High Burden of Non-Clonal Chromosome Aberrations Before Onset of Detectable Neoplasia in Fanconi Anemia Bone Marrow
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Cytogenetics
2.3. Statistics
3. Results
3.1. Patients
3.2. BM Cytogenetics of Patients with FA
3.2.1. Non-Clonal Chromosomal Abnormalities
3.2.2. Clonal Chromosomal Abnormalities (CCAs)
3.3. Clonicity and Chromosomal Damage
3.4. Complex Karyotypes and Clonicity
3.5. Chromosomal Damage and Patient Demographic and Clinical Characteristics
Chromosomal Abnormalities and the Age and Gender of Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rodríguez, A.; D’Andrea, A. Fanconi anemia pathway. Curr. Biol. 2017, 27, R986–R988. [Google Scholar] [CrossRef] [PubMed]
- García-De-teresa, B.; Rodríguez, A.; Frias, S. Chromosome instability in fanconi anemia: From breaks to phenotypic consequences. Genes 2020, 11, 1528. [Google Scholar] [CrossRef] [PubMed]
- Kuehl, J.; Zhang, Y.; Schindler, D. Genetic inactivation of FAAP100 causes Fanconi anemia due to disruption of the monoubiquitin ligase core complex. J. Clin. Investig. 2025. [Google Scholar] [CrossRef] [PubMed]
- Ayala-Zambrano, C.; Yuste, M.; Frías, S.; García de Teresa, B.; Mendoza, L.; Azpeitia, E.; Rodríguez, A.; Torres, L. A Boolean network model of the double-strand break repair pathway choice. J. Theor. Biol. 2023, 573, 111608. [Google Scholar] [CrossRef]
- Rogers, C.B.; Kram, R.E.; Lin, K.; Myers, C.L.; Sobeck, A.; Hendrickson, E.A.; Bielinsky, A.-K. Fanconi anemia-associated chromosomal radial formation is dependent on POL θ -mediated alternative end joining. Cell Rep. 2023, 42, 112428. [Google Scholar] [CrossRef]
- Auerbach, A.D. Fanconi anemia and its diagnosis. Mutat. Res.—Fundam. Mol. Mech. Mutagen. 2009, 668, 4–10. [Google Scholar] [CrossRef]
- Moreno, O.M.; Paredes, A.C.; Suarez-Obando, F.; Rojas, A. An update on Fanconi anemia: Clinical, cytogenetic and molecular approaches (review). Biomed. Rep. 2021, 15, 74. [Google Scholar] [CrossRef]
- Esmer, C.; Sánchez, S.; Ramos, S.; Molina, B.; Frias, S.; Carnevale, A. DEB Test for Fanconi Anemia Detection in Patients with Atypical Phenotypes. Am. J. Med. Genet. 2004, 124, 35–39. [Google Scholar] [CrossRef]
- Merfort, L.W.; Lisboa, M.D.O.; Cavalli, L.R.; Bonfim, C.M.S. Cytogenetics in Fanconi Anemia: The Importance of Follow-Up and the Search for New Biomarkers of Genomic Instability. Int. J. Mol. Sci. 2022, 23, 14119. [Google Scholar] [CrossRef]
- Fiesco-Roa, M.O.; Giri, N.; McReynolds, L.J.; Best, A.F.; Alter, B.P. Genotype-phenotype associations in Fanconi anemia: A literature review. Blood Rev. 2019, 37, 100589. [Google Scholar] [CrossRef]
- Altintas, B.; Giri, N.; McReynolds, L.J.; Best, A.; Alter, B.P. Genotype-phenotype and outcome associations in patients with Fanconi anemia: The National Cancer Institute cohort. Haematologica 2023, 108, 69–82. [Google Scholar] [CrossRef]
- Risitano, A.M.; Marotta, S.; Calzone, R.; Grimaldi, F.; Zatterale, A. Twenty years of the Italian Fanconi Anemia Registry: Where we stand and what remains to be learned. Haematologica 2016, 101, 319–327. [Google Scholar] [CrossRef]
- Kutler, D.I.; Singh, B.; Satagopan, J.; Batish, S.D.; Berwick, M.; Giampietro, P.F.; Hanenberg, H.; Auerbach, A.D. A 20-year perspective on the International Fanconi Anemia Registry (IFAR). Blood 2003, 101, 1249–1256. [Google Scholar] [CrossRef]
