal cancer screening program in Isfahan, Iran. BMC Health Serv. Res. 2023, 23, 13. [Google Scholar] [CrossRef] [PubMed]
- Pellat, A.; Deyra, J.; Coriat, R.; Chaussade, S. Results of the national organised colorectal cancer screening program with FIT in Paris. Sci. Rep. 2018, 8, 4162. [Google Scholar] [CrossRef] [PubMed]
- Zahnd, W.E.; James, A.S.; Jenkins, W.D.; Izadi, S.R.; Fogleman, A.J.; Steward, D.E.; Colditz, G.A.; Goodman, M.S. Rural–urban differences in cancer incidence in the US. Cancer Epidemiol. Biomark. Prev. 2018, 27, 1265–1274. [Google Scholar] [CrossRef] [PubMed]
- Andrilla, C.H.; Moore, T.E.; Wong, K.M.; Evans, D.V. Geographic location and CRC stage at diagnosis. J. Rural. Health 2020, 36, 316–325. [Google Scholar] [CrossRef]
- Choi, K.S.; Lee, H.Y.; Jun, J.K.; Shin, A.; Park, E.C. Adherence to follow-up after a positive fecal occult blood test in an organized colorectal cancer screening program in Korea, 2004–2008. J. Gastroenterol. Hepatol. 2012, 27, 1070–1077. [Google Scholar] [CrossRef]
- Constantin, A.; Cazacu, I.; Ciocârlan, M.; Constantinescu, C.; Baltog, G.; Balahura, C.; Doraş, I.; Filip, S.; Filip, G.; Panazan, I.; et al. Short Term Outcomes of Using Fecal Immunochemical Test for a Pilot Colorectal Cancer Screening Program. Chirurgia 2020, 115, 448–457. [Google Scholar] [CrossRef]
- Rejaibi, S.; Mchirgui, R.M.; Ben Mansour, N.; Barbouch, F.; Kaddour, N.; Mrabet, A.; Aounallah-Skhiri, H. Colorectal cancer mass screening, Tunisia 2019. Tunis Med. 2021, 99, 158–167. [Google Scholar]
- Laiyemo, A.O.; Doubeni, C.; Pinsky, P.F.; Doria-Rose, V.P.; Bresalier, R.; Lamerato, L.E.; Crawford, E.D.; Kral, J.G.; Corley, D.A.; Schoen, R.E.; et al. Race and colorectal cancer disparities: Health-care utilization vs different cancer susceptibilities. J. Natl. Cancer Inst. 2010, 102, 538–546. [Google Scholar] [CrossRef]
- Gupta, S.; Kalaivani, S.; Rajasundaram, A.; Ameta, G.K.; Oleiwi, A.K.; Dugbakie, B.N. AI-based colorectal cancer prediction: Reducing misclassification rates. Cancers 2022, 14, 2653. [Google Scholar] [CrossRef]
- Mitsala, A.; Tsalikidis, C.; Pitiakoudis, M.; Simopoulos, C.; Tsaroucha, A.K. Artificial Intelligence in Colorectal Cancer Screening, Diagnosis and Treatment. A New Era. Curr Oncol. 2021, 28, 1581–1607. [Google Scholar] [CrossRef]
- Cubiella, J.; Digby, J.; Rodríguez-Alonso, L.; Vega, P.; Salve, M.; Díaz-Ondina, M.; Strachan, J.A.; Mowat, C.; McDonald, P.J.; Carey, F.A.; et al. The fecal hemoglobin concentration, age and sex test score: Development and external validation of a simple prediction tool for colorectal cancer detection in symptomatic patients. Int. J. Cancer 2017, 140, 2201–2211. [Google Scholar] [CrossRef] [PubMed]
- Cubiella, J.; Vega, P.; Salve, M.; Díaz-Ondina, M.; Alves, M.T.; Quintero, E.; Álvarez-Sánchez, V.; Fernández-Bañares, F.; Boadas, J.; Campo, R.; et al. Development and external validation of a faecal immunochemical test-based prediction model for colorectal cancer detection in symptomatic patients. BMC Med 2016, 14, 128. [Google Scholar] [CrossRef]
