Single-Cell Sequencing: An Emerging Tool for Biomarker Development in Nuclear Emergencies and Radiation Oncology
Simple Summary
Abstract
1. Introduction
2. Current Biodosimetry Methods
2.1. Biologic Techniques
2.1.1. DCA
2.1.2. Automation in DCA
2.1.3. Other Cytogenetic Biodosimetry Techniques
2.2. Physical Techniques
3. Radiation-Induced Biomarkers
3.1. Systematic Literature Review Methodology
3.2. Recent Biomarker Discoveries
3.3. Emerging High-Throughput Platforms for Biomarker Discovery
4. Single-Cell Sequencing Technology: A New Era for Radiation Biomarker Discovery
4.1. Advantages of Single-Cell Sequencing over Bulk RNA Sequencing
4.2. Technical Approaches for Single-Cell Sequencing
- scRNA-seq for transcriptome profiling;
- Single-cell DNA sequencing for genome analysis;
- Single-cell proteomics for global protein expression profiling in thousands of individual cells.
4.3. scRNA-Seq in Cancer Research
4.4. Potential Applications of scRNA-Seq in Radiation Exposure Scenarios
4.5. scRNA-Seq in Personalized Radiation Therapy and Immune Modulation
5. Discussion
6. Limitations and Future Prospects
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Evans, H.J. Chromosome Aberrations Induced by Ionizing Radiations. In International Review of Cytology; Bourne, G.H., Danielli, J.F., Eds.; Academic Press: Cambridge, MA, USA, 1962; Volume 13, pp. 221–321. [Google Scholar]
- Flegal, F.N.; Devantier, Y.; McNamee, J.P.; Wilkins, R.C. Quickscan dicentric chromosome analysis for radiation biodosimetry. Health Phys. 2010, 98, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Macaeva, E.; Mysara, M.; De Vos, W.H.; Baatout, S.; Quintens, R. Gene expression-based biodosimetry for radiological incidents: Assessment of dose and time after radiation exposure. Int. J. Radiat. Biol. 2019, 95, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Port, M.; Ostheim, P.; Majewski, M.; Voss, T.; Haupt, J.; Lamkowski, A.; Abend, M. Rapid High-Throughput Diagnostic Triage after a Mass Radiation Exposure Event Using Early Gene Expression Changes. Radiat. Res. 2019, 192, 208–218. [Google Scholar] [CrossRef]
- Ostheim, P.; Coker, O.; Schule, S.; Hermann, C.; Combs, S.E.; Trott, K.R.; Atkinson, M.; Port, M.; Abend, M. Identifying a Diagnostic Window for the Use of Gene Expression Profiling to Predict Acute Radiation Syndrome. Radiat. Res. 2021, 195, 38–46. [Google Scholar] [CrossRef]
- REMM. About Dicentric Chromosome Assays. Available online: https://remm.hhs.gov/aboutdicentrics.htm (accessed on 4 June 2024).
- Wuestermann, P.R.; Cronkite, E.P. Physiological and pathophysiological aspects of the immune system contributing to a biomathematical model of lymphocytes. Stem Cells 1995, 13 (Suppl. S1), 268–275. [Google Scholar] [CrossRef]
- Donnelly, E.H.; Nemhauser, J.B.; Smith, J.M.; Kazzi, Z.N.; Farfán, E.B.; Chang, A.S.; Naeem, S.F. Acute radiation syndrome: Assessment and management. South. Med. J. 2010, 103, 541–546. [Google Scholar] [CrossRef]
- Mirrezaei, E.; Setayeshi, S.; Zakeri, F.; Baradaran, S. Construction and Validation of in Vitro Dose-Response Calibration Curve Using Dicentric Chromosome Aberration. Radiat. Prot. Dosim. 2020, 189, 198–204. [Google Scholar] [CrossRef]
- Meenakshi, C.; Venkatachalam, P.; Chandrasekaran, S.; Venkatraman, B. Construction of dose response curve for 6 MV LINAC X-rays using Premature Chromosome Condensation assay for radiation dosimetry. Appl. Radiat. Isot. 2021, 173, 109729. [Google Scholar] [CrossRef]
- IAEA. Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies, Emergency Preparedness and Response; International Atomic Energy Agency: Vienna, Austria, 2011. [Google Scholar]
- M’Kacher, R.; Colicchio, B.; Junker, S.; El Maalouf, E.; Heidingsfelder, L.; Plesch, A.; Dieterlen, A.; Jeandidier, E.; Carde, P.; Voisin, P. High Resolution and Automatable Cytogenetic Biodosimetry Using In Situ Telomere and Centromere Hybridization for the Accurate Detection of DNA Damage: An Overview. Int. J. Mol. Sci. 2023, 24, 5699. [Google Scholar] [CrossRef]