- Alter, B.P. Fanconi anemia and the development of leukemia. Best Pract. Res. Clin. Haematol. 2014, 27, 214–221. [Google Scholar] [CrossRef]
- Alter, B.P.; Giri, N.; Savage, S.A.; Rosenberg, P.S. Cancer in the national cancer institute inherited bone marrow failure syndrome cohort after fifteen years of follow-up. Haematologica 2018, 103, 30–39. [Google Scholar] [CrossRef]
- Ceccaldi, R.; Parmar, K.; Mouly, E.; Delord, M.; Kim, J.M.; Regairaz, M.; Pla, M.; Vasquez, N.; Zhang, Q.S.; Pondarre, C.; et al. Bone marrow failure in fanconi anemia is triggered by an exacerbated p53/p21 DNA damage response that impairs hematopoietic stem and progenitor cells. Cell Stem Cell 2012, 11, 36–49. [Google Scholar] [CrossRef]
- Rodríguez, A.; Zhang, K.; Färkkilä, A.; Filiatrault, J.; Yang, C.; Velázquez, M.; Furutani, E.; Goldman, D.C.; García de Teresa, B.; Garza-Mayén, G.; et al. MYC Promotes Bone Marrow Stem Cell Dysfunction in Fanconi Anemia. Cell Stem Cell 2021, 28, 33–47. [Google Scholar] [CrossRef]
- Tijhuis, A.E.; Foijer, F. Characterizing chromosomal instability-driven cancer evolution and cell fitness at a glance. J. Cell Sci. 2024, 137, jcs260199. [Google Scholar] [CrossRef]
- Abdallah, B.Y.; Horne, S.D.; Stevens, J.B.; Liu, G.; Ying, A.Y.; Vanderhyden, B.; Krawetz, S.A.; Gorelick, R.; Heng, H.H.Q. Single cell heterogeneity: Why unstable genomes are incompatible with average profiles. Cell Cycle 2013, 12, 3640–3649. [Google Scholar] [CrossRef]
- Davoli, T.; Xu, A.W.; Mengwasser, K.E.; Sack, L.M.; Yoon, J.C.; Park, P.J.; Elledge, S.J. XCumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 2013, 155, 948. [Google Scholar] [CrossRef]
- Liu, G.; Stevens, J.B.; Horne, S.D.; Abdallah, B.Y.; Ye, K.J.; Bremer, S.W.; Ye, C.J.; Chen, D.J.; Heng, H.H. Genome chaos: Survival strategy during crisis. Cell Cycle 2014, 13, 528–537. [Google Scholar] [CrossRef] [PubMed]
- Cioc, A.M.; Wagner, J.E.; MacMillan, M.L.; DeFor, T.; Hirsch, B. Diagnosis of myelodysplastic syndrome among a cohort of 119 patients with fanconi anemia: Morphologic and cytogenetic characteristics. Am. J. Clin. Pathol. 2010, 133, 92–100. [Google Scholar] [CrossRef]
- Sebert, M.; Gachet, S.; Leblanc, T.; Rousseau, A.; Bluteau, O.; Kim, R.; Ben Abdelali, R.; Sicre de Fontbrune, F.; Maillard, L.; Fedronie, C.; et al. Clonal hematopoiesis driven by chromosome 1q/MDM4 trisomy defines a canonical route toward leukemia in Fanconi anemia. Cell Stem Cell 2023, 30, 153–170.e9. [Google Scholar] [CrossRef]
- Butturini, A.; Gale, R.P.; Verlander, P.C.; Adler-Brecher, B.; Gillio, A.P.; Auerbach, A.D. Hematologic abnormalities in Fanconi anemia: An International Fanconi Anemia Registry study. Blood 1994, 84, 1650–1655. [Google Scholar] [CrossRef]
- Berger, R.; Jonveaux, P. Clonal chromosome abnormalities in Fanconi anemia. Hematol. Cell Ther. 1996, 38, 291–296. [Google Scholar] [CrossRef]
- Quentin, S.; Cuccuini, W.; Ceccaldi, R.; Nibourel, O.; Pondarre, C.; Pagès, M.P.; Vasquez, N.; D’Enghien, C.D.; Larghero, J.; De Latour, R.P.; et al. Myelodysplasia and leukemia of fanconi anemia are associated with a specific pattern of genomic abnormalities that includes cryptic RUNX1/AML1 lesions. Blood 2011, 117, 161–170. [Google Scholar] [CrossRef]