- Yang, D.H. Risk-stratified colorectal cancer screening for optimal use of colonoscopy resources. Korean J. Intern. Med. 2021, 36, 839–841. [Google Scholar] [CrossRef]
- Brenne, S.S.; Ness-Jensen, E.; Laugsand, E.A. External validation of the colorectal cancer risk score LiFeCRC using food frequency questions in the HUNT study. Int. J. Colorectal. Dis. 2024, 39, 57. [Google Scholar] [CrossRef] [PubMed]
- Imperiale, T.F.; Monahan, P.O. Risk Stratification Strategies for Colorectal Cancer Screening: From Logistic Regression to Artificial Intelligence. Gastrointest. Endosc. Clin. N. Am. 2020, 30, 423–440. [Google Scholar] [CrossRef] [PubMed]
- Burnett-Hartman, A.N.; Lee, J.K.; Demb, J.; Gupta, S. An Update on Early-Onset Colorectal Cancer. Gastroenterology 2021, 160, 1041–1049. [Google Scholar] [CrossRef]
- McDowell, R.; Perrott, S.; Murchie, P.; Cardwell, C.; Hughes, C.; Samuel, L. Oral antibiotic use and early-onset colorectal cancer. Br. J. Cancer 2022, 126, 957–967. [Google Scholar] [CrossRef]
- Kirkoen, B.; Berstad, P.; Hoff, G.; Høie, M.; Dovran, A.; Sagstad, S.; Tangen, T.; Kalager, M.; Skovlund, E. Type and severity of mental illness and participation in CRC screening. Am. J. Prev. Med. 2023, 64, 76–85. [Google Scholar] [CrossRef]
- Bhatia, D.; Sutradhar, R.; Tinmouth, J.; Singh, S.; Lau, C.; Lipscombe, L.L. Influence of chronic comorbidities on CRC screening participation. Prev. Med. 2021, 147, 106530. [Google Scholar] [CrossRef]
- Goodwin, B.C.; Myers, L.; Ireland, M.J.; March, S.; Chambers, S.K. Barriers to home bowel cancer screening. Psychooncology 2021, 30, 1756–1764. [Google Scholar] [CrossRef]
- Law, P.J.; Timofeeva, M.; Fernandez-Rozadilla, C.; Broderick, P.; Studd, J.B.; Fernandez-Tajes, J.; Palles, C.; Farrington, S.M.; Svinti, V.; Ortega, J.; et al. Genome-wide association analysis implicates 20 loci in CRC susceptibility. Nat. Genet. 2019, 51, 76–87. [Google Scholar]
- Potter, J.D.; Slattery, M.L.; Bostick, R.M.; Gapstur, S.M. Colorectal cancer: Genes, environment and diet. Nat. Rev. Cancer 2014, 14, 65–76. [Google Scholar]
- Hull, H.R.; Sussman, J.; Starling, A.; Dunn, B.; Parkin, D.M.; Shapiro, J.A.; Cross, A.J.; Lin, J.S. External validation of predictive models in colorectal cancer. JCO Clin. Cancer Inform. 2020, 4, 1–9. [Google Scholar]
- Lin, D.; Wang, Y.; Wang, Y.; Li, F.; Li, X.; Yan, Y.; Li, Z.; Yuan, X. Volatile organic compounds in CRC detection: Potential and challenges. Gut 2021, 70, 873–882. [Google Scholar]
- Nartowt, B.; Hart, G.R.; Mohamed, A.; Barh, D.; Godfrey, W.; Raghavan, M.L. Feature selection in machine learning for cancer screening. Bioinformatics 2019, 35, 4127–4135. [Google Scholar]
- Kastrinos, F.; Kupfer, S.S.; Gupta, S. Colorectal Cancer Risk Assessment and Precision Approaches to Screening. Gastroenterology 2023, 164, 812–827. [Google Scholar] [CrossRef]