- Brewen, J.G.; Peacock, W.J. Restricted rejoining of chromosomal subunits in aberration formation: A test for subunit dissimilarity. Proc. Natl. Acad. Sci. USA 1969, 62, 389–394. [Google Scholar] [CrossRef]
- Jeong, S.K.; Oh, S.J.; Kim, S.H.; Jang, S.; Kang, Y.R.; Kim, H.; Kye, Y.U.; Lee, S.H.; Lee, C.G.; Park, M.T.; et al. Dicentric chromosome assay using a deep learning-based automated system. Sci. Rep. 2022, 12, 22097. [Google Scholar] [CrossRef] [PubMed]
- Manivannan, B.; Kuppusamy, T.; Venkatesan, S.; Perumal, V. A comparison of estimates of doses to radiotherapy patients obtained with the dicentric chromosome analysis and the gamma-H2AX assay: Relevance to radiation triage. Appl. Radiat. Isot. 2018, 131, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Maznyk, N.A.; Wilkins, R.C.; Carr, Z.; Lloyd, D.C. The capacity, capabilities and needs of the WHO BioDoseNet member laboratories. Radiat. Prot. Dosim. 2012, 151, 611–620. [Google Scholar] [CrossRef]
- Wilkins, R.C.; Romm, H.; Oestreicher, U.; Marro, L.; Yoshida, M.A.; Suto, Y.; Prasanna, P.G. Biological Dosimetry by the Triage Dicentric Chromosome Assay—Further validation of International Networking. Radiat. Meas. 2011, 46, 923–928. [Google Scholar] [CrossRef]
- Ryan, T.L.; Escalona, M.B.; Smith, T.L.; Albanese, J.; Iddins, C.J.; Balajee, A.S. Optimization and validation of automated dicentric chromosome analysis for radiological/nuclear triage applications. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2019, 847, 503087. [Google Scholar] [CrossRef]
- Rogan, P.K.; Li, Y.; Wickramasinghe, A.; Subasinghe, A.; Caminsky, N.; Khan, W.; Samarabandu, J.; Wilkins, R.; Flegal, F.; Knoll, J.H. Automating dicentric chromosome detection from cytogenetic biodosimetry data. Radiat. Prot. Dosim. 2014, 159, 95–104. [Google Scholar] [CrossRef]
- Shen, X.; Qi, Y.; Ma, T.; Zhou, Z. A dicentric chromosome identification method based on clustering and watershed algorithm. Sci. Rep. 2019, 9, 2285. [Google Scholar] [CrossRef]
- Wadhwa, A.S.; Tyagi, N.; Chowdhury, P.R. Deep Learning based Automatic Detection of Dicentric Chromosome. arXiv 2022, arXiv:2204.08029. [Google Scholar]
- Kim, K.; Kim, K.S.; Jang, W.I.; Jang, S.; Hwang, G.T.; Woo, S.K. Deep Neural Network-Based Automatic Dicentric Chromosome Detection Using a Model Pretrained on Common Objects. Diagnostics 2023, 13, 3191. [Google Scholar] [CrossRef]
- Grégoire, E.; Roy, L.; Buard, V.; Delbos, M.; Durand, V.; Martin-Bodiot, C.; Voisin, P.; Sorokine-Durm, I.; Vaurijoux, A.; Voisin, P.; et al. Twenty years of FISH-based translocation analysis for retrospective ionizing radiation biodosimetry. Int. J. Radiat. Biol. 2018, 94, 248–258. [Google Scholar] [CrossRef]
- Bauchinger, M.; Salassidis, K.; Braselmann, H.; Vozilova, A.; Pressl, S.; Stephan, G.; Snigiryova, G.; Kozheurov, V.P.; Akleyev, A. FISH-based analysis of stable translocations in a Techa River population. Int. J. Radiat. Biol. 1998, 73, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Camparoto, M.L.; Ramalho, A.T.; Natarajan, A.T.; Curado, M.P.; Sakamoto-Hojo, E.T. Translocation analysis by the FISH-painting method for retrospective dose reconstruction in individuals exposed to ionizing radiation 10 years after exposure. Mutat. Res. 2003, 530, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Straume, T.; Lucas, J.N. A Comparison of the Yields of Translocations and Dicentrics Measured Using Fluorescence in Situ Hybridization. Int. J. Radiat. Biol. 1993, 64, 185–187. [Google Scholar] [CrossRef]
- Hittelman, W.N.; Rao, P.N. Premature chromosome condensation I. Visualization of X-ray-induced chromosome damage in interphase cells. Mutat. Res. Fundam. Mol. Mech. Mutagen. 1974, 23, 251–258. [Google Scholar] [CrossRef]
- Witkowski, R.; Anger, H. Premature chromosome condensation in irradiated man. Hum. Genet. 1976, 34, 65–68. [Google Scholar] [CrossRef]
- Obe, G.; Beek, B. The human leulocyte test system. VII. Further investigations concerning micronucleus-derived premature chromosome condensation. Humangenetik 1975, 30, 143–154. [Google Scholar] [CrossRef]