- Mehta, P.A.; Harris, R.E.; Davies, S.M.; Kim, M.O.; Mueller, R.; Lampkin, B.; Mo, J.; Myers, K.; Smolarek, T.A. Numerical chromosomal changes and risk of development of myelodysplastic syndrome-acute myeloid leukemia in patients with Fanconi anemia. Cancer Genet. Cytogenet. 2010, 203, 180–186. [Google Scholar] [CrossRef]
- Lisker, R.; Gutiérrez, A.C. de Cytogenetic studies in Fanconi’s anemia. Description of a case with bone marrow clonal evolution. Clin. Genet. 1974, 5, 72–76. [Google Scholar] [CrossRef]
- Tönnies, H.; Huber, S.; Kühl, J.S.; Gerlach, A.; Ebell, W.; Neitzel, H. Clonal chromosomal aberrations in bone marrow cells of Fanconi anemia patients: Gains of the chromosomal segment 3q26q29 as an adverse risk factor. Blood 2003, 101, 3872–3874. [Google Scholar] [CrossRef]
- Behrens, Y.L.; Göhring, G.; Bawadi, R.; Cöktü, S.; Reimer, C.; Hoffmann, B.; Sänger, B.; Käfer, S.; Thol, F.; Erlacher, M.; et al. A novel classification of hematologic conditions in patients with fanconi anemia. Haematologica 2021, 106, 3000–3003. [Google Scholar] [CrossRef]
- Heng, H.H.Q.; Regan, S.M.; Liu, G.; Ye, C.J. Why it is crucial to analyze non clonal chromosome aberrations or NCCAs? Mol. Cytogenet. 2016, 9, 15. [Google Scholar] [CrossRef]
- Ye, C.J.; Stilgenbauer, L.; Moy, A.; Liu, G.; Heng, H.H. What Is Karyotype Coding and Why Is Genomic Topology Important for Cancer and Evolution? Front. Genet. 2019, 10, 1082. [Google Scholar] [CrossRef]
- Heng, J.; Heng, H.H. Two-phased evolution: Genome chaos-mediated information creation and maintenance. Prog. Biophys. Mol. Biol. 2021, 165, 29–42. [Google Scholar] [CrossRef]
- Heng, J.; Heng, H.H. Genome Chaos, Information Creation, and Cancer Emergence: Searching for New Frameworks on the 50th Anniversary of the “War on Cancer”. Genes 2022, 13, 101. [Google Scholar] [CrossRef]
- Fanconi Anemia Research Fund. Fanconi Anemia Clinical Care Guidelines, 5th ed.; Sroka, I., Frohnmayer, L., Van Ravenhorst, S., Wirkkula, L., Eds.; Fanconi Anemia Research Fund: Eugene, OR, USA, 2020. [Google Scholar]
- Sánchez, S.; Reyes, P.; Barrera, M.A.M.; Mar-Tínez, A.P.; Frias, S. Fanconi anemia, Part 3. Cytogenetic monitoring in the bone marrow of patients with Fanconi anemia. Acta Pediatr. Mex. 2024, 45, 343–368. [Google Scholar] [CrossRef]
- Hastings, R.J.; Moore, S.; Chia, N. ISCN 2024—An International System for Human Cytogenomic Nomenclature (2024). Cytogenet. Genome Res. 2024, 164, 1–224. [Google Scholar]
- Nguyen-Khac, F.; Bidet, A.; Daudignon, A.; Lafage-Pochitaloff, M.; Ameye, G.; Bilhou-Nabéra, C.; Chapiro, E.; Collonge-Rame, M.A.; Cuccuini, W.; Douet-Guilbert, N.; et al. The complex karyotype in hematological malignancies: A comprehensive overview by the Francophone Group of Hematological Cytogenetics (GFCH). Leukemia 2022, 36, 1451–1466. [Google Scholar] [CrossRef]
- Arber, D.A.; Orazi, A.; Hasserjian, R.P.; Borowitz, M.J.; Calvo, K.R.; Kvasnicka, H.M.; Wang, S.A.; Bagg, A.; Barbui, T.; Branford, S.; et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: Integrating morphologic, clinical, and genomic data. Blood 2022, 140, 1200–1228. [Google Scholar] [CrossRef]
