A Critical Review of Immunomodulation in the Management of Inoperable Stage III NSCLC
Simple Summary
Abstract
1. Introduction
2. The Current Standard-of-Care Treatment of Inoperable Stage III NSCLC
3. Beyond the PACIFIC Regimen: Other Explored Approaches to Improve Outcomes
3.1. Definitive Chemoradiation Therapy Followed by Immune Checkpoint Inhibitor Monotherapy
3.2. Definitive Chemoradiation Followed by Dual Immunomodulator Consolidation
3.3. Immunotherapy Administered Concurrently with cCRT Followed by Consolidation Checkpoint Blockade
3.4. Induction Immune Checkpoint Blockade Followed by CCRT and Consolidation Checkpoint Blockade Strategies
3.5. Agents That Potentiate Immunotherapy Response, Ongoing Trials of Potentiating Agents
4. Current Challenges and Future Directions
4.1. Sequencing of Treatment
4.2. Duration of Consolidation
4.3. Tolerability
4.4. Dose and Fraction of Radiation Therapy
4.5. Biomarker Selection
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gupta, A.; Probst, H.C.; Vuong, V.; Landshammer, A.; Muth, S.; Yagita, H.; Schwendener, R.; Pruschy, M.; Knuth, A.; van den Broek, M. Radiotherapy promotes tumor-specific effector CD8+ T cells via dendritic cell activation. J. Immunol. 2012, 189, 558–566. [Google Scholar] [CrossRef] [PubMed]
- Demaria, S.; Guha, C.; Schoenfeld, J.; Morris, Z.; Monjazeb, A.; Sikora, A.; Crittenden, M.; Shiao, S.; Khleif, S.; Gupta, S.; et al. Radiation dose and fraction in immunotherapy: One-size regimen does not fit all settings, so how does one choose? J. Immunother. Cancer 2021, 9, e002038. [Google Scholar] [CrossRef] [PubMed]
- Kachikwu, E.L.; Iwamoto, K.S.; Liao, Y.P.; DeMarco, J.J.; Agazaryan, N.; Economou, J.S.; McBride, W.H.; Schaue, D. Radiation enhances regulatory T cell representation. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 1128–1135. [Google Scholar] [CrossRef] [PubMed]
- Vendetti, F.P.; Karukonda, P.; Clump, D.A.; Teo, T.; Lalonde, R.; Nugent, K.; Ballew, M.; Kiesel, B.F.; Beumer, J.H.; Sarkar, S.N.; et al. ATR kinase inhibitor AZD6738 potentiates CD8+ T cell-dependent antitumor activity following radiation. J. Clin. Investig. 2018, 128, 3926–3940. [Google Scholar] [CrossRef]
- Dovedi, S.J.; Adlard, A.L.; Lipowska-Bhalla, G.; McKenna, C.; Jones, S.; Cheadle, E.J.; Stratford, I.J.; Poon, E.; Morrow, M.; Stewart, R.; et al. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res. 2014, 74, 5458–5468. [Google Scholar] [CrossRef]
- Deng, L.; Liang, H.; Burnette, B.; Beckett, M.; Darga, T.; Weichselbaum, R.R.; Fu, Y.X. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J. Clin. Investig. 2014, 124, 687–695. [Google Scholar] [CrossRef]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Yokoi, T.; Chiappori, A.; Lee, K.H.; de Wit, M. Durvalumab after chemoradiotherapy in stage III non–small-cell lung cancer. N. Engl. J. Med. 2017, 377, 1919–1929. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, T.; Huang, Y.; Li, W.; Zhao, J.; Yang, Y.; Li, C.; Wang, L.; Bi, N. Real-world safety and efficacy of consolidation durvalumab after chemoradiation therapy for stage III non-small cell lung cancer: A systematic review and meta-analysis. Int. J. Radiat. Oncol. Biol. Phys. 2022, 112, 1154–1164. [Google Scholar] [CrossRef]
- Filippi, A.; Bar, J.; Chouaid, C.; Christoph, D.; Field, J.; Fietkau, R.; Garassino, M.; Garrido, P.; Haakensen, V.; Kao, S. Real-world outcomes with durvalumab after chemoradiotherapy in patients with unresectable stage III NSCLC: Interim analysis of overall survival from PACIFIC-R. ESMO Open 2024, 9, 103464. [Google Scholar] [CrossRef]
- Girard, N.; Bar, J.; Garrido, P.; Garassino, M.C.; McDonald, F.; Mornex, F.; Filippi, A.R.; Smit, H.J.; Peters, S.; Field, J.K. Treatment characteristics and real-world progression-free survival in patients with unresectable stage III NSCLC who received durvalumab after chemoradiotherapy: Findings from the PACIFIC-R study. J. Thorac. Oncol. 2023, 18, 181–193. [Google Scholar] [CrossRef]
- Gómez Rueda, A.; Taus, Á.; Álvarez Álvarez, R.; Bernabé-Caro, R.; Chara, L.; López-Brea, M.; Vilà, L.; Sala González, M.Á.; del Barrio Díaz Aldagalán, A.; Esteban Herrera, B. The S-REAL study: Spanish real-world data on unresectable stage III NSCLC patients treated with durvalumab after chemoradiotherapy. Clin. Transl. Oncol. 2024, 26, 1779–1789. [Google Scholar] [CrossRef] [PubMed]
- Abe, T.; Saito, S.; Iino, M.; Aoshika, T.; Ryuno, Y.; Ohta, T.; Igari, M.; Hirai, R.; Kumazaki, Y.; Miura, Y. Effect of durvalumab on local control after concurrent chemoradiotherapy for locally advanced non-small cell lung cancer in comparison with chemoradiotherapy alone. Thorac. Cancer 2021, 12, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Bruni, A.; Scotti, V.; Borghetti, P.; Vagge, S.; Cozzi, S.; D’Angelo, E.; Giaj Levra, N.; Fozza, A.; Taraborrelli, M.; Piperno, G. A real-world, multicenter, observational retrospective study of durvalumab after concomitant or sequential chemoradiation for unresectable stage III non-small cell lung cancer. Front. Oncol. 2021, 11, 744956. [Google Scholar]