- Fenech, M.; Morley, A.A. Cytokinesis-block micronucleus method in human lymphocytes: Effect of in vivo ageing and low dose X-irradiation. Mutat. Res. 1986, 161, 193–198. [Google Scholar] [CrossRef]
- Fenech, M. The lymphocyte cytokinesis-block micronucleus cytome assay and its application in radiation biodosimetry. Health Phys. 2010, 98, 234–243. [Google Scholar] [CrossRef]
- Azzam, E.I.; de Toledo, S.M.; Little, J.B. Direct evidence for the participation of gap junction-mediated intercellular communication in the transmission of damage signals from alpha -particle irradiated to nonirradiated cells. Proc. Natl. Acad. Sci. USA 2001, 98, 473–478. [Google Scholar] [CrossRef]
- Swartz, H.M.; Flood, A.B.; Singh, V.K.; Swarts, S.G. Scientific and Logistical Considerations When Screening for Radiation Risks by Using Biodosimetry Based on Biological Effects of Radiation Rather than Dose: The Need for Prior Measurements of Homogeneity and Distribution of Dose. Health Phys. 2020, 119, 72–82. [Google Scholar] [CrossRef]
- Kaladi, M.R.; Poldy, A.; Mukherjee, S.; Carpenter, A.D.; Singh, V.K. Multi-faceted approach for identifying biomarkers for radiation injury and regulatory approval of radiation medical countermeasures. Eur. Phys. J. Spec. Top. 2025. [Google Scholar] [CrossRef]
- Swartz, H.M.; Flood, A.B. EPR biodosimetry: Challenges and opportunities. Radiat. Prot. Dosim. 2023, 199, 1441–1449. [Google Scholar] [CrossRef] [PubMed]
- Winters, T.A.; Taliaferro, L.P.; Satyamitra, M.M. Development of Biomarkers for Radiation Biodosimetry and Medical Countermeasures Research: Current Status, Utility, and Regulatory Pathways. Radiat. Res. 2022, 197, 554–558. [Google Scholar] [CrossRef]
- Shakyawar, S.K.; Mishra, N.K.; Vellichirammal, N.N.; Cary, L.; Helikar, T.; Powers, R.; Oberley-Deegan, R.E.; Berkowitz, D.B.; Bayles, K.W.; Singh, V.K.; et al. A Review of Radiation-Induced Alterations of Multi-Omic Profiles, Radiation Injury Biomarkers, and Countermeasures. Radiat. Res. 2023, 199, 89–111. [Google Scholar] [CrossRef]
- Singh, V.K.; Seed, T.M.; Cheema, A.K. Metabolomics-based predictive biomarkers of radiation injury and countermeasure efficacy: Current status and future perspectives. Expert Rev. Mol. Diagn. 2021, 21, 641–654. [Google Scholar] [CrossRef]
- Singh, V.K.; Newman, V.L.; Romaine, P.L.; Hauer-Jensen, M.; Pollard, H.B. Use of biomarkers for assessing radiation injury and efficacy of countermeasures. Expert Rev. Mol. Diagn. 2016, 16, 65–81. [Google Scholar] [CrossRef]
- Rothkamm, K.; Horn, S. gamma-H2AX as protein biomarker for radiation exposure. Ann. Ist. Super. Sanita 2009, 45, 265–271. [Google Scholar]
- Satyamitra, M.M.; DiCarlo, A.L.; Hollingsworth, B.A.; Winters, T.A.; Taliaferro, L.P. Development of Biomarkers for Radiation Biodosimetry and Medical Countermeasures Research: Current Status, Utility, and Regulatory Pathways. Radiat. Res. 2022, 197, 514–532. [Google Scholar] [CrossRef]
- Guipaud, O. Serum and Plasma Proteomics and Its Possible Use as Detector and Predictor of Radiation Diseases. In Radiation Proteomics: The Effects of Ionizing and Non-Ionizing Radiation on Cells and Tissues; Leszczynski, D., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 61–86. [Google Scholar] [CrossRef]
- Kwak, S.Y.; Park, J.H.; Won, H.Y.; Jang, H.; Lee, S.B.; Jang, W.I.; Park, S.; Kim, M.J.; Shim, S. CXCL10 upregulation in radiation-exposed human peripheral blood mononuclear cells as a candidate biomarker for rapid triage after radiation exposure. Int. J. Radiat. Biol. 2024, 100, 541–549. [Google Scholar] [CrossRef]
- He, L.; Zhou, S.; Li, W.; Wang, Q.; Qi, Z.; Zhou, P.; Wang, Z.; Chen, J.; Li, Y.; Lin, Z. BPIFA2 as a Novel Early Biomarker to Identify Fatal Radiation Injury After Radiation Exposure. Dose Response 2022, 20, 15593258221086478. [Google Scholar] [CrossRef]
- Huang, J.; Qi, Z.; Chen, M.; Xiao, T.; Guan, J.; Zhou, M.; Wang, Q.; Lin, Z.; Wang, Z. Serum amyloid A1 as a biomarker for radiation dose estimation and lethality prediction in irradiated mouse. Ann. Transl. Med. 2019, 7, 715. [Google Scholar] [CrossRef] [PubMed]