- Zneimer, S.M. Composite karyotypes and other complex rearrangements. In Cytogenetic Abnormalities: Chromosomal, FISH and Microarray-Based Clinical Reporting; Wiley: Hoboken, NJ, USA, 2014; pp. 107–114. [Google Scholar]
- Engel, J.L.; Zhang, X.; Wu, M.; Wang, Y.; Espejo Valle-Inclán, J.; Hu, Q.; Woldehawariat, K.S.; Sanders, M.A.; Smogorzewska, A.; Chen, J.; et al. The Fanconi anemia pathway induces chromothripsis and ecDNA-driven cancer drug resistance. Cell 2024, 187, 6055–6070.e22. [Google Scholar] [CrossRef]
- Heng, J.; Heng, H.H. Genome chaos: Creating new genomic information essential for cancer macroevolution. Semin. Cancer Biol. 2022, 81, 160–175. [Google Scholar] [CrossRef]
- Ye, J.C.; Editors, H.H.H. Cancer Cytogenetics and Cytogenomics; Springer: Berlin/Heidelberg, Germany, 2024; ISBN 9781071639450. [Google Scholar]
- Schratz, K.E.; Gaysinskaya, V.; Cosner, Z.L.; DeBoy, E.A.; Xiang, Z.; Kasch-Semenza, L.; Florea, L.; Shah, P.D.; Armanios, M. Somatic reversion impacts myelodysplastic syndromes and acute myeloid leukemia evolution in the short telomere disorders. J. Clin. Investig. 2021, 131, 1–9. [Google Scholar] [CrossRef]
- He, X.; Zou, H.; Wang, F. SOX4-induced upregulation of ARHGAP9 promotes the progression of acute myeloid leukemia. Drug Dev. Res. 2021, 82, 1227–1234. [Google Scholar] [CrossRef]
- Gou, J.; Bi, J.; Wang, K.; Lei, L.; Feng, Y.; Tan, Z.; Gao, J.; Song, Y.; Kang, E.; Guan, F.; et al. O-GlcNAcylated FTO promotes m6A modification of SOX4 to enhance MDS/AML cell proliferation. Cell Commun. Signal. 2025, 23, 43. [Google Scholar] [CrossRef]
- Kim, H.M.; Liu, Z. LSD2 Is an Epigenetic Player in Multiple Types of Cancer and Beyond. Biomolecules 2024, 14, 553. [Google Scholar] [CrossRef]
- Rudelius, M.; Weinberg, O.K.; Niemeyer, C.M.; Shimamura, A.; Calvo, K.R. The International Consensus Classification (ICC) of hematologic neoplasms with germline predisposition, pediatric myelodysplastic syndrome, and juvenile myelomonocytic leukemia. Virchows Arch. 2023, 482, 113–130. [Google Scholar] [CrossRef]
- Marion, W.; Koppe, T.; Chen, C.C.; Wang, D.; Frenis, K.; Fierstein, S.; Sensharma, P.; Aumais, O.; Peters, M.; Ruiz-Torres, S.; et al. RUNX1 mutations mitigate quiescence to promote transformation of hematopoietic progenitors in Fanconi anemia. Leukemia 2023, 37, 1698–1708. [Google Scholar] [CrossRef]
- Chang, L.; Cui, Z.; Shi, D.; Chu, Y.; Wang, B.; Wan, Y.; Ma, Q.; Zhang, R.; Li, H.; Cheng, X.; et al. Polyclonal evolution of Fanconi anemia to MDS and AML revealed at single cell resolution. Exp. Hematol. Oncol. 2022, 11, 1–14. [Google Scholar] [CrossRef]
- Ottema, S.; Mulet-Lazaro, R.; Beverloo, H.B.; Erpelinck, C.; van Herk, S.; van der Helm, R.; Havermans, M.; Grob, T.; Valk, P.J.M.; Bindels, E.; et al. Atypical 3q26/MECOM rearrangements genocopy inv(3)/t(3;3) in acute myeloid leukemia. Blood 2020, 136, 224–234. [Google Scholar] [CrossRef]
- Gajzer, D.; Logothetis, C.N.; Sallman, D.A.; Calon, G.; Babu, A.; Chan, O.; Vincelette, N.D.; Volpe, V.O.; Al Ali, N.H.; Basra, P.; et al. MYC overexpression is associated with an early disease progression from MDS to AML. Leuk. Res. 2021, 111, 1–17. [Google Scholar] [CrossRef]