- Kishi, N.; Matsuo, Y.; Shintani, T.; Ogura, M.; Mitsuyoshi, T.; Araki, N.; Fujii, K.; Okumura, S.; Nakamatsu, K.; Kishi, T. Recurrence patterns and progression-free survival after chemoradiotherapy with or without consolidation durvalumab for stage III non-small cell lung cancer. J. Radiat. Res. 2023, 64, 142–153. [Google Scholar] [CrossRef]
- Preti, B.T.; Sanatani, M.S.; Breadner, D.; Lakkunarajah, S.; Scott, C.; Esmonde-White, C.; McArthur, E.; Rodrigues, G.; Chaudhary, M.; Mutsaers, A. Real-world analysis of durvalumab after chemoradiation in stage III non-small-cell lung cancer. Curr. Oncol. 2023, 30, 7713–7721. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, D.; Yong, C.; Frankart, A.; Brannman, L.; Mulrooney, T.; Robert, N.; Aguilar, K.M.; Ndukum, J.; Cotarla, I. Durvalumab real-world treatment patterns and outcomes in patients with stage III non-small-cell lung cancer treated in a US community setting. Future Oncol. 2023, 19, 1905–1916. [Google Scholar] [CrossRef]
- Park, C.-K.; Oh, H.-J.; Kim, Y.-C.; Kim, Y.-H.; Ahn, S.-J.; Jeong, W.G.; Lee, J.Y.; Lee, J.C.; Choi, C.M.; Ji, W. Korean real-world data on patients with unresectable stage III NSCLC treated with durvalumab after chemoradiotherapy: PACIFIC-KR. J. Thorac. Oncol. 2023, 18, 1042–1054. [Google Scholar] [CrossRef]
- Zehentmayr, F.; Feurstein, P.; Ruznic, E.; Langer, B.; Grambozov, B.; Klebermass, M.; Hochreiter, A.; Purevdorj, A.; Gruber, G.; Minasch, D. Durvalumab Prolongs Overall Survival, Whereas Radiation Dose Escalation> 66 Gy Might Improve Long-Term Local Control in Unresectable NSCLC Stage III: Updated Analysis of the Austrian Radio-Oncological Lung Cancer Study Association Registry (ALLSTAR). Cancers 2025, 17, 1443. [Google Scholar] [CrossRef]
- Spigel, D.R. Five-Year Survival Outcomes From the PACIFIC Trial: Durvalumab After Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2022, 40, 1301–1311. [Google Scholar] [CrossRef]
- Durm, G.A.; Jabbour, S.K.; Althouse, S.K.; Liu, Z.; Sadiq, A.A.; Zon, R.T.; Jalal, S.I.; Kloecker, G.H.; Williamson, M.J.; Reckamp, K.L. A phase 2 trial of consolidation pembrolizumab following concurrent chemoradiation for patients with unresectable stage III non–small cell lung cancer: Hoosier Cancer Research Network LUN 14-179. Cancer 2020, 126, 4353–4361. [Google Scholar] [CrossRef]
- Zhou, Q.; Chen, M.; Jiang, O.; Pan, Y.; Hu, D.; Lin, Q.; Wu, G.; Cui, J.; Chang, J.; Cheng, Y. Sugemalimab versus placebo after concurrent or sequential chemoradiotherapy in patients with locally advanced, unresectable, stage III non-small-cell lung cancer in China (GEMSTONE-301): Interim results of a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 2022, 23, 209–219. [Google Scholar] [PubMed]
- Garassino, M.C.; Mazieres, J.; Reck, M.; Chouaid, C.; Bischoff, H.; Reinmuth, N.; Cove-Smith, L.; Mansy, T.; Cortinovis, D.; Migliorino, M.R. Durvalumab after sequential chemoradiotherapy in stage III, unresectable NSCLC: The phase 2 PACIFIC-6 trial. J. Thorac. Oncol. 2022, 17, 1415–1427. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wu, L.; Bi, N.; Cil, T.; Ge, H.; Zhu, Z.; Wang, C.; Zhang, W.; Lv, D.; Sun, J. LBA6 PACIFIC-5: A phase III study of consolidation durvalumab (D) in patients (pts) with unresectable stage III NSCLC and no progression after concurrent or sequential chemoradiotherapy (cCRT or sCRT). Ann. Oncol. 2024, 35, S1624. [Google Scholar] [CrossRef]
- Durm, G.A.; Mamdani, H.; Althouse, S.K.; Jabbour, S.K.; Ganti, A.K.; Jalal, S.I.; Chesney, J.A.; Naidoo, J.; Hrinczenko, B.; Fidler, M.J.J. Consolidation nivolumab plus ipilimumab or nivolumab alone following concurrent chemoradiation for patients with unresectable stage III non-small cell lung cancer: BTCRC LUN 16-081. J. Clin. Oncol. 2022, 40, 8509. [Google Scholar] [CrossRef]
- Herbst, R.S.; Majem, M.; Barlesi, F.; Carcereny, E.; Chu, Q.; Monnet, I.; Sanchez-Hernandez, A.; Dakhil, S.; Camidge, D.R.; Winzer, L.; et al. COAST: An Open-Label, Phase II, Multidrug Platform Study of Durvalumab Alone or in Combination With Oleclumab or Monalizumab in Patients With Unresectable, Stage III Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2022, 40, 3383–3393. [Google Scholar] [CrossRef]
- Barlesi, F.; Cho, B.C.; Goldberg, S.B.; Yoh, K.; Zimmer Gelatti, A.C.; Mann, H.; Gopinathan, A.; Bielecka, Z.F.; Newton, M.; Aggarwal, C. PACIFIC-9: Phase III trial of durvalumab+ oleclumab or monalizumab in unresectable stage III non-small-cell lung cancer. Future Oncol. 2024, 20, 2137–2147. [Google Scholar] [CrossRef]