- Dinets, A.; Hulchiy, M.; Sofiadis, A.; Ghaderi, M.; Hoog, A.; Larsson, C.; Zedenius, J. Clinical, genetic, and immunohistochemical characterization of 70 Ukrainian adult cases with post-Chornobyl papillary thyroid carcinoma. Eur. J. Endocrinol. 2012, 166, 1049–1060. [Google Scholar] [CrossRef] [PubMed]
- Minchenko, J.M.; Dyagil, I.S.; Dmytrenko, O.O.; Dmytrenko, I.V.; Shlaykhtychenko, T.Y.; Gavrylenko, T.I.; Biliy, D.O.; Khomenko, V.I.; Bebeshko, V.G. Role of radiosensitivity and radioresistance genetic markers in hematological and cardiovascular disease in persons exposed after the Chornobyl accident. Probl. Radiat. Med. Radiobiol. 2013, 18, 220–231. [Google Scholar]
- Costa, E.O.A.; Pinto, I.P.; Goncalves, M.W.; da Silva, J.F.; Oliveira, L.G.; da Cruz, A.S.; Silva, D.M.E.; da Silva, C.C.; Pereira, R.W.; da Cruz, A.D. Small de novo CNVs as biomarkers of parental exposure to low doses of ionizing radiation of caesium-137. Sci. Rep. 2018, 8, 5914. [Google Scholar] [CrossRef]
- Leite Filho, H.P.; Pinto, I.P.; Oliveira, L.G.; Costa, E.O.A.; da Cruz, A.S.; DM, E.S.; da Silva, C.C.; Caetano, A.R.; da Cruz, A.D. Deviation from Mendelian transmission of autosomal SNPs can be used to estimate germline mutations in humans exposed to ionizing radiation. PLoS ONE 2020, 15, e0233941. [Google Scholar] [CrossRef]
- Tobiasz, J.; Al-Harbi, N.; Bin Judia, S.; Majid Wakil, S.; Polanska, J.; Alsbeih, G. Multivariate piecewise linear regression model to predict radiosensitivity using the association with the genome-wide copy number variation. Front. Oncol. 2023, 13, 1154222. [Google Scholar] [CrossRef]
- Dom, G.; Tarabichi, M.; Unger, K.; Thomas, G.; Oczko-Wojciechowska, M.; Bogdanova, T.; Jarzab, B.; Dumont, J.E.; Detours, V.; Maenhaut, C. A gene expression signature distinguishes normal tissues of sporadic and radiation-induced papillary thyroid carcinomas. Br. J. Cancer 2012, 107, 994–1000. [Google Scholar] [CrossRef]
- Manning, G.; Kabacik, S.; Finnon, P.; Bouffler, S.; Badie, C. High and low dose responses of transcriptional biomarkers in ex vivo X-irradiated human blood. Int. J. Radiat. Biol. 2013, 89, 512–522. [Google Scholar] [CrossRef]
- Chi, C.; Tian, R.; Liu, H.; Wang, H.; Wei, J.; Guo, J.; Guo, F.; Li, S. Follow-up study of abnormal biological indicators and gene expression in the peripheral blood of three accidentally exposed persons. J. Radiat. Res. 2013, 54, 840–851. [Google Scholar] [CrossRef]
- Selmansberger, M.; Feuchtinger, A.; Zurnadzhy, L.; Michna, A.; Kaiser, J.C.; Abend, M.; Brenner, A.; Bogdanova, T.; Walch, A.; Unger, K.; et al. CLIP2 as radiation biomarker in papillary thyroid carcinoma. Oncogene 2015, 34, 3917–3925. [Google Scholar] [CrossRef]
- Selmansberger, M.; Kaiser, J.C.; Hess, J.; Güthlin, D.; Likhtarev, I.; Shpak, V.; Tronko, M.; Brenner, A.; Abend, M.; Blettner, M.; et al. Dose-dependent expression of CLIP2 in post-Chernobyl papillary thyroid carcinomas. Carcinogenesis 2015, 36, 748–756. [Google Scholar] [CrossRef] [PubMed]
- Rudqvist, N.; Schuler, E.; Parris, T.Z.; Langen, B.; Helou, K.; Forssell-Aronsson, E. Dose-specific transcriptional responses in thyroid tissue in mice after (131)I administration. Nucl. Med. Biol. 2015, 42, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Macaeva, E.; Saeys, Y.; Tabury, K.; Janssen, A.; Michaux, A.; Benotmane, M.A.; De Vos, W.H.; Baatout, S.; Quintens, R. Radiation-induced alternative transcription and splicing events and their applicability to practical biodosimetry. Sci. Rep. 2016, 6, 19251. [Google Scholar] [CrossRef]
- Ilienko, I.M.; Golyarnik, N.A.; Lyaskivska, O.V.; Belayev, O.A.; Bazyka, D.A. Expression of biological markers induced by ionizing radiation at the late period after exposure in a wide range of doses. Probl. Radiat. Med. Radiobiol. 2018, 23, 331–350. [Google Scholar] [CrossRef]
- Bazyka, D.; Ilienko, I.; Golyarnik, N.; Belyaev, O.; Lyaskivska, O. Gene Expression and Cellular Markers of Occupational Radiation Exposure in Chernobyl Shelter Construction Workers. Health Phys. 2020, 119, 37–43. [Google Scholar] [CrossRef]