- Huh, Y.O.; Tang, G.; Talwalkar, S.S.; Khoury, J.D.; Ohanian, M.; Bueso-Ramos, C.E.; Abruzzo, L.V. Double minute chromosomes in acute myeloid leukemia, myelodysplastic syndromes, and chronic myelomonocytic leukemia are associated with micronuclei, MYC or MLL amplification, and complex karyotype. Cancer Genet. 2016, 209, 313–320. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, W.; Yu, J.; Pei, S.; Zhang, Q.; Shi, J.; Huang, H.; Zhao, Y. TP53 in MDS and AML: Biological and clinical advances. Cancer Lett. 2024, 588, 216767. [Google Scholar] [CrossRef] [PubMed]
- Philpott, C.; Tovell, H.; Frayling, I.M.; Cooper, D.N.; Upadhyaya, M. The NF1 somatic mutational landscape in sporadic human cancers. Hum. Genomics 2017, 11, 1–19. [Google Scholar] [CrossRef]
- Miller, P.G.; Sperling, A.S.; Mayerhofer, C.; McConkey, M.E.; Ellegast, J.M.; Da Silva, C.; Cohen, D.N.; Wang, C.; Sharda, A.; Yan, N.; et al. PPM1D modulates hematopoietic cell fitness and response to DNA damage and is a therapeutic target in myeloid malignancy. Blood 2023, 142, 2079–2091. [Google Scholar] [CrossRef]
- Kam, A.Y.F.; Piryani, S.O.; Lee, C.L.; Rizzieri, D.A.; Spector, N.L.; Sarantopoulos, S.; Doan, P.L. Selective ERBB2 and BCL2 inhibition is synergistic for mitochondrial-mediated apoptosis in MDS and AML cells. Mol. Cancer Res. 2021, 19, 886–899. [Google Scholar] [CrossRef]
- Douet-Guilbert, N.; Soubise, B.; Bernard, D.G.; Troadec, M.B. Cytogenetic and Genetic Abnormalities with Diagnostic Value in Myelodysplastic Syndromes (MDS): Focus on the Pre-Messenger RNA Splicing Process. Diagnostics 2022, 12, 1658. [Google Scholar] [CrossRef]
- Attar, N.; Kurdistani, S.K. Acetyltransferases by Cancer. Cold Spring Harb Perspect. Med. 2017, 7, a026534. [Google Scholar] [CrossRef]
- Tanaka, A.; Nishimura, K.; Saika, W.; Kon, A.; Koike, Y.; Tatsumi, H.; Takeda, J.; Nomura, M.; Zang, W.; Nakayama, M.; et al. SETBP1 is dispensable for normal and malignant hematopoiesis. Leukemia 2023, 37, 1802–1811. [Google Scholar] [CrossRef]
- Debaugny, R.E.; Skok, J.A. CTCF and CTCFL in cancer. Curr. Opin. Genet. Dev. 2020, 61, 44–52. [Google Scholar] [CrossRef]
- Levavasseur, F.; Oussous, S.; Zubaidan, T.; Kosmider, O.; Pendino, F.; Rombaut, D.; Bouscary, D.; Fontenay, M.; Lauret, E.; Dusanter-Fourt, I. FOXP1 regulates oxidative stress, SIRT1 expression, and resistance to chemotherapies in acute myeloid leukemia cells. Blood Adv. 2023, 7, 3265–3275. [Google Scholar] [CrossRef]
- Herzig, J.K.; Bullinger, L.; Tasdogan, A.; Zimmermann, P.; Schlegel, M.; Teleanu, V.; Weber, D.; Rücker, F.G.; Paschka, P.; Dolnik, A.; et al. Protein phosphatase 4 regulatory subunit 2 (PPP4R2) is recurrently deleted in acute myeloid leukemia and required for efficient DNA double strand break repair. Oncotarget 2017, 8, 95038–95053. [Google Scholar] [CrossRef]
- Pellagatti, A.; Boultwood, J. The molecular pathogenesis of the myelodysplastic syndromes. Eur. J. Haematol. 2015, 95, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.; Tanase-Nakao, K.; Shima, H.; Shirai, R.; Yoshida, K.; Osumi, T.; Deguchi, T.; Mori, M.; Arakawa, Y.; Takagi, M.; et al. Prevalence of germline GATA2 and SAMD9/9L variants in paediatric haematological disorders with monosomy 7. Br. J. Haematol. 2020, 191, 835–843. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Liu, Y.; Rappaport, A.R.; Kitzing, T.; Schultz, N.; Zhao, Z.; Shroff, A.S.; Dickins, R.A.; Vakoc, C.R.; Bradner, J.E.; et al. MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid leukemia. Cancer Cell 2014, 25, 652–665. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, W.; Feng, M.; Chen, X.; Ren, F.; Hou, Y. The mechanism of EZH2/H3K27me3 downregulating CXCL10 to affect CD8+ T cell exhaustion to participate in the transformation from myelodysplastic syndrome to acute myeloid leukaemia. Br. J. Haematol. 2025, 206, 1335–1349. [Google Scholar] [CrossRef]