- Dziadziuszko, R.; Ahn, M.; Kelly, K.; Popat, S.; Wakelee, H.; Baird, A.; Rooney, I.; Afshari, M.; Yao, E.; Zhang, Z. 1190TiP SKYSCRAPER-03: Phase III, open-label randomised study of atezolizumab+ tiragolumab vs durvalumab in patients with locally advanced, unresectable, stage III non-small cell lung cancer (NSCLC) who have not progressed after platinum-based concurrent chemoradiation (cCRT). Ann. Oncol. 2021, 32, S947–S948. [Google Scholar]
- Chen, D.; Menon, H.; Verma, V.; Guo, C.; Ramapriyan, R.; Barsoumian, H.; Younes, A.; Hu, Y.; Wasley, M.; Cortez, M.A. Response and outcomes after anti-CTLA4 versus anti-PD1 combined with stereotactic body radiation therapy for metastatic non-small cell lung cancer: Retrospective analysis of two single-institution prospective trials. J. Immunother. Cancer 2020, 8, e000492. [Google Scholar] [CrossRef]
- Pitroda, S.P.; Chmura, S.J.; Weichselbaum, R.R. Integration of radiotherapy and immunotherapy for treatment of oligometastases. Lancet Oncol. 2019, 20, e434–e442. [Google Scholar] [CrossRef]
- Arina, A.; Beckett, M.; Fernandez, C.; Zheng, W.; Pitroda, S.; Chmura, S.J.; Luke, J.J.; Forde, M.; Hou, Y.; Burnette, B. Tumor-reprogrammed resident T cells resist radiation to control tumors. Nat. Commun. 2019, 10, 3959. [Google Scholar] [CrossRef]
- Planchard, D.; Popat, S.; Kerr, K.; Novello, S.; Smit, E.; Faivre-Finn, C.; Mok, T.; Reck, M.; Van Schil, P.; Hellmann, M. Correction to: “Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up”. Ann. Oncol. 2019, 30, 863–870. [Google Scholar] [CrossRef] [PubMed]
- Bradley, J.; Sugawara, S.; Lee, K.; Ostoros, G.; Demirkazik, A.; Zemanova, M.; Sriuranpong, V.; Gelatti, A.; Menezes, J.; Zurawski, B. LBA1 Durvalumab in combination with chemoradiotherapy for patients with unresectable stage III NSCLC: Final results from PACIFIC-2. ESMO Open 2024, 9, 102986. [Google Scholar] [CrossRef]
- Peters, S.; Felip, E.; Dafni, U.; Tufman, A.; Guckenberger, M.; Álvarez, R.; Nadal, E.; Becker, A.; Vees, H.; Pless, M. Progression-free and overall survival for concurrent nivolumab with standard concurrent chemoradiotherapy in locally advanced stage IIIA-B NSCLC: Results from the European thoracic oncology platform NICOLAS phase II trial (European thoracic oncology platform 6–14). J. Thorac. Oncol. 2021, 16, 278–288. [Google Scholar] [PubMed]
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F. Pembrolizumab plus chemotherapy in metastatic non–small-cell lung cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef]
- Peters, S.; Tan, D.; Gerber, D.; Urbanic, J.; Ramalingam, S.; Yu, J.; Xing, L.; Rittmeyer, A.; Ciuleanu, T.; Menezes, J. 65O CheckMate 73L: Phase III study comparing nivolumab (N)+ concurrent chemoradiotherapy (CCRT) followed by N±ipilimumab (I) v CCRT followed by durvalumab (D) for previously untreated, locally advanced stage (stg) III NSCLC. Immuno-Oncol. Technol. 2024, 24, 100808. [Google Scholar] [CrossRef]
- Charalambous, K.; Shaveridia, N.; Offin, M.; Gelblum, D.; Santini, F.; Boe, L.; Berger, M.; Shah, R.H.; Gomez, D.; Chaft, J. Exploratory analysis of CTDNA and imaging response in Phase I/II chorus study of canakinumab with chemoradiation and durvalumab for NSCLC. J. Liq. Biopsy 2024, 5, 100232. [Google Scholar] [CrossRef]
- Jabbour, S.K.; Lee, K.H.; Frost, N.; Breder, V.; Kowalski, D.M.; Pollock, T.; Levchenko, E.; Reguart, N.; Martinez-Marti, A.; Houghton, B. Pembrolizumab plus concurrent chemoradiation therapy in patients with unresectable, locally advanced, stage III non–small cell lung cancer: The phase 2 KEYNOTE-799 nonrandomized trial. JAMA Oncol. 2021, 7, 1351–1359. [Google Scholar] [CrossRef]
- Reck, M.; Lee, K.; Frost, N.; Breder, V.; Kowalski, D.; Levchenko, E.; Reguart, N.; Martinez-Marti, A.; Houghton, B.; Paoli, J. 1860: Pembrolizumab (pembro) plus concurrent chemoradiation therapy (cCRT) in unresectable locally advanced non-small cell lung cancer (NSCLC): Final analysis of KEYNOTE-799. J. Thorac. Oncol. 2025, 20, S124–S125. [Google Scholar] [CrossRef]
- Jabbour, S.K.; Cho, B.C.; Bria, E.; Kato, T.; Bhosle, J.; Gainor, J.F.; Reguart, N.; Wang, L.; Morgensztern, D.; Shentu, Y. Rationale and design of the phase III KEYLYNK-012 study of pembrolizumab and concurrent chemoradiotherapy followed by pembrolizumab with or without olaparib for stage III non-small-cell lung cancer. Clin. Lung Cancer 2022, 23, e342–e346. [Google Scholar] [CrossRef]