- Savli, H.; Akkoyunlu, R.U.; Cine, N.; Gluzman, D.F.; Zavelevich, M.P.; Sklyarenko, L.M.; Koval, S.V.; Sunnetci, D. Deregulated Levels of the NF-kappaB1, NF-kappaB2, and Rel Genes in Ukrainian Patients with Leukemia and Lymphoma in the Post-Chernobyl Period. Turk. J. Haematol. 2016, 33, 8–14. [Google Scholar] [CrossRef]
- Ghandhi, S.A.; Smilenov, L.; Shuryak, I.; Pujol-Canadell, M.; Amundson, S.A. Discordant gene responses to radiation in humans and mice and the role of hematopoietically humanized mice in the search for radiation biomarkers. Sci. Rep. 2019, 9, 19434. [Google Scholar] [CrossRef]
- Selmansberger, M.; Michna, A.; Braselmann, H.; Hofig, I.; Schorpp, K.; Weber, P.; Anastasov, N.; Zitzelsberger, H.; Hess, J.; Unger, K. Transcriptome network of the papillary thyroid carcinoma radiation marker CLIP2. Radiat. Oncol. 2020, 15, 182. [Google Scholar] [CrossRef]
- Zhao, L.; He, X.; Shang, Y.; Bao, C.; Peng, A.; Lei, X.; Han, P.; Mi, D.; Sun, Y. Identification of potential radiation-responsive biomarkers based on human orthologous genes with possible roles in DNA repair pathways by comparison between Arabidopsis thaliana and homo sapiens. Sci. Total Environ. 2020, 702, 135076. [Google Scholar] [CrossRef]
- Ostheim, P.; Miederer, M.; Schreckenberger, M.; Nestler, T.; Hoffmann, M.A.; Lassmann, M.; Eberlein, U.; Barsegian, V.; Rump, A.; Majewski, M.; et al. mRNA and small RNA gene expression changes in peripheral blood to detect internal Ra-223 exposure. Int. J. Radiat. Biol. 2022, 98, 900–912. [Google Scholar] [CrossRef]
- Larsson, M.; Rudqvist, N.P.; Spetz, J.; Parris, T.Z.; Langen, B.; Helou, K.; Forssell-Aronsson, E. Age-related long-term response in rat thyroid tissue and plasma after internal low dose exposure to (131)I. Sci. Rep. 2022, 12, 2107. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y. The characteristic of stem-related genes with pancreatic carcinoma cell after irradiation. Heliyon 2023, 9, e17074. [Google Scholar] [CrossRef] [PubMed]
- Jacob, N.K.; Cooley, J.V.; Yee, T.N.; Jacob, J.; Alder, H.; Wickramasinghe, P.; Maclean, K.H.; Chakravarti, A. Identification of sensitive serum microRNA biomarkers for radiation biodosimetry. PLoS ONE 2013, 8, e57603. [Google Scholar] [CrossRef] [PubMed]
- Halimi, M.; Parsian, H.; Asghari, S.M.; Sariri, R.; Moslemi, D.; Yeganeh, F.; Zabihi, E. Clinical translation of human microRNA 21 as a potential biomarker for exposure to ionizing radiation. Transl. Res. 2014, 163, 578–584. [Google Scholar] [CrossRef]
- Acharya, S.S.; Fendler, W.; Watson, J.; Hamilton, A.; Pan, Y.; Gaudiano, E.; Moskwa, P.; Bhanja, P.; Saha, S.; Guha, C.; et al. Serum microRNAs are early indicators of survival after radiation-induced hematopoietic injury. Sci. Transl. Med. 2015, 7, 287ra269. [Google Scholar] [CrossRef]
- Ancel, L.; Gabillot, O.; Szurewsky, C.; Granger, R.; Sache, A.; Voyer, F.; Gruel, G.; Illiano, S.; Benderitter, M.; Le Guen, B.; et al. microRNA blood signature for localized radiation injury. Sci. Rep. 2024, 14, 2681. [Google Scholar] [CrossRef]
- Fendler, W.; Malachowska, B.; Meghani, K.; Konstantinopoulos, P.A.; Guha, C.; Singh, V.K.; Chowdhury, D. Evolutionarily conserved serum microRNAs predict radiation-induced fatality in nonhuman primates. Sci. Transl. Med. 2017, 9, eaal2408. [Google Scholar] [CrossRef]
- Herodin, F.; Valente, M.; Abend, M. Useful radiation dose biomarkers for early identification of partial-body exposures. Health Phys. 2014, 106, 750–754. [Google Scholar] [CrossRef]
- Li, M.J.; Cui, F.M.; Cheng, Y.; Sun, D.; Zhou, P.K.; Min, R. Changes in the adhesion and migration ability of peripheral blood cells: Potential biomarkers indicating exposure dose. Health Phys. 2014, 107, 242–247. [Google Scholar] [CrossRef]
- Ilienko, I.M.; Lyaskivska, O.V.; Belayev, O.A.; Pleskach, O.Y.; Shinkarenko, V.I.; Bazyka, D.A. Impact of chronic blood viral infection on lymphocyte telomere length in Chornobyl clean-up workers in a remote period after radiation exposure. Probl. Radiat. Med. Radiobiol. 2017, 22, 372–381. [Google Scholar] [CrossRef]