- Lainey, E.; Thépot, S.; Bouteloup, C.; Sébert, M.; Ads, L.; Tailler, M.; Gardin, C.; De Botton, S.; Baruchel, A.; Fenaux, P.; et al. Tyrosine kinase inhibitors for the treatment of acute myeloid leukemia: Delineation of anti-leukemic mechanisms of action. Biochem. Pharmacol. 2011, 82, 1457–1466. [Google Scholar] [CrossRef]
- Hershberger, C.E.; Moyer, D.C.; Adema, V.; Kerr, C.M.; Hutter, S.; Meggendorfer, M.; Baer, C.; Kern, W.; Nadarajah, N.; Twardziok, S.; et al. Complex landscape of alternative splicing in myeloid neoplasms. Leukemia 2021, 35, 1108–1120. [Google Scholar] [CrossRef]
Gender and Age of Patients (n = 43) | n | Percentage % or (Range) |
---|---|---|
Female Male | 25 18 | 58 42 |
Median age at diagnosis years | 8.1 | (1.4–15.6) |
Median age (years) at cytogenetic study | 9.19 | (4.7–28.6) |
Affected gene (n = 33) | ||
FANCA | 22 | 66.7 |
FANCE | 3 | 9.1 |
FANCD2/BRCA1 | 1 | 3.0 |
FANCF | 1 | 3.0 |
FANCG | 2 | 6.1 |
FANCJ/BRIP1 | 1 | 3.0 |
FANCL | 2 | 6.1 |
FANCN | 1 | 3.0 |
BMF Status (n = 43) | ||
No | 5 | 11.6 |
Mild | 8 | 18.6 |
Moderate | 15 | 34.9 |
Severe | 13 | 30.2 |
MDS | 2 | 4.7 |
Androgen treatment (n = 42) | ||
Yes | 29 | 69 |
No | 13 | 31 |
Transfusion dependency (n = 42) | ||
Yes | 13 | 31 |
No | 29 | 69 |
Transplant (n = 42) | ||
Yes | 8 | 19 |
No | 34 | 81 |
Alive/Deceased (Cause of death) (n = 41) | ||
Alive | 30 | 73.2 |
Deceased (ALL) | 1 | 2.4 |
Deceased (BMF) | 4 | 9.8 |
Deceased (BMF, Intracranial bleeding) | 1 | 2.4 |
Deceased (HSPCT complication) | 4 | 9.8 |
MDS | 1 | 2.4 |
ID | Gender | Age at Diagnosis (Years) | Age at Cytogenetic Study (Years) | Affected Gene | BMF STATUS | Androgen Treatment | Transfusion Dependency | HSPCT | Alive/Deceased (Cause of Death) |
---|---|---|---|---|---|---|---|---|---|
RAFMex057 | Male | 4.2 | 4.7 | FANCE | Moderate | No | No | No | Alive |
RAFMex058 | Female | 4.1 | 4.8 | NI | Mild | No | No | No | Alive |
RAFMex006 | Male | 3.5 | 5.5 | FANCF | Severe | Yes | No | Yes | Alive |
RAFMex029 | Male | 4.5 | 5.5 | NI | Mild | Yes | No | No | Alive |
RAFMex009 | Female | 3.3 | 6.2 | FANCA | Moderate | Yes | No | No | Alive |
RAFMex043 | Male | 4.9 | 6.6 | FANCE | Severe | Yes | Yes | Yes | Deceased (HSPCT complication) |
RAFMex010 | Female | 5.9 | 6.7 | FANCA | Moderate | Yes | No | No | Alive |
RAFMex042 | Female | 6.9 | 6.9 | FANCL | Severe | Yes | Yes | Yes | Alive |
RAFMex047 | Female | 7.1 | 6.9 | FANCA | Severe | Yes | No | No | Alive |
RAFMex002 | Female | 6.0 | 7.8 | FANCA | No | No | No | No | Alive |
RAFMex044 | Female | 1.4 | 7.9 | FANCA | Mild | Yes | No | No | Alive |
RAFMex033 | Male | 5.1 | 8.1 | NI | Moderate | No | No | No | Alive |
RAFMex025 | Female | 6.1 | 8.1 | FANCA | No | No | No | No | Alive |
RAFMex005 | Female | 6.1 | 8.2 | FANCA | Moderate | Yes | No | No | Alive |
FANC143 | Female | 3.6 | 8.3 | FANCG | Severe | Unclear | Yes | Yes | Deceased (HSPCT complication) |