- Falcke, S.E.; Rühle, P.F.; Deloch, L.; Fietkau, R.; Frey, B.; Gaipl, U.S. Clinically relevant radiation exposure differentially impacts forms of cell death in human cells of the innate and adaptive immune system. Int. J. Mol. Sci. 2018, 19, 3574. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, L.; Kalhor, N.; Carter, B.W.; Altan, M.; Blumenschein, G.; Byers, L.A.; Fossella, F.; Gibbons, D.L.; Kurie, J.M. Final efficacy outcomes of atezolizumab with chemoradiation for unresectable NSCLC: The phase II DETERRED trial. Lung Cancer 2022, 174, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Vaes, R.D.; Reynders, K.; Sprooten, J.; Nevola, K.T.; Rouschop, K.M.; Vooijs, M.; Garg, A.D.; Lambrecht, M.; Hendriks, L.E.; Rucevic, M. Identification of potential prognostic and predictive immunological biomarkers in patients with stage I and stage III non-small cell lung cancer (NSCLC): A prospective exploratory study. Cancers 2021, 13, 6259. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Deng, L.; Hou, Y.; Meng, X.; Huang, X.; Rao, E.; Zheng, W.; Mauceri, H.; Mack, M.; Xu, M. Host STING-dependent MDSC mobilization drives extrinsic radiation resistance. Nat. Commun. 2017, 8, 1736. [Google Scholar] [CrossRef]
- Heylmann, D.; Ponath, V.; Kindler, T.; Kaina, B. Comparison of DNA repair and radiosensitivity of different blood cell populations. Sci. Rep. 2021, 11, 2478. [Google Scholar] [CrossRef] [PubMed]
- Ross, H.J.; Kozono, D.E.; Urbanic, J.J.; Williams, T.M.; DuFrane, C.; Bara, I.; Schulze, K.; Brockman, J.M.; Wang, X.F.; Gao, J. AFT-16: Phase II trial of neoadjuvant and adjuvant atezolizumab and chemoradiation (CRT) for stage III non-small cell lung cancer (NSCLC). J. Clin. Oncol. 2021, 39, 8513. [Google Scholar] [CrossRef]
- Allard, B.; Allard, D.; Buisseret, L.; Stagg, J. The adenosine pathway in immuno-oncology. Nat. Rev. Clin. Oncol. 2020, 17, 611–629. [Google Scholar] [CrossRef]
- Sek, K.; Mølck, C.; Stewart, G.D.; Kats, L.; Darcy, P.K.; Beavis, P.A. Targeting adenosine receptor signaling in cancer immunotherapy. Int. J. Mol. Sci. 2018, 19, 3837. [Google Scholar] [CrossRef]
- Thompson, E.A.; Powell, J.D. Inhibition of the adenosine pathway to potentiate cancer immunotherapy: Potential for combinatorial approaches. Annu. Rev. Med. 2021, 72, 331–348. [Google Scholar] [CrossRef]
- Vijayan, D.; Young, A.; Teng, M.W.; Smyth, M.J. Targeting immunosuppressive adenosine in cancer. Nat. Rev. Cancer 2017, 17, 709–724. [Google Scholar] [CrossRef]
- Fathi, M.; Zarei, A.; Moghimi, A.; Jalali, P.; Salehi, Z.; Gholamin, S.; Jadidi-Niaragh, F. Combined cancer immunotherapy based on targeting adenosine pathway and PD-1/PDL-1 axis. Expert. Opin. Ther. Targets 2024, 28, 757–777. [Google Scholar] [CrossRef]
- Johnson, M.L.; Fox, W.; Lee, Y.-G.; Lee, K.H.; Ahn, H.K.; Kim, Y.-C.; Lee, K.-Y.; Lee, J.-S.; He, X.; Park, C. ARC-7: Randomized phase 2 study of domvanalimab+ zimberelimab±etrumadenant versus zimberelimab in first-line, metastatic, PD-L1-high non-small cell lung cancer (NSCLC). J. Clin. Oncol. 2022, 40, 36. [Google Scholar] [CrossRef]
- Özgüroğlu, M.; Levy, B.P.; Horinouchi, H.; Yu, J.; Grainger, E.; Phuong, P.H.; Peterson, D.; Newton, M.D.; Spira, A.I. Phase 3 trial of durvalumab combined with domvanalimab following concurrent chemoradiotherapy (cCRT) in patients with unresectable stage III NSCLC (PACIFIC-8). J. Clin. Oncol. 2023, 41, 16. [Google Scholar] [CrossRef]
- Redmond, W.L.; Linch, S.N.; Kasiewicz, M.J. Combined targeting of costimulatory (OX40) and coinhibitory (CTLA-4) pathways elicits potent effector T cells capable of driving robust antitumor immunity. Cancer Immunol. Res. 2014, 2, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Lin, Q.; Zhang, Z.; Zhang, L. Therapeutic strategies for the costimulatory molecule OX40 in T-cell-mediated immunity. Acta Pharm. Sin. B 2020, 10, 414–433. [Google Scholar] [CrossRef]
- Curti, B.D.; Kovacsovics-Bankowski, M.; Morris, N.; Walker, E.; Chisholm, L.; Floyd, K.; Walker, J.; Gonzalez, I.; Meeuwsen, T.; Fox, B.A. OX40 is a potent immune-stimulating target in late-stage cancer patients. Cancer Res. 2013, 73, 7189–7198. [Google Scholar] [CrossRef]
- Aspeslagh, S.; Postel-Vinay, S.; Rusakiewicz, S.; Soria, J.-C.; Zitvogel, L.; Marabelle, A. Rationale for anti-OX40 cancer immunotherapy. Eur. J. Cancer 2016, 52, 50–66. [Google Scholar] [CrossRef]
- Gao, X.; Yi, L.; Jiang, C.; Li, S.; Wang, X.; Yang, B.; Li, W.; Che, N.; Wang, J.; Zhang, H. PCSK9 regulates the efficacy of immune checkpoint therapy in lung cancer. Front. Immunol. 2023, 14, 1142428. [Google Scholar] [CrossRef]
- Liu, X.; Bao, X.; Hu, M.; Chang, H.; Jiao, M.; Cheng, J.; Xie, L.; Huang, Q.; Li, F.; Li, C.-Y. Inhibition of PCSK9 potentiates immune checkpoint therapy for cancer. Nature 2020, 588, 693–698. [Google Scholar] [CrossRef]
- Sun, S.; Ma, J.; Zuo, T.; Shi, J.; Sun, L.; Meng, C.; Shu, W.; Yang, Z.; Yao, H.; Zhang, Z. Inhibition of PCSK9: A promising enhancer for anti-PD-1/PD-L1 immunotherapy. Research 2024, 7, 0488. [Google Scholar] [CrossRef]
- De Henau, O.; Rausch, M.; Winkler, D.; Campesato, L.F.; Liu, C.; Cymerman, D.H.; Budhu, S.; Ghosh, A.; Pink, M.; Tchaicha, J. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells. Nature 2016, 539, 443–447. [Google Scholar] [CrossRef]