- Stepanova, Y.I.; Kolpakov, I.Y.; Alokhina, S.M.; Vdovenko, V.Y.; Zyhalo, V.M.; Leonovych, O.S. Function of External Respiration and Markers of Oxidative Stress in Children-Residents of Radioactively Contaminated Territories. Probl. Radiat. Med. Radiobiol. 2019, 24, 480–492. [Google Scholar] [CrossRef] [PubMed]
- Helmig, S.; Lochnit, G.; Schneider, J. Comparative proteomic analysis in serum of former uranium miners with and without radon induced squamous lung cancer. J. Occup. Med. Toxicol. 2019, 14, 9. [Google Scholar] [CrossRef] [PubMed]
- Balog, R.P.; Chang, P.; Javitz, H.S.; Lee, S.; Lin, H.; Shaler, T.; Cooper, D.E. Development of a point-of-care radiation biodosimeter: Studies using novel protein biomarker panels in non-human primates. Int. J. Radiat. Biol. 2020, 96, 35–46. [Google Scholar] [CrossRef]
- Sun, J.-L.; Li, S.; Lu, X.; Feng, J.-B.; Cai, T.-J.; Tian, M.; Liu, Q.-J. Identification of the differentially expressed protein biomarkers in rat blood plasma in response to gamma irradiation. Int. J. Radiat. Biol. 2020, 96, 748–758. [Google Scholar] [CrossRef]
- Wang, Q.; Pujol-Canadell, M.; Taveras, M.; Garty, G.; Perrier, J.; Bueno-Beti, C.; Shuryak, I.; Brenner, D.J.; Turner, H.C. DNA damage response in peripheral mouse blood leukocytes in vivo after variable, low-dose rate exposure. Radiat. Environ. Biophys. 2020, 59, 89–98. [Google Scholar] [CrossRef]
- Sproull, M.; Hayes, J.; Ishiniwa, H.; Nanba, K.; Shankavaram, U.; Camphausen, K.; Johnson, T.E. Proteomic Biomarker Analysis of Serum from Japanese Field Mice (Apodemus Speciosus) Collected within the Fukushima Difficult-to-return Zone. Health Phys. 2021, 121, 564–573. [Google Scholar] [CrossRef]
- Bogdanova, T.; Rogounovitch, T.I.; Zurnadzhy, L.; Mitsutake, N.; Tronko, M.; Ito, M.; Bolgov, M.; Chernyshov, S.; Gulevatyi, S.; Masiuk, S.; et al. Characteristics and immune checkpoint status of radioiodine-refractory recurrent papillary thyroid carcinomas from Ukrainian Chornobyl Tissue Bank donors. Front. Endocrinol. 2023, 14, 1343848. [Google Scholar] [CrossRef]
- Li, S.; Zhang, W.; Zhang, H.; Fan, Y.; Jia, M.; Qi, Z.; Shen, L.; He, S.; Wang, Z.; Wang, Q.; et al. Serum sSelectin-L is an early specific indicator of radiation injury. Heliyon 2024, 10, e30527. [Google Scholar] [CrossRef]
- Kanagaraj, K.; Phillippi, M.A.; Ober, E.H.; Shuryak, I.; Kleiman, N.J.; Olson, J.; Schaaf, G.; Cline, J.M.; Turner, H.C. BAX and DDB2 as biomarkers for acute radiation exposure in the human blood ex vivo and non-human primate models. Sci. Rep. 2024, 14, 19345. [Google Scholar] [CrossRef]
- Grison, S.; Martin, J.C.; Grandcolas, L.; Banzet, N.; Blanchardon, E.; Tourlonias, E.; Defoort, C.; Fave, G.; Bott, R.; Dublineau, I.; et al. The metabolomic approach identifies a biological signature of low-dose chronic exposure to cesium 137. J. Radiat. Res. 2012, 53, 33–43. [Google Scholar] [CrossRef]
- Manens, L.; Grison, S.; Bertho, J.M.; Lestaevel, P.; Gueguen, Y.; Benderitter, M.; Aigueperse, J.; Souidi, M. Chronic exposure of adult, postnatal and in utero rat models to low-dose 137Cesium: Impact on circulating biomarkers. J. Radiat. Res. 2016, 57, 607–619. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Lau, K.K.; Zhou, X.; Wu, J.; Yang, J.; Wang, C. Urinary metabolic signatures and early triage of acute radiation exposure in rat model. Mol. Biosyst. 2017, 13, 756–766. [Google Scholar] [CrossRef] [PubMed]
- Goans, R.E.; Iddins, C.J.; Christensen, D.; Wiley, A.; Dainiak, N. Appearance of pseudo-Pelger Huet anomaly after accidental exposure to ionizing radiation in vivo. Health Phys. 2015, 108, 303–307. [Google Scholar] [CrossRef]
- Goans, R.E.; Iddins, C.J.; Ossetrova, N.I.; Ney, P.H.; Dainiak, N. The Pseudo-Pelger HuEt Cell-A New Permanent Radiation Biomarker. Health Phys. 2017, 112, 252–257. [Google Scholar] [CrossRef]