RAFMex026 | Female | 8.5 | 8.5 | FANCE | Severe | No | No | Yes | Deceased (HSPCT complication) |
RAFMex011 | Female | 7.1 | 8.7 | FANCA | Moderate | No | No | Yes | Alive |
FANC161 | Female | 8.0 | 8.8 | NI | Severe | Yes | Yes | NI | Deceased (BMF) |
FANC157 | Male | 9.0 | 9.0 | NI | Severe | Yes | Yes | No | Deceased (BMF) |
FANC162 | Male | 9.1 | 9.12 | NI | Severe | No | NI | No | NI |
FANC148 | Male | 7.7 | 9.14 | NI | Severe | No | Yes | No | Deceased (BMF, Intracranial bleeding) |
FANC101 | Female | 8.2 | 9.2 | FANCA | Severe | Yes | Yes | Yes | Deceased (HSPCT complication |
RAFMex07 | Female | 9.7 | 9.7 | FANCJ/BRIP1 | Moderate | No | No | No | Alive |
RAFMex035 | Male | 9.7 | 10.2 | FANCA | Mild | No | No | No | Alive |
FANC032 | Male | 9.2 | 10.7 | FANCG | Moderate | Yes | No | No | NI |
RAFMex024 | Female | 8.8 | 10.9 | FANCA | Moderate | Yes | Yes | No | Alive |
RAFMex08 | Male | 9.5 | 11.7 | FANCA | Mild | Yes | No | No | Deceased (ALL) |
RAFMex032 | Female | 12.6 | 12.6 | NI | Moderate | No | No | No | Alive |
RAFMex031 | Male | 13.1 | 13.4 | FANCA | Severe | Yes | Yes | No | Deceased (BMF) |
RAFMex018 | Female | 9.8 | 14.7 | FANCA | Severe | Yes | Yes | No | Alive |
FANC024 | Female | 7.4 | 16.7 | FANCA | Moderate | Yes | No | Yes | Alive |
RAFMex051 | Female | 11.7 | 17.7 | FANCA | Moderate | Yes | Yes | No | Alive |
RAFMex036 | Male | 6.4 | 17.8 | FANCA | Moderate | Yes | No | No | Alive |
RAFMEX066 | Male | 9.5 | 17.9 | FANCL | No | Yes | No | No | Alive |
RAFMex038 | Male | 12.7 | 18.4 | FANCA | Mild | Yes | No | No | Alive |
RAFMex037 | Female | 14.4 | 20.2 | FANCA | No | Yes | No | No | Alive |
RAFMex059 | Male | 13.3 | 22.50 | NI | Moderate | Yes | No | No | Alive |
RAFMex027 | Male | 5.6 | 22.51 | FANCN | No | No | No | No | Alive |
RAFMex022 | Female | 15.6 | 25.0 | FANCA | Mild | Yes | Yes | No | Alive |
RAFMex034 | Female | 11.7 | 25.7 | FANCA | Mild | Yes | No | No | Alive |
RAFMex030 | Female | 12.0 | 28.6 | NI | Moderate | Yes | No | No | Alive |
FANC031 | Female | 10.3 | 15.5 | FANCD2 | MDS | Yes | Yes | No | Deceased (MDS) |
RAFMex015 | Male | 9.7 | 17.2 | FANCA | MDS | Yes | Yes | No | Deceased (MDS) |
n | ID | Total Frequency of CA | Frequency of NCCA/Cell (Frequency of Cells with CK) | Frequency of CCA/Cell | Involved Chromosome in CCA | Genes Involved in AML and MDS | |
---|---|---|---|---|---|---|---|
1 | RAFMEX057 | 0.8 | 0.55 | (0.10) | 0.25 | del(3q27) | TERC |
2 | RAFMEX058 | 0.26 | 0.26 | (0.04) | 0.00 | ||
3 | RAFMEX006 | 0.75 | 0.75 | (0.04 | 0.00 | ||
4 | RAFMEX029 | 0.65 | 0.65 | (0.05) | 0.00 | ||
5 | RAFMEX009 | 0.45 | 0.45 | (0.00) | 0.00 | ||
6 | RAFMEX043 | 0.54 | 0.33 | (0.03) | 0.21 | del(6p22) | |
7 | RAFMEX010 | 0.50 | 0.30 | (0.05) | 0.20 | –21 | RUNX1, U2AF1, ERG |
8 | RAFMEX042 | 0.36 | 0.36 | (0.00) | 0.00 | ||
9 | RAFMEX047 | 0.00 | 0.00 | (0.00) | 0.00 | ||
10 | RAFMEX002 | 0.23 | 0.00 | (0.00) | 0.23 | add(2p) | |
11 | RAFMEX044 | 0.50 | 0.50 | (0.05) | 0.00 | ||
12 | RAFMEX033 | 0.90 | 0.90 | (0.21) | 0.00 | ||
13 | RAFMEX025 | 0.85 | 0.85 | (0.10) | 0.00 | ||
14 | RAFMEX005 | 0.90 | 0.75 | (0.10) | 0.15 | –20 | ASXL1 |
15 | FANC143 | 0.60 | 0.60 | (0.10) | 0.00 | ||
16 | RAFMEX026 | 0.95 | 0.63 | (0.11) | 0.32 | dup(3q26) | MECOM, MDS1 and EVI1 complex locus, TERC |