- Okkenhaug, K.; Graupera, M.; Vanhaesebroeck, B. Targeting PI3K in cancer: Impact on tumor cells, their protective stroma, angiogenesis, and immunotherapy. Cancer Discov. 2016, 6, 1090–1105. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Nie, J.; Ma, X.; Wei, Y.; Peng, Y.; Wei, X. Targeting PI3K in cancer: Mechanisms and advances in clinical trials. Mol. Cancer 2019, 18, 26. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Yan, Y.; Wei, T.; Ye, Z.; Xiao, Y.; Pan, Y.; Orme, J.J.; Wang, D.; Wang, L.; Ren, S. An acetyl-histone vulnerability in PI3K/AKT inhibition-resistant cancers is targetable by both BET and HDAC inhibitors. Cell Rep. 2021, 34, 108744. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Liu, P.; Bao, R.; Chen, J.; Zhou, M.; Mo, Z.; Ma, Y.; Liu, H.; Zhou, Y.; Cai, X. A dual PI3K/HDAC inhibitor induces immunogenic ferroptosis to potentiate cancer immune checkpoint therapy. Cancer Res. 2021, 81, 6233–6245. [Google Scholar] [CrossRef]
- Fukumura, D.; Kloepper, J.; Amoozgar, Z.; Duda, D.G.; Jain, R.K. Enhancing cancer immunotherapy using antiangiogenics: Opportunities and challenges. Nat. Rev. Clin. Oncol. 2018, 15, 325–340. [Google Scholar] [CrossRef]
- van Zandwijk, N.; Brustugun, O.T.; Dingemans, A.-M. The Potential of Combined Immunotherapy and Antiangiogenesis for the Synergistic Treatment of Advanced NSCLC. J. Thorac. Oncol. 2017, 12, 194–207. [Google Scholar]
- He, D.; Wang, L.; Xu, J.; Zhao, J.; Bai, H.; Wang, J. Research advances in mechanism of antiangiogenic therapy combined with immune checkpoint inhibitors for treatment of non-small cell lung cancer. Front. Immunol. 2023, 14, 1265865. [Google Scholar] [CrossRef]
- Yao, J.; Wang, Z.; Sheng, J.; Wang, H.; You, L.; Zhu, X.; Pan, H.; Han, W. Efficacy and safety of combined immunotherapy and antiangiogenic therapy for advanced non-small cell lung cancer: A two-center retrospective study. Int. Immunopharmacol. 2020, 89, 107033. [Google Scholar] [CrossRef]
- Chu, T.; Zhong, R.; Zhong, H.; Zhang, B.; Zhang, W.; Shi, C.; Qian, J.; Zhang, Y.; Chang, Q.; Zhang, X. Phase 1b study of sintilimab plus anlotinib as first-line therapy in patients with advanced NSCLC. J. Thorac. Oncol. 2021, 16, 643–652. [Google Scholar] [CrossRef]
- Gao, R.-L.; Song, J.; Sun, L.; Wu, Z.-X.; Yi, X.-F.; Zhang, S.-L.; Huang, L.-T.; Ma, J.-T.; Han, C.-B. Efficacy and safety of combined immunotherapy and antiangiogenesis with or without chemotherapy for advanced non-small-cell lung cancer: A systematic review and pooled analysis from 23 prospective studies. Front. Pharmacol. 2022, 13, 920165. [Google Scholar] [CrossRef]
- Lau, B.C.; Wu, Y.F.; No, H.J.; Ko, R.B.; Devine, M.D.; Das, M.S.; Neal, J.W.; Wakelee, H.A.; Ramchandran, K.; Gensheimer, M.F.; et al. Pulmonary Hemorrhage in Patients Treated With Thoracic Stereotactic Ablative Radiotherapy and Antiangiogenic Agents. J. Thorac. Oncol. 2023, 18, 922–930. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, C.; Sterman, D.; Maldonado, F.; Bestvina, C.M.; Reisenauer, J.S.; Li, H.; Puri, S.; Ibrahim, O.; Swan, R.; Caine, A. CAN-2409 plus prodrug with standard of care immune checkpoint inhibitor for patients with stage III/IV NSCLC. J. Clin. Oncol. 2023, 41, TPS9162. [Google Scholar] [CrossRef]
- Cryer, A.M.; Thorley, A.J. Nanotechnology in the diagnosis and treatment of lung cancer. Pharmacol. Ther. 2019, 198, 189–205. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.; Luft, A.; Vicente, D.; Tafreshi, A.; Gümüş, M.; Mazières, J.; Hermes, B.; Çay Şenler, F.; Csőszi, T.; Fülöp, A. Pembrolizumab plus chemotherapy for squamous non–small-cell lung cancer. N. Engl. J. Med. 2018, 379, 2040–2051. [Google Scholar] [CrossRef]
- Kim, H.; Kim, D.W.; Kim, M.; Lee, Y.; Ahn, H.K.; Cho, J.H.; Kim, I.H.; Lee, Y.G.; Shin, S.H.; Park, S.E. Long-term outcomes in patients with advanced and/or metastatic non–small cell lung cancer who completed 2 years of immune checkpoint inhibitors or achieved a durable response after discontinuation without disease progression: Multicenter, real-world data (KCSG LU20-11). Cancer 2022, 128, 778–787. [Google Scholar]
- Pokorny, R.; McPherson, J.P.; Haaland, B.; Grossmann, K.F.; Luckett, C.; Voorhies, B.N.; Sageser, D.S.; Wallentine, J.; Tolman, Z.; Hu-Lieskovan, S.; et al. Real-world experience with elective discontinuation of PD-1 inhibitors at 1 year in patients with metastatic melanoma. J. Immunother. Cancer 2021, 9, e001781. [Google Scholar] [CrossRef]
- Novello, S. Pembrolizumab (MK-3475) as Maintainance in Treated Patients with Unresectable Stage III NSCLC (MP-LALC). Available online: https://clinicaltrials.gov/study/NCT03379441 (accessed on 16 May 2025).
- Durvalumab and Chemotherapy Induction Followed by Durvalumab and Radiotherapy in Large Volume Stage III NSCLC (BRIDGE). Available online: https://clinicaltrials.gov/study/NCT04765709 (accessed on 16 May 2025).