- Karpova, I.S. Specific interactions between lectins and red blood cells of Chornobyl cleanup workers as indicator of some late radiation effects. Exp. Oncol. 2016, 38, 261–266. [Google Scholar] [CrossRef]
- Bazyka, D.; Ilienko, I.; Sushko, V.; Loganovsky, K.; Lyashenko, L.; Golyarnik, N.; Lyaskivska, O.; Nechaev, S.; Shvayko, L.; Bazyka, K.; et al. Biological Markers of External and Internal Exposure in Shelter Construction Workers: A 13-Year Experience. Radiat. Prot. Dosim. 2018, 182, 146–153. [Google Scholar] [CrossRef]
- Hayes, J.M.; Olson, J.D.; Chino, Y.; Bourland, J.D.; Cline, J.M.; Johnson, T.E. Pseudo Pelger-Huet anomalies as potential biomarkers for acute exposure radiation dose in rhesus macaques (Macaca mulatta). Int. J. Radiat. Biol. 2022, 98, 913–923. [Google Scholar] [CrossRef]
- Jacobs, A.R.; Guyon, T.; Headley, V.; Nair, M.; Ricketts, W.; Gray, G.; Wong, J.Y.C.; Chao, N.; Terbrueggen, R. Role of a high throughput biodosimetry test in treatment prioritization after a nuclear incident. Int. J. Radiat. Biol. 2020, 96, 57–66. [Google Scholar] [CrossRef]
- Maan, K.; Baghel, R.; Dhariwal, S.; Sharma, A.; Bakhshi, R.; Rana, P. Metabolomics and transcriptomics based multi-omics integration reveals radiation-induced altered pathway networking and underlying mechanism. NPJ Syst. Biol. Appl. 2023, 9, 42. [Google Scholar] [CrossRef]
- Huang, R.H.; Wang, L.X.; He, J.; Gao, W. Application and prospects of single cell sequencing in tumors. Biomark. Res. 2021, 9, 88. [Google Scholar] [CrossRef]
- Tang, F.; Barbacioru, C.; Wang, Y.; Nordman, E.; Lee, C.; Xu, N.; Wang, X.; Bodeau, J.; Tuch, B.B.; Siddiqui, A.; et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 2009, 6, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Potter, S.S. Single-cell RNA sequencing for the study of development, physiology and disease. Nat. Rev. Nephrol. 2018, 14, 479–492. [Google Scholar] [CrossRef] [PubMed]
- Gross, A.; Schoendube, J.; Zimmermann, S.; Steeb, M.; Zengerle, R.; Koltay, P. Technologies for Single-Cell Isolation. Int. J. Mol. Sci. 2015, 16, 16897–16919. [Google Scholar] [CrossRef]
- Zhou, W.M.; Yan, Y.Y.; Guo, Q.R.; Ji, H.; Wang, H.; Xu, T.T.; Makabel, B.; Pilarsky, C.; He, G.; Yu, X.Y.; et al. Microfluidics applications for high-throughput single cell sequencing. J. Nanobiotechnol. 2021, 19, 312. [Google Scholar] [CrossRef]
- Kang, H.M.; Subramaniam, M.; Targ, S.; Nguyen, M.; Maliskova, L.; McCarthy, E.; Wan, E.; Wong, S.; Byrnes, L.; Lanata, C.M.; et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat. Biotechnol. 2018, 36, 89–94. [Google Scholar] [CrossRef]
- Kim, J.; Xu, Z.; Marignani, P.A. Single-cell RNA sequencing for the identification of early-stage lung cancer biomarkers from circulating blood. NPJ Genom. Med. 2021, 6, 87. [Google Scholar] [CrossRef]
- Gao, Y.; Duan, Q.; Wu, N.; Xu, B. A heterogeneous cellular response to ionizing radiation revealed by single cell transcriptome sequencing. Am. J. Cancer Res. 2021, 11, 513–529. [Google Scholar]
- Shen, K.Y.; Chen, B.Y.; Gao, W.C. Single-Cell RNA Sequencing Reveals the Role of Epithelial Cell Marker Genes in Predicting the Prognosis of Colorectal Cancer Patients. Dis. Markers 2022, 2022, 8347125. [Google Scholar] [CrossRef] [PubMed]
- Ochocka, N.; Segit, P.; Walentynowicz, K.A.; Wojnicki, K.; Cyranowski, S.; Swatler, J.; Mieczkowski, J.; Kaminska, B. Single-cell RNA sequencing reveals functional heterogeneity of glioma-associated brain macrophages. Nat. Commun. 2021, 12, 1151. [Google Scholar] [CrossRef]
- Fankhauser, R.; Chang, M.; Garrison, Z.; Berryman, R.; Lucero, O.M.; Fuiten, A.; DePatie, N.; Seifert, H.; Kulkarni, R.P. Single-Cell Identification of Melanoma Biomarkers in Circulating Tumor Cells. Cancers 2022, 14, 4921. [Google Scholar] [CrossRef]
- Tang, H.; Yuan, J.; Gong, Y.F.; Zhang, C.Y.; Liu, M.; Luo, S.X. Single-cell transcriptome sequencing reveals potential novel combination of biomarkers for antibody-based cancer therapeutics in hepatocellular carcinoma. Front. Genet. 2022, 13, 928256. [Google Scholar] [CrossRef] [PubMed]