17 | RAFMEX011 | 0.40 | 0.40 | (0.00) | 0.00 | ||
18 | FANC161 | 0.35 | 0.35 | (0.05) | 0.00 | ||
19 | FANC157 | 0.10 | 0.10 | (0.00) | 0.00 | ||
20 | FANC162 | 0.10 | 0.10 | (0.00) | 0.00 | ||
21 | FANC148 | 1.25 | 0.55 | (0.15) | 0.70 | +8 | MYC |
22 | FANC101 | 0.40 | 0.40 | (0.00) | 0.00 | ||
23 | RAFMEX007 | 0.85 | 0.85 | (0.10) | 0.00 | ||
24 | RAFMEX035 | 0.25 | 0.25 | (0.00) | 0.00 | ||
25 | FANC32 | 0.30 | 0.30 | (0.00) | 0.00 | ||
26 | RAFMEX024 | 0.15 | 0.15 | (0.00) | 0.00 | ||
27 | RAFMEX008 | 0.63 | 0.63 | (0.05) | 0.00 | ||
28 | RAFMEX032 | 0.70 | 0.40 | (0.10) | 0.30 | –17, –22 | TP53, NF1, PPM1D, ERBB2, SRSF2, PRPF8, EP300 |
29 | RAFMEX031 | 1.20 | 1.20 | (0.15) | 0.00 | ||
30 | RAFMEX018 | 0.05 | 0.05 | (0.00) | 0.00 | ||
31 | FANC24 | 0.40 | 0.25 | (0.05) | 0.15 | –18 | SETBP1 |
32 | RAFMEX051 | 0.22 | 0.22 | (0.00) | 0.00 | ||
33 | RAFMEX036 | 0.68 | 0.68 | (0.05) | 0.00 | ||
34 | FANC46 | 1.13 | 0.93 | (0.07) | 0.20 | –16 | CREBBP, CTCF 8 |
35 | RAFMEX038 | 0.81 | 0.67 | (0.00) | 0.14 | add(3p25) | |
36 | RAFMEX037 | 0.99 | 0.99 | (0.06) | 0.00 | ||
37 | RAFMEX059 | 0.75 | 0.50 | (0.15) | 0.25 | der(6)t(1q;6p) | MDM4 |
38 | RAFMEX027 | 0.70 | 0.45 | (0.10) | 0.25 | del(3p13) | |
39 | RAFMEX022 | 0.30 | 0.30 | (0.00) | 0.00 | ||
40 | RAFMEX034 | 0.25 | 0.25 | (0.00) | 0.00 | ||
41 | RAFMEX030 | 0.35 | 0.35 | (0.05) | 0.00 | ||
42 | FANC31 | 1.05 | 0.45 | (0.1) | 0.60 | –7, –8 | CUX1, SAMD9, MLL3, EZH2, EGFR, LUC7L2, MYC |
43 | RAFMEX015 | 3.40 | 0.40 | (1.00) | 3.00 | –7, der(18)t(3;18) | CUX1, SAMD9, MLL3, EZH2, EGFR, SETBP1 |
SUM (percentage) | 27 | 20.05 (74.3%) | 6.95 (25.7%) | ||||
Average | 0.63 | 0.47 | (0.07) | 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez, S.; García-de-Teresa, B.; Mejía-Barrera, M.A.; Reyes-Jiménez, P.V.; Paz-Martínez, A.; Martínez, M.A.; Fiesco-Roa, M.Ó.; Monsiváis-Orozco, A.; Molina, B.; Torres, L.; et al. High Burden of Non-Clonal Chromosome Aberrations Before Onset of Detectable Neoplasia in Fanconi Anemia Bone Marrow. Cancers 2025, 17, 1805. https://doi.org/10.3390/cancers17111805
Sánchez S, García-de-Teresa B, Mejía-Barrera MA, Reyes-Jiménez PV, Paz-Martínez A, Martínez MA, Fiesco-Roa MÓ, Monsiváis-Orozco A, Molina B, Torres L, et al. High Burden of Non-Clonal Chromosome Aberrations Before Onset of Detectable Neoplasia in Fanconi Anemia Bone Marrow. Cancers. 2025; 17(11):1805. https://doi.org/10.3390/cancers17111805
Chicago/Turabian StyleSánchez, Silvia, Benilde García-de-Teresa, Marco A. Mejía-Barrera, Pedro V. Reyes-Jiménez, Antonio Paz-Martínez, Miguel A. Martínez, Moisés Ó. Fiesco-Roa, Angélica Monsiváis-Orozco, Bertha Molina, Leda Torres, and et al. 2025. "High Burden of Non-Clonal Chromosome Aberrations Before Onset of Detectable Neoplasia in Fanconi Anemia Bone Marrow" Cancers 17, no. 11: 1805. https://doi.org/10.3390/cancers17111805
APA StyleSánchez, S., García-de-Teresa, B., Mejía-Barrera, M. A., Reyes-Jiménez, P. V., Paz-Martínez, A., Martínez, M. A., Fiesco-Roa, M. Ó., Monsiváis-Orozco, A., Molina, B., Torres, L., Rodríguez, A., & Frias, S. (2025). High Burden of Non-Clonal Chromosome Aberrations Before Onset of Detectable Neoplasia in Fanconi Anemia Bone Marrow. Cancers, 17(11), 1805. https://doi.org/10.3390/cancers17111805