- Park, J.E.; Hong, K.S.; Choi, S.H.; Lee, S.Y.; Shin, K.-C.; Jang, J.G.; Kwon, Y.S.; Park, S.H.; Choi, K.-J.; Jung, C.Y. Durvalumab consolidation after chemoradiotherapy in elderly patients with unresectable stage III NSCLC: A real-world multicenter study. Clin. Lung Cancer 2024, 25, 354–364. [Google Scholar] [CrossRef]
- Ohri, N.; Jolly, S.; Cooper, B.T.; Kabarriti, R.; Bodner, W.R.; Klein, J.; Guha, C.; Viswanathan, S.; Shum, E.; Sabari, J.K. Selective personalized radioimmunotherapy for locally advanced non–small-cell lung cancer trial (SPRINT). J. Clin. Oncol. 2024, 42, 562–570. [Google Scholar] [CrossRef]
- Kaira, K.; Mouri, A.; Kato, S.; Yoshimura, K.; Kagamu, H.; Kobayashi, K. A phase II study of daily carboplatin plus irradiation followed by durvalumab for stage III non-small cell lung cancer patients with PS 2 up to 74 years old and patients with PS 0 or 1 from 75 years: NEJ039A (trial in progress). BMC Cancer 2020, 20, 961. [Google Scholar] [CrossRef]
- Bozorgmehr, F.; Chung, I.; Christopoulos, P.; Krisam, J.; Schneider, M.A.; Brückner, L.; Mueller, D.W.; Thomas, M.; Rieken, S. Thoracic radiotherapy plus Durvalumab in elderly and/or frail NSCLC stage III patients unfit for chemotherapy-employing optimized (hypofractionated) radiotherapy to foster durvalumab efficacy: Study protocol of the TRADE-hypo trial. BMC Cancer 2020, 20, 806. [Google Scholar] [CrossRef]
- Perez, C.A.; Stanley, K.; Rubin, P.; Kramer, S.; Brady, L.; Perez-Tamayo, R.; Brown, G.S.; Concannon, J.; Rotman, M.; Seydel, H.G. A prospective randomized study of various irradiation doses and fractionation schedules in the treatment of inoperable non-oat-cell carcinoma of the lung. Preliminary report by the Radiation Therapy Oncology Group. Cancer 1980, 45, 2744–2753. [Google Scholar] [CrossRef] [PubMed]
- Dillman, R.O.; Herndon, J.; Seagren, S.L.; Eaton, W.L., Jr.; Green, M.R. Improved survival in stage III non-small-cell lung cancer: Seven-year follow-up of cancer and leukemia group B (CALGB) 8433 trial. J. Natl. Cancer Inst. 1996, 88, 1210–1215. [Google Scholar] [CrossRef] [PubMed]
- Sause, W.T.; Scott, C.; Taylor, S.; Johnson, D.; Livingston, R.; Komaki, R.; Emami, B.; Curran, W.J.; Byhardt, R.W.; Turrisi, A.T.; et al. Radiation Therapy Oncology Group (RTOG) 88-08 and Eastern Cooperative Oncology Group (ECOG) 4588: Preliminary results of a phase III trial in regionally advanced, unresectable non-small-cell lung cancer. J. Natl. Cancer Inst. 1995, 87, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Curran, W.J., Jr.; Paulus, R.; Langer, C.J.; Komaki, R.; Lee, J.S.; Hauser, S.; Movsas, B.; Wasserman, T.; Rosenthal, S.A.; Gore, E.; et al. Sequential vs. concurrent chemoradiation for stage III non-small cell lung cancer: Randomized phase III trial RTOG 9410. J. Natl. Cancer Inst. 2011, 103, 1452–1460. [Google Scholar] [CrossRef]
- Auperin, A.; Le Pechoux, C.; Rolland, E.; Curran, W.J.; Furuse, K.; Fournel, P.; Belderbos, J.; Clamon, G.; Ulutin, H.C.; Paulus, R.; et al. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J. Clin. Oncol. 2010, 28, 2181–2190. [Google Scholar] [CrossRef]
- Bradley, J.D.; Paulus, R.; Komaki, R.; Masters, G.; Blumenschein, G.; Schild, S.; Bogart, J.; Hu, C.; Forster, K.; Magliocco, A.; et al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): A randomised, two-by-two factorial phase 3 study. Lancet Oncol. 2015, 16, 187–199. [Google Scholar] [CrossRef]
- Schytte, T.; Knap, M.M.; Kristiansen, C.; Appelt, A.L.; Khalil, A.; Peucelle, C.; Lutz, C.M.; Møller, D.S.; Sande, E.P.S.; Sundby, F.; et al. Toxicity Within 6 Months of Heterogeneous Fluorodeoxyglucose-Guided Radiotherapy Dose Escalation for Locally Advanced Non–Small Cell Lung Cancer in the Scandinavian Randomized Phase III NARLAL2 Trial. J. Clin. Oncol. 2025, JCO-24-01386. [Google Scholar] [CrossRef]
- Donlon, N.E.; Power, R.; Hayes, C.; Reynolds, J.V.; Lysaght, J. Radiotherapy, immunotherapy, and the tumour microenvironment: Turning an immunosuppressive milieu into a therapeutic opportunity. Cancer Lett. 2021, 502, 84–96. [Google Scholar] [CrossRef]
- Naidoo, J.; Antonia, S.; Wu, Y.L.; Cho, B.C.; Thiyagarajah, P.; Mann, H.; Newton, M.; Faivre-Finn, C. Brief Report: Durvalumab After Chemoradiotherapy in Unresectable Stage III EGFR-Mutant NSCLC: A Post Hoc Subgroup Analysis From PACIFIC. J. Thorac. Oncol. 2023, 18, 657–663. [Google Scholar] [CrossRef]
- Riley, G.W.; Douglas; Aisner, D.; Akerly, W.; Bauman, J.; Bharat, A.; Chang, J.; Chirieac, L.; Malcolm, D.; Desai, A. Non-Small Cell Lung Cancer. Available online: https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf (accessed on 16 May 2025).