- Sultana, A.; Alam, M.S.; Liu, X.; Sharma, R.; Singla, R.K.; Gundamaraju, R.; Shen, B. Single-cell RNA-seq analysis to identify potential biomarkers for diagnosis, and prognosis of non-small cell lung cancer by using comprehensive bioinformatics approaches. Transl. Oncol. 2023, 27, 101571. [Google Scholar] [CrossRef] [PubMed]
- Tavakol, D.N.; Nash, T.R.; Kim, Y.; He, S.; Fleischer, S.; Graney, P.L.; Brown, J.A.; Liberman, M.; Tamargo, M.; Harken, A.; et al. Modeling and countering the effects of cosmic radiation using bioengineered human tissues. Biomaterials 2023, 301, 122267. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Villanueva, M.; Zhang, Y.; Feiveson, A.; Mistretta, B.; Pan, Y.; Chatterjee, S.; Wu, W.; Clanton, R.; Nelman-Gonzalez, M.; Krieger, S.; et al. Single-Cell RNA-Sequencing Identifies Activation of TP53 and STAT1 Pathways in Human T Lymphocyte Subpopulations in Response to Ex Vivo Radiation Exposure. Int. J. Mol. Sci. 2019, 20, 2316. [Google Scholar] [CrossRef]
- Ponthan, F.; Ubertini, V.; Beale, G. Abstract 1718: Characterization of infiltrating immune cells after irradiation using 10x genomics single cell sequencing. Cancer Res. 2022, 82, 1718. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, W.; Liang, J.; Ma, K.; Chen, P.; Lu, D.; Hao, W. Single cell whole genome sequencing reveals that NFKB1 mutation affects radiotherapy sensitivity in cervical cancer. Oncotarget 2017, 9, 7332. [Google Scholar] [CrossRef]
- Price, J.M.; Prabhakaran, A.; West, C.M.L. Predicting tumour radiosensitivity to deliver precision radiotherapy. Nat. Rev. Clin. Oncol. 2023, 20, 83–98. [Google Scholar] [CrossRef]
- Gkikoudi, A.; Kalospyros, S.A.; Triantopoulou, S.; Logotheti, S.; Softa, V.; Kappas, C.; Theodorou, K.; Laiakis, E.C.; Manda, G.; Terzoudi, G.I.; et al. Molecular Biomarkers for Predicting Cancer Patient Radiosensitivity and Radiotoxicity in Clinical Practice. Appl. Sci. 2023, 13, 12564. [Google Scholar] [CrossRef]
- Jang, B.S.; Han, W.; Kim, I.A. Tumor mutation burden, immune checkpoint crosstalk and radiosensitivity in single-cell RNA sequencing data of breast cancer. Radiother. Oncol. 2020, 142, 202–209. [Google Scholar] [CrossRef]
- Li, G.; Jiang, Y.; Li, G.; Qiao, Q. Comprehensive analysis of radiosensitivity in head and neck squamous cell carcinoma. Radiother. Oncol. 2021, 159, 126–135. [Google Scholar] [CrossRef]
- Chow, J.C.L. Biophysical insights into nanomaterial-induced DNA damage: Mechanisms, challenges, and future directions. AIMS Biophys. 2024, 11, 340–369. [Google Scholar] [CrossRef]
- Gao, C.; Zhang, M.; Chen, L. The Comparison of Two Single-cell Sequencing Platforms: BD Rhapsody and 10x Genomics Chromium. Curr. Genom. 2020, 21, 602–609. [Google Scholar] [CrossRef]
Method | Principle | Dose Sensitivity | Throughput | Application | Limitations | References |
---|---|---|---|---|---|---|
DCA | Dicentric chromosomes (cytogenetics) | >100–200 mGy | Low | Acute exposure, gold standard | Laborious, not for chronic/low doses | [11,12,13,15] |
DCA + AI (e.g., DLADES) | Automated dicentric scoring (deep learning) | <0.1 Gy possible | High | High-throughput, emergency triage | Still under validation | [14,18,19,20,21,22] |
FISH Translocation Analysis | Stable chromosomal translocations | ~100 mGy | Medium | Retrospective analysis | Specialized probes needed | [23,24,25,26] |
PCC Analysis | Chromosome condensation | >1 Gy | Medium | High-dose, non-dividing cells | Limited use in low-dose exposure | [27,28,29] |
CBMN Assay | Micronuclei in lymphocytes | ~50 mGy | Medium | Bystander effect, inter-individual dif. | Requires cytokinesis block | [30,31,32] |
Nail EPR | Free radicals in keratin (physical method) | ~1 Gy | High | Field deployable, non-invasive | Low-dose sensitivity is still improving | [33] |
Tooth EPR | Free radicals in enamel | ~1 Gy | High | Potential triage tool | Requires more validation | [35] |
Biomarker-Based Assays | Gene/protein/metabolite expression changes | Variable | High | Personalized risk assessment | Standardization lacking | [36,37] |
Category | Biomarker(s) |
---|---|
Genome | BRAF mutation [46]; HLA