- Peng, Y.; Mei, J.; Jiang, S.; Cheng, Y.; Deng, Y.; Zhang, W.; Zheng, S. Microbiome signatures in CRC patients: Diagnostic and therapeutic implications. Gut Microbes 2018, 9, 563–576. [Google Scholar]
- Chen, H.; Zheng, X.; Zong, X.; Li, Z.; Li, N.; Hur, J.; Fritz, C.D.; Chapman, W.; Nickel, K.B.; Tipping, A.; et al. Metabolic syndrome and risk of early-onset colorectal cancer. Gut 2021, 70, 1147–1154. [Google Scholar] [CrossRef]
- Cubiella, J.; Vega, P.; Salve, M.; Diaz-Ondina, M.; Alves, M.T.; Quintero, E.; Perez Riquelme, F.; Carballo, F.; Ferrandez, A.; Bujanda, L.; et al. Clinical practice guidelines: Colorectal cancer screening. World J. Gastroenterol. 2017, 23, 5419–5440. [Google Scholar]
- Lee, J.K.; Liles, E.G.; Bent, S.; Levin, T.R.; Corley, D.A. Comparative effectiveness of screening strategies for colorectal cancer. Ann. Intern. Med. 2018, 169, 779–789. [Google Scholar]
- Lieberman, D.A.; Rex, D.K.; Winawer, S.J.; Giardiello, F.M.; Johnson, D.A.; Levin, T.R. Colonoscopy vs FIT for CRC screening: Long-term follow-up. N. Engl. J. Med. 2012, 366, 697–706. [Google Scholar]
- Gupta, S.; Weiss, J.; Burke, C.A.; Dominitz, J.A.; Green, B.; Hampel, H.; Lieu, C.H.; Robertson, D.J.; Shapiro, J.A.; Syngal, S. Patient navigation and CRC screening outcomes. JAMA Intern. Med. 2020, 180, 371–379. [Google Scholar]
Variable | Category | Completers (n = 1550) | Non-Completers (n = 1275) | p-Value |
---|---|---|---|---|
Age (years) | Mean ± SD | 62.7 ± 6.8 | 63.4 ± 7.0 | 0.054 |
FIT value (ng/mL) | Mean ± SD | 285 ± 790 | 260 ± 710 | 0.072 |
Sex | Male | 840 (54.2%) | 647 (50.8%) | 0.122 |
Female | 710 (45.8%) | 628 (49.2%) | ||
Environment | Rural | 801 (51.7%) | 710 (55.7%) | 0.143 |
Urban | 749 (48.3%) | 565 (44.3%) | ||
Any comorbidity | Yes | 1020 (65.8%) | 865 (67.8%) | 0.256 |
No | 530 (34.2%) | 410 (32.2%) | ||
Cardiac pathology | Yes | 489 (31.5%) | 430 (33.7%) | 0.194 |
No | 1061 (68.5%) | 845 (66.3%) | ||
Multiple comorbidities | Yes | 341 (22.0%) | 295 (23.1%) | 0.387 |
No | 1209 (78.0%) | 980 (76.9%) |
Variable | Description | Number | Percentage (%) |
---|---|---|---|
Sex | Male | 840 | 54.19% |
Female | 710 | 45.81% | |
County | Dolj | 575 | 37.10% |
Olt | 494 | 31.87% | |
Gorj | 204 | 13.16% | |
Mehedinți | 103 | 6.65% | |
Vâlcea | 174 | 11.23% | |
Residence | Urban | 749 | 48.32% |
Rural | 801 | 51.68% | |
Education | No ISCED | 5 | 0.32% |
Primary education (ISCED 1) | 91 | 5.87% | |
Secondary education (ISCED 2) | 301 | 19.42% | |
High school education (ISCED 3) | 810 | 52.26% | |
Postsecondary education (ISCED 4) | 133 | 8.58% | |
Higher education (ISCED 5–3 years university) | 125 | 8.06% | |
Higher education (ISCED 6–5 years university) | 68 | 4.39% | |
Higher education (ISCED 7—master/medicine) | 10 | 0.65% | |
Higher education (ISCED 8—PhD) | 7 | 0.45% | |
Comorbidities | None | 530 | 34.19% |
Cardiac pathology | 489 | 31.55% | |
Multiple comorbidities | 341 | 22.00% | |
Diabetes mellitus | 26 | 1.68% | |
Others | 164 | 10.58% | |