- Paz-Ares, L.G.; Gay, C.M.; Zhou, C.; Kato, T.; Corrales, L.; Redhead, K.; Rahman, A.; Bradley, D.; Theogaraj, E.; Hutchinson, K.E. A phase I-III platform study evaluating the safety and efficacy of multiple therapies in patients with biomarker-defined locally advanced, unresectable stage III non–small-cell lung cancer (NSCLC). J. Clin. Oncol. 2023, 41, TPS8605. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Spira, A.; Raben, D.; Planchard, D.; Cho, B.; Özgüroğlu, M.; Daniel, D.; Villegas, A.; Vicente, D.; Hui, R. Outcomes with durvalumab by tumour PD-L1 expression in unresectable, stage III non-small-cell lung cancer in the PACIFIC trial. Ann. Oncol. 2020, 31, 798–806. [Google Scholar] [CrossRef] [PubMed]
- Reck, M.; Lee, K.H.; Frost, N.; Breder, V.V.; Kowalski, D.M.; Levchenko, E.; Reguart, N.; Martinez-Marti, A.; Houghton, B.; Paoli, J.-B. Four-year outcomes and circulating tumor DNA (ctDNA) analysis of pembrolizumab (pembro) plus concurrent chemoradiation therapy (cCRT) in unresectable, locally advanced, stage III non–small-cell lung cancer (NSCLC): From KEYNOTE-799. J. Clin. Oncol. 2024, 42, 8057. [Google Scholar] [CrossRef]
- Grossmann, P.; Stringfield, O.; El-Hachem, N.; Bui, M.M.; Rios Velazquez, E.; Parmar, C.; Leijenaar, R.T.; Haibe-Kains, B.; Lambin, P.; Gillies, R.J. Defining the biological basis of radiomic phenotypes in lung cancer. Elife 2017, 6, e23421. [Google Scholar] [CrossRef] [PubMed]
- Jazieh, K.; Khorrami, M.; Saad, A.; Gad, M.; Gupta, A.; Patil, P.; Viswanathan, V.S.; Rajiah, P.; Nock, C.J.; Gilkey, M. Novel imaging biomarkers predict outcomes in stage III unresectable non-small cell lung cancer treated with chemoradiation and durvalumab. J. Immunother. Cancer 2022, 10, e003778. [Google Scholar] [CrossRef]
- Coroller, T.P.; Grossmann, P.; Hou, Y.; Velazquez, E.R.; Leijenaar, R.T.; Hermann, G.; Lambin, P.; Haibe-Kains, B.; Mak, R.H.; Aerts, H.J. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother. Oncol. 2015, 114, 345–350. [Google Scholar] [CrossRef]
- Cook, G.J.; Yip, C.; Siddique, M.; Goh, V.; Chicklore, S.; Roy, A.; Marsden, P.; Ahmad, S.; Landau, D. Are pretreatment 18F-FDG PET tumor textural features in non–small cell lung cancer associated with response and survival after chemoradiotherapy? J. Nucl. Med. 2013, 54, 19–26. [Google Scholar] [CrossRef]
Study Name (NCT) | Trial Design | Median PFS (Months) | Median OS (Months) | ||||
---|---|---|---|---|---|---|---|
Phase | CRT Type | Arms * | Duration | Primary Endpoint | |||
Single Immunotherapy Consolidation | |||||||
PACIFIC (NCT02125461) | III randomized | cCRT | Durvalumab (n = 473) vs. Placebo (n = 236) | 1 year | PFS OS | 17.2 vs. 5.6 HR: 0.51 CI: 0.41–0.63 | 47.5 vs. 29.1 HR: 0.68 + CI: 0.47–0.90 |
LUN14-179 (NCT02343952) | II single arm | cCRT | Pembrolizumab (n = 93) | 1 year | TMDD | 18.7 | 35.8 |
GEMSTONE-301 (NCT03728556) | III randomized | sCRT or cCRT | Sugelimumab (n = 255) vs. Placebo (n = 126) | 2 years | PFS | 9.0 vs. 5.8 HR: 0.64 CI: 0.48–0.85 | NR 1 v NR |
PACIFIC 6 (NCT03693300) | II single arm | sCRT | Durvalumab (n = 117) | 1 year | G3-4 AEs | 10.9 CI: 7.3–15.6 | 2 |
PACIFIC 5 | III randomized | cCRT or sCRT | Durvalumab (n = 251) vs. Placebo (n = 128) | 1 year | PFS | 14.0 vs. 6.5 HR: 0.75 CI: 0.58–0.99 | - |
Dual Immunotherapy Consolidation | |||||||
BTCRC-LUN 16-081 (NCT03285321) | II randomized | cCRT | Nivolumab (n = 54) vs. nivolumab + ipilimumab (n = 51) | 6 months | 18-month PFS | 25.8 vs. 25.4 | NR 3 vs. NR 4 |
COAST (NCT03822351) | II randomized | cCRT | Durvalumab [D] (n = 66) vs. durvalumab + oleclumab [DO] (n = 59) Vs. durvalumab + monalizumab [DM] (n = 61) | 1 year | IA-ORR | 6.3 vs. NR vs. 15.1 DO vs. D HR: 0.44 CI: 0.26–0.75 DM vs. D HR: 0.42 CI: 0.24–0.72 | - |
Concurrently Administered cCRT + Immunotherapy Followed by Consolidation | |||||||
PACIFIC 2 (NCT03519971) | II randomized | cCRT | cCRT + durvalumab → durvalumab (n = 219) vs. cCRT + placebo → placebo (n = 108) | 1 year | PFS | 13.8 vs. 9.4 HR: 0.85 CI: 0.65–1.12 | 36.4 vs. 29.5 HR: 1.03 CI: 0.78–1.39 |
NICOLAS (NCT02434081) | II single arm | cCRT | cCRT + nivolumab → nivolumab (n = 79) | 1 year | 1-year PFS | 12.7 5 CI: 10.1–22.8 | 38.8 6 CI: 26.8–NE |
DETERRED (NCT02525757) | II 2 parts | cCRT | cCRT → atezolizumab (n = 10) vs. cCRT + atezolizumab → atezolizumab (n = 30) | 1 year | Safety | 18.9 vs. 15.1 HR: 1.30 CI: 0.56–3.04 | 26.5 vs. NR HR: 0.71 CI: 0.25–1.99 |
Checkmate 73L (NCT04026412) | III randomized | cCRT | A: Nivolumab + cCRT→ nivolumab + ipilimumab (n = 287) vs. B: Nivolumab + cCRT → nivolumab (n = 320) vs. C: cCRT → durvalumab (n = 318) | 1 year | PFS (A vs. C) | 16.7 vs. (not reported) vs. 15.6 A vs. C HR: 0.95 ++ CI: 0.77–1.19 B vs. C HR:0.84 CI: 0.69–1.04 | A vs. C HR: 1.12 CI: 0.87–1.43 B vs. C HR: 0.97 CI: 0.76–1.24 |
CHORUS (NCT04905316) | II single arm | cCRT | cCRT + canakinumab → canakinumab + durvalumab (n = 32) | 1 year | PFS | 7 | - |
Keynote-799 (NCT03631784) | II 2 cohorts | cCRT | A (Sq or non-sq): 1C q3w chemoimmunotherapy → 2C q3w chemoimmunotherapy aa + TRT → pembrolizumab (n = 112) vs. B: non-sq: 1C q3w chemoimmunotherapy bb → 2 cycles of chemoimmunotherapy + TRT → pembrolizumab (n = 102) | 1 year | ORR and incidence of grade ≥3 pneumonitis | A: 29.0 CI: 16.6–48.5 B: 45.3 CI: 17.9-NR) | A: 35.6 CI: 26.1–44.2 B: 56.7 CI: 41.1–NR |
Induction Immunotherapy Followed by cCRT | |||||||
AFT 16 (NCT03102242) | II single arm | cCRT | 4 cycles of induction atezolizumab → cCRT → atezolizumab (n = 62) | 1 year | DCR | 30.0 CI: 15.8–NE | NR 8 |
National Clinical Trial Number | Immune Checkpoint Inhibitor | Other Agent(s) | Agent Type/Target |
---|---|---|---|
NCT06732401 | Durvalumab | AZD6738 | Ataxia telangiectasia and Rad3-related kinase |
NCT06712316 | BNT327 | Standard chemotherapy | PD-L1 VEGF bispecific/inhibition of angiogenesis |
NCT06700421 | Adebrelimab | Apatinib | Inhibition of angiogenesis |
NCT06667908 | Durvalumab | Chemotherapy, radiation, JNJ-90301900 | Functionalized hafnium oxide nanoparticles |
NCT06617936 | Tislelizumab | Recombinant human endostatin, chemotherapy | Inhibition of angiogenesis |
NCT06512207 | Sintilimab | Leuprorelin acetate | Anti-androgen |
NCT06463665 | Physician’s choice | Olvimulogene Nanivacirepvec and platinum-doublet | Oncolytic virus |
NCT05967533 | Unspecified/“standard of care” | Fermented wheat germ | Nutritional supplement |
NCT05940532 | Sugemalimab | Standard chemotherapy with ICI as induction followed by curative local therapy | N/A |
NCT05798663 | Atezolizumab | Tiragolumab | TIGIT |
NCT05468242 | Tislelizumab | Bevacizumab | Inhibition of Angiogenesis |
NCT05334329 | Atezolizumab | Genetically engineered NK cells | Genetically engineered NK cells |
NCT04513925 | Atezolizumab | Tiragolumab | TIGIT |
NCT06623136 | Toripalimab | ES102 | OX40 agonist |
NCT04198766 | Pembroluzimab | INBRX-106 | OX40 agonist |
NCT05306847 | Sintilimab | Anlotinib | Multi-targeted tyrosine kinase inhibitor |
NCT05298423 | Pembrolizumab | Vibostolimab | TIGIT |
NCT05269381 | Pembrolizumab | Neoantigen peptide-based vaccine | Personalized vaccine |
NCT05248022 | Sintilimab | Drug-eluting beads bronchial arterial chemoembolization | Drug-eluting beads bronchial arterial chemoembolization |
NCT03257722 | Pembrolizumab | Idelalisib | PI3K pathway |
NCT05553834 | Cemiplimab | Alirocumab | PCSK9 inhibition |
NCT06385262 | Cemiplimab | Alirocumab and chemotherapy | PCSK9 inhibition |
NCT05198830 | Durvalumab | TRC102, standard-of-care chemotherapy | Inhibition of base excision repair |
NCT05096663 | Pembrolizumab | N-803 (ALT-803) | IL-15 and receptor |
NCT04940299 | Ipilimumab and nivolumab | Tocilizumab | IL-6 receptor antagonist |
NCT04699721 | Nivolumab | Probiotics and standard chemotherapy | Microbiome |
NCT04585490 | Durvalumab | Tremelimumab and chemotherapy | CTLA-4 pathway |
NCT04495153 | “Standard of care” | CAN-2409 + prodrug | Oncogenic virus |
NCT04287894 | Durvalumab | Tremelimumab, chemoradiotherapy | CTLA-4 pathway |
NCT04267237 | Atezolizumab | RO7198457 | Personalized vaccine |
NCT04007744 | Pembrolizumab | Sonidegib | Hedgehog signaling pathway |
NCT03801902 | Durvalumab | Molalizumab (IPH2201) | NGK2A (alternative immune checkpoint receptor) |
Olecumab (MEDI9447) | Adenosine | ||
NCT03520686 | “Standard of care” | N-803 | IL-15 superagonist complex |
NCT03048500 | Nivolumab | Metformin | AMPK pathway |
NCT02983578 | Durvalumab | Danvatirsen | STAT3 |
NCT05177497 | SHR-1701 | Bifunctional fusion protein composed of a mAb against PD-L1 fused with the extracellular domain of TGF-β receptor II | |
NCT02403193 | Spartalizumab | PBF-509 | Adenosine A2a receptor antagonist |
NCT05211895 | Durvalumab | Domvanalimab | TIGIT |
NCT04380636 | Pembrolizumab | Olaparib | PARP |
NCT06540950 | Unspecified | Vinorelbine | Anti-microtubular agent |
NCT05687266 | Durvalumab | Datopotamab Deruxtecan, carboplatin | TROP2 |
NCT01454102 | Nivolumab | Gemcitabine and cisplatin | Multiple pre-existing agents |
Pemetrexed and cisplatin | |||
Bevacizumab | |||
Erlotinib | |||
Ipilimumab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burcher, K.; Karukonda, P.; Kelsey, C.; Mullikin, T.; Antonia, S.J.; Oduah, E.I. A Critical Review of Immunomodulation in the Management of Inoperable Stage III NSCLC. Cancers 2025, 17, 1829. https://doi.org/10.3390/cancers17111829
Burcher K, Karukonda P, Kelsey C, Mullikin T, Antonia SJ, Oduah EI. A Critical Review of Immunomodulation in the Management of Inoperable Stage III NSCLC. Cancers. 2025; 17(11):1829. https://doi.org/10.3390/cancers17111829
Chicago/Turabian StyleBurcher, Kimberly, Pooja Karukonda, Christopher Kelsey, Trey Mullikin, Scott J. Antonia, and Eziafa I. Oduah. 2025. "A Critical Review of Immunomodulation in the Management of Inoperable Stage III NSCLC" Cancers 17, no. 11: 1829. https://doi.org/10.3390/cancers17111829
APA StyleBurcher, K., Karukonda, P., Kelsey, C., Mullikin, T., Antonia, S. J., & Oduah, E. I. (2025). A Critical Review of Immunomodulation in the Management of Inoperable Stage III NSCLC. Cancers, 17(11), 1829. https://doi.org/10.3390/cancers17111829