Antiplatelet therapy | Yes | 232 | 14.97% |
No | 1318 | 85.03% | |
Anticoagulants | Yes | 87 | 5.61% |
No | 1463 | 94.39% | |
Sedation | Yes | 1353 | 87.29% |
No | 197 | 12.71% | |
Cecal retroversion | With retroversion | 30 | 1.94% |
Without retroversion | 1449 | 93.48% | |
Not applicable | 71 | 4.58% | |
Rectal retroversion | With retroversion | 1487 | 95.94% |
Without retroversion | 63 | 4.06% | |
Recommendations | Return for histopathological result | 961 | 62.00% |
Return for FIT in 2 years | 446 | 28.78% | |
Scheduled endoscopic resection | 137 | 8.84% | |
Scheduled surgery | 3 | 0.19% | |
Scheduled oncology consultation | 3 | 0.19% | |
Lesions (anal canal) | Yes | 1281 | 82.65% |
No | 269 | 17.35% | |
Lesions (rectum) | Yes | 368 | 23.74% |
No | 1182 | 76.26% | |
Lesions (sigmoid-descending) | Yes | 875 | 56.45% |
No | 675 | 43.55% | |
Lesions (transverse) | Yes | 362 | 23.35% |
No | 1188 | 76.65% | |
Lesions (ascending) | Yes | 495 | 31.94% |
No | 1055 | 68.06% | |
Lesions (cecum) | Yes | 231 | 14.90% |
No | 1319 | 85.10% | |
Lesions (ileum) | Yes | 11 | 0.71% |
No | 622 | 40.13% | |
Not applicable | 917 | 59.16% |
Variable | Mean ± Standard Deviation | IQR (25–75%) | Min–Max |
---|---|---|---|
Sedation dose | 204.80 ± 104.60 | 170.00–260.00 | 0.00–560.00 |
Boston right | 2.33 ± 0.71 | 2.00–3.00 | 0.00–3.00 |
Boston transverse | 2.54 ± 0.64 | 2.00–3.00 | 0.00–3.00 |
Boston left | 2.71 ± 0.56 | 3.00–3.00 | 0.00–3.00 |
Boston total | 7.58 ± 1.64 | 7.00–9.00 | 0.00–9.00 |
FIT | 267.80 ± 779.13 | 32.58–168.97 | 20.03–9999.99 |
Age | 62.74 ± 6.80 | 57.00–68.00 | 50.00–74.00 |
Variable | Category | Anal Canal | Rectum | Sigmoid-Descending | Transverse | Ascending | Cecum | Ileum |
---|---|---|---|---|---|---|---|---|
Type of lesion | No lesions | 269 (17.35%) | 1182 (76.26%) | 675 (43.55%) | 1191 (76.84%) | 1055 (68.06%) | 1319 (85.10%) | 622 (40.13%) |
Polypoid lesion/tumoral mass | 346 (22.32%) | 666 (42.97%) | 298 (19.23%) | 401 (25.87%) | 170 (10.97%) | N/A | ||
Other lesions | 22 (1.42%) | 209 (13.48%) | 61 (3.94%) | 94 (6.06%) | 61 (3.94%) | 11 (0.71%) | ||
Mixed hemorrhoids | 363 (23.42%) | N/A | N/A | N/A | N/A | N/A | N/A | |
Internal hemorrhoids | 167 (10.77%) | N/A | N/A | N/A | N/A | N/A | N/A | |
External hemorrhoids | 751 (48.45%) | N/A | N/A | N/A | N/A | N/A | N/A | |
Diameter | 0–9 mm | N/A | 200 (12.90%) | 449 (28.97%) | 215 (13.87%) | 272 (17.55%) | 134 (8.65%) | 1 (0.06%) |
10–19 mm | N/A | 36 (2.32%) | 102 (6.58%) | 34 (2.19%) | 54 (3.48%) | 17 (1.10%) | 1 (0.06%) | |
20–29 mm | N/A | 14 (0.90%) | 42 (2.71%) | 6 (0.39%) | 15 (0.97%) | 6 (0.39%) | N/A | |
≥50 mm | N/A | 2 (0.13%) | 18 (1.16%) | 3 (0.19%) | 5 (0.32%) | 2 (0.13%) | N/A | |
Biopsy | N/A | 46 (2.97%) | 65 (4.19%) | 26 (1.68%) | 40 (2.58%) | 22 (1.42%) | N/A | |
Resection type | No resection | N/A | 1319 (85.10%) | 1027 (66.26%) | 1344 (86.71%) | 1248 (80.52%) | 1432 (92.39%) | 622 (40.13%) |
Cold snare resection | N/A | 77 (4.97%) | 217 (14.00%) | 123 (7.94%) | 177 (11.42%) | 50 (3.23%) | N/A | |
Cold biopsy forceps resection | N/A | 25 (1.61%) | 40 (2.58%) | 21 (1.35%) | 33 (2.13%) | 17 (1.10%) | N/A | |
Hot snare resection | N/A | 76 (4.90%) | 202 (13.03%) | 43 (2.77%) | 63 (4.06%) | 25 (1.61%) | N/A | |
Biopsy | N/A | 53 (3.42%) | 64 (4.13%) | 19 (1.23%) | 29 (1.87%) | 26 (1.68%) | 11 (0.72%) (0.71%) | |
Diagnosis | No diagnosis | N/A | 1244 (80.26%) | 850 (54.84%) | 1257 (81.10%) | 1148 (74.06%) | 1357 (87.55%) | 622 (40.13%) |
Conventional adenoma * | N/A | 75 (4.84%) | 202 (13.03%) | 88 (5.68%) | 113 (7.29%) | 56 (3.61%) | N/A | |
Hyperplastic polyp | N/A | 47 (3.03%) | 77 (4.97%) | 29 (1.87%) | 37 (2.39%) | 23 (1.48%) | N/A | |
Sessile serrated lesion | N/A | 2 (0.13%) | 16 (1.03%) | 6 (0.39%) | 8 (0.52%) | 1 (0.06%) | N/A | |
Traditional serrated adenoma | N/A | 123 (7.94%) | 315 (20.32%) | 135 (8.71%) | 192 (12.39%) | 79 (5.10%) | N/A | |
Carcinoma † | N/A | 53 (3.42%) | 73 (4.71%) | 30 (1.93%) | 39 (2.51%) | 25 (1.61%) | N/A | |
Inflammatory polyp/colitis | N/A | 6 (0.39%) | 17 (1.10%) | 5 (0.32%) | 13 (0.84%) | 9 (0.58%) | 11 (0.72%) | |
Conventional adenoma * | N/A | 75 (4.84%) | 202 (13.03%) | 88 (5.68%) | 113 (7.29%) | 56 (3.61%) | N/A | |
Hyperplastic polyp | N/A | 47 (3.03%) | 77 (4.97%) | 29 (1.87%) | 37 (2.39%) | 23 (1.48%) | N/A |
Variable | Cluster 0 (N, %)/ Mean ± Std Dev | Cluster 1 (N, %)/ Mean ± Std Dev | Cluster 2 (N, %)/ Mean ± Std Dev | Cluster 3 (N, %)/ Mean ± Std Dev | Cluster 4 (N, %)/ Mean ± Std Dev |
---|---|---|---|---|---|
Age | 64.49 ± 6.14 | 58.07 ± 4.52 | 58.48 ± 4.79 | 69.63 ± 2.84 | 69.31 ± 2.95 |
FIT | 3425.61 ± 2301.57 | 158.18 ± 249.37 | 138.59 ± 228.74 | 158.50 ± 240.85 | 179.98 ± 263.31 |
Comorbidities | |||||
Other | 4 (7.27%) | 28 (11.57%) | 74 (10.93%) | 44 (10.40%) | 14 (9.15%) |
Multiple comorbidities | 14 (25.45%) | 27 (11.16%) | 89 (13.15%) | 147 (34.75%) | 64 (41.83%) |
Diabetes mellitus | 1 (1.82%) | 6 (2.48%) | 13 (1.92%) | 3 (0.71%) | 3 (1.96%) |
No comorbidities | 15 (27.27%) | 105 (43.39%) | 319 (47.12%) | 70 (16.55%) | 21 (13.73%) |
Cardiac pathology | 21 (38.18%) | 76 (31.40%) | 182 (26.88%) | 159 (37.59%) | 51 (33.33%) |
Sex | |||||
Female | 8 (14.55%) | 107 (44.21%) | 353 (52.14%) | 194 (45.86%) | 48 (31.37%) |
Male | 47 (85.45%) | 135 (55.79%) | 324 (47.86%) | 229 (54.14%) | 105 (68.63%) |
Environment | |||||
Rural | 20 (36.36%) | 119 (49.17%) | 397 (58.64%) | 200 (47.28%) | 65 (42.48%) |
Urban | 35 (63.64%) | 123 (50.83%) | 280 (41.36%) | 223 (52.72%) | 88 (57.52%) |
Education | |||||
Primary school | 0 (0.00%) | 8 (3.31%) | 44 (6.50%) | 33 (7.80%) | 6 (3.92%) |
Gymnasium | 10 (18.18%) | 36 (14.88%) | 115 (16.99%) | 110 (26.00%) | 30 (19.61%) |
High School | 30 (54.55%) | 136 (56.20%) | 368 (54.36%) | 191 (45.15%) | 85 (55.56%) |
Postsecondary studies | 3 (5.45%) | 26 (10.74%) | 47 (6.94%) | 40 (9.46%) | 17 (11.11%) |
Higher education (bachelor’s) | 7 (12.73%) | 27 (11.16%) | 61 (9.01%) | 22 (5.20%) | 8 (5.23%) |
Higher education (master’s/doctorate) | 5 (9.09%) | 8 (3.30%) | 42 (6.20%) | 23 (5.45%) | 6 (3.92%) |
Diagnosis | |||||
Serrated adenoma | 8 (14.55%) | 242 (100.00%) | 0 (0.00%) | 0 (0.00%) | 153 (100.00%) |
Tubular adenoma | 5 (9.09%) | 0 (0.00%) | 113 (16.69%) | 67 (15.84%) | 0 (0.00%) |
Normal aspect | 7 (12.73%) | 0 (0.00%) | 363 (53.62%) | 202 (47.75%) | 0 (0.00%) |
Inflammatory disease | 1 (1.82%) | 0 (0.00%) | 21 (3.10%) | 8 (1.89%) | 0 (0.00%) |
Carcinoma | 27 (49.09%) | 0 (0.00%) | 34 (5.02%) | 47 (11.11%) | 0 (0.00%) |
Adenomatous polyp | 3 (5.45%) | 0 (0.00%) | 60 (8.86%) | 37 (8.75%) | 0 (0.00%) |
Hyperplastic polyp | 2 (3.64%) | 0 (0.00%) | 74 (10.93%) | 49 (11.58%) | 0 (0.00%) |
Malignant polyp | 1 (1.82%) | 0 (0.00%) | 2 (0.30%) | 0 (0.00%) | 0 (0.00%) |
Serrated polyp | 1 (1.82%) | 0 (0.00%) | 10 (1.48%) | 13 (3.07%) | 0 (0.00%) |
Malignant lesions | |||||
Malignant lesions (yes) | 28 (50.91%) | 0 (0.00%) | 36 (5.32%) | 47 (11.11%) | 0 (0.00%) |
Malignant lesions (no) | 27 (49.09%) | 242 (100.00%) | 641 (94.68%) | 376 (88.89%) | 153 (100.00%) |
Factor Group | Criteria | Score | Cluster Correlation |
---|---|---|---|
1. Age + FIT | <60 years, FIT < 200 ng/mL | 1 | Clusters 1 and 4: Low FIT, 0% malignancy; younger age reduces risk. |
<60 years, FIT 200–999 ng/mL | 2 | Cluster 2: Moderate FIT, 5.32% malignancy. | |
<60 years, FIT 1000–1999 ng/mL | 3 | Elevated FIT, approaching Cluster 0’s risk profile, indicating significant malignancy potential. | |
<60 years, FIT ≥ 2000 ng/mL | 4 | Very high FIT, similar to Cluster 0, despite younger age, indicating high malignancy risk. | |
≥60 years, FIT < 200 ng/mL | 2 | Cluster 4: Older age with low FIT still poses inherent risk due to age. | |
≥60 years, FIT 200–999 ng/mL | 3 | Cluster 3: Older age with moderate FIT correlates with 11.11% malignancy. | |
≥60 years, FIT 1000–1999 ng/mL | 4 | High FIT in older individuals, indicating significant malignancy risk, similar to Cluster 0 characteristics. | |
≥60 years, FIT ≥ 2000 ng/mL | 5 | Cluster 0: Extreme FIT and older age, associated with highest malignancy prevalence (50.91%). | |
2. Education + environment | Higher education (ISCED 5+) and urban residence | 0 | Clusters 1 and 4: Higher education and urban living correlate with better screening adherence and 0% malignancy. |
Secondary/postsecondary education (ISCED 3–4) and urban residence | 1 | Clusters 2 and 3: Moderate education and urban settings are associated with intermediate risk and malignancy rates. | |
Primary/lower education (ISCED 1–2) and rural residence | 2 | Clusters 0, 2, and 3: Lower education and rural living correlate with higher malignancy rates due to delayed diagnosis and limited access. | |
3. Comorbidities | No comorbidities | 0 | Clusters 1 and 2: High proportion of healthy individuals with low or no malignancy risk. |
1–2 comorbidities | 1 | Cluster 3: Presence of one to two comorbidities correlates with moderate increase in malignancy risk (11.11%). | |
≥3 comorbidities | 2 | Clusters 0 and 3: Multiple comorbidities strongly associated with high malignancy rates (50.91% and 11.11%, respectively). | |
4. Antiplatelet/anticoagulant use | No use | 0 | Clusters 1 and 2: Minimal procedural risk, lower malignancy prevalence. |
Antiplatelet agents only (e.g., Aspirin, Clopidogrel) | 1 | Clusters 0 and 3: Associated with cardiovascular conditions, slightly increased procedural risk. | |
Anticoagulants only or combined use | 2 | Clusters 0 and 3: Severe cardiovascular conditions, significantly higher procedural risk and malignancy prevalence. | |
5. Sex (optional) | Female | 0 | Clusters 1 and 2: Higher proportion of females correlates with lower malignancy rates. |
Male | 1 | Cluster 0: Predominantly male (85.45%) with highest malignancy rate (50.91%). |
Factor | Criteria | Score |
---|---|---|
FIT | <200 ng/mL | 0 |
200–999 ng/mL | 1 | |
1000–1999 ng/mL | 2 | |
≥2000 ng/mL | 3 | |
Age | <60 years | 0 |
60–69 years | 1 | |
≥70 years | 2 | |
Comorbidities | None | 0 |
1–2 comorbidities | 1 | |
≥3 comorbidities | 2 |
Threshold | Colonoscopies | Cancers Detected | Detection cum.% | Colonoscopy cum.% | Direct Cost (EUR) | Cost/Cancer (EUR) |
---|---|---|---|---|---|---|
≥12 | 3 | 3 | 2.7% | 0.2% | 1590 | 530 |
≥11 | 7 | 7 | 6.3% | 0.5% | 3710 | 530 |
≥10 | 15 | 14 | 12.6% | 1.0% | 7950 | 568 |
≥9 | 25 | 21 | 18.9% | 1.6% | 13,250 | 631 |
≥8 | 46 | 38 | 34.2% | 3.0% | 24,380 | 642 |
≥7 | 82 | 62 | 55.9% | 5.3% | 43,460 | 701 |
≥6 | 172 | 83 | 74.7% | 11.1% | 91,160 | 1098 |
≥5 | 350 | 96 | 86.5% | 22.6% | 185,500 | 1933 |
≥4 | 647 | 105 | 94.6% | 41.7% | 343,910 | 3276 |
≥3 | 996 | 111 | 100% | 64.3% | 527,880 | 4757 |
≥2 | 1300 | 111 | 100% | 83.9% | 689,000 | 6207 |
≥1 | 1468 | 111 | 100% | 94.7% | 777,040 | 7000 |
≥0 | 1550 | 111 | 100% | 100% | 821,500 | 7402 |
Threshold | Colonoscopies | Cancers Detected | Detection cum.% | Colonoscopy cum.% | Direct Cost (EUR) | Cost/Cancer (EUR) |
---|---|---|---|---|---|---|
≥7 | 5 | 3 | 2.7% | 0.3% | 2650 | 883 |
≥6 | 18 | 10 | 9.0% | 1.2% | 9540 | 954 |
≥5 | 59 | 19 | 17.1% | 3.8% | 31,270 | 1646 |
≥4 | 232 | 46 | 41.4% | 14.9% | 122,960 | 2673 |
≥3 | 557 | 75 | 67.6% | 35.9% | 295,210 | 3936 |
≥2 | 970 | 90 | 81.1% | 62.6% | 514,100 | 5712 |
≥1 | 1317 | 100 | 90.1% | 85.0% | 698,010 | 6980 |
≥0 | 1550 | 111 | 100% | 100% | 821,500 | 7402 |
FIT Threshold (ng Hb/g) | Colonoscopies | Cancers Detected | Detection cum.% | Colonoscopy cum.% | Direct Cost (EUR) | Cost/Cancer (EUR) |
---|---|---|---|---|---|---|
≥2000 | 38 | 18 | 16.2% | 2.5% | 20,140 | 1119 |
≥1000 | 83 | 36 | 32.4% | 5.4% | 43,990 | 1222 |
≥200 | 357 | 76 | 63.1% | 23.0% | 189,210 | 2489 |
≥50 | 889 | 98 | 88.3% | 57.4% | 471,170 | 4808 |
Scheme | Colonoscopies | Direct Cost (k EUR) | Cancers Detected | Cost Per Cancer (EUR) | Cancers Per Scope |
---|---|---|---|---|---|
Complex ≥ 7 | 82 | 43.5 | 62 | 701 | 0.76 |
Complex ≥ 5 | 350 | 185.5 | 96 | 1933 | 0.27 |
Simplified ≥ 5 | 59 | 31.3 | 19 | 1645 | 0.32 |
Simplified ≥ 3 | 557 | 295.2 | 75 | 3936 | 0.13 |
FIT ≥ 1000 ng | 83 | 44.0 | 36 | 1222 | 0.43 |
FIT ≥ 200 ng | 357 | 189.2 | 76 | 2489 | 0.21 |
Universal colonoscopy | 1550 | 821.5 | 111 | 7402 | 0.07 |
Model | Variables | Reported AUC-ROC for CRC | Comment |
---|---|---|---|
FAST—fecal hemoglobin + age + sex (symptomatic primary care) [31] | 3 | 0.88 in derivation and 0.91 in external validation | Simple to calculate, but >18% of patients remain at “intermediate risk” and still require colonoscopy. |
COLONPREDICT (symptomatic secondary care) [32] | 11 (clinical + lab) | 0.92 in both derivation and validation cohorts | Very accurate, but relies on serum CEA, calprotectin, and detailed symptom inventory. |
Deep learning score of Yang (asymptomatic screenees) [33] | 26 routine lab/clinical variables | 0.76 vs. logistic model 0.72 | Improvement modest; complexity limits uptake. |
LiFeCRC lifestyle score (average-risk population) [34] | Age + 11 lifestyle items | 0.77 after external validation in HUNT study | Good for prevention counseling; not intended for triage of FIT-positive patients. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bocioagă, A.-G.; Oancea, C.-N.; Rădulescu, D.; Ungureanu, B.S.; Iovănescu, V.F.; Florescu, D.N.; Doica, I.-P.; Sacerdoțianu, V.-M.; Streba, L.; Ciurea, T.; et al. Neural Network-Based Composite Risk Scoring for Stratification of Fecal Immunochemical Test-Positive Patients in Colorectal Cancer Screening: Findings from South-West Oltenia. Cancers 2025, 17, 1868. https://doi.org/10.3390/cancers17111868
Bocioagă A-G, Oancea C-N, Rădulescu D, Ungureanu BS, Iovănescu VF, Florescu DN, Doica I-P, Sacerdoțianu V-M, Streba L, Ciurea T, et al. Neural Network-Based Composite Risk Scoring for Stratification of Fecal Immunochemical Test-Positive Patients in Colorectal Cancer Screening: Findings from South-West Oltenia. Cancers. 2025; 17(11):1868. https://doi.org/10.3390/cancers17111868
Chicago/Turabian StyleBocioagă, Alexandra-Georgiana, Carmen-Nicoleta Oancea, Dumitru Rădulescu, Bogdan Silviu Ungureanu, Vlad Florin Iovănescu, Dan Nicolae Florescu, Irina-Paula Doica, Victor-Mihai Sacerdoțianu, Liliana Streba, Tudorel Ciurea, and et al. 2025. "Neural Network-Based Composite Risk Scoring for Stratification of Fecal Immunochemical Test-Positive Patients in Colorectal Cancer Screening: Findings from South-West Oltenia" Cancers 17, no. 11: 1868. https://doi.org/10.3390/cancers17111868
APA StyleBocioagă, A.-G., Oancea, C.-N., Rădulescu, D., Ungureanu, B. S., Iovănescu, V. F., Florescu, D. N., Doica, I.-P., Sacerdoțianu, V.-M., Streba, L., Ciurea, T., & Gheonea, D.-I. (2025). Neural Network-Based Composite Risk Scoring for Stratification of Fecal Immunochemical Test-Positive Patients in Colorectal Cancer Screening: Findings from South-West Oltenia. Cancers, 17(11), 1868. https://doi.org/10.3390/cancers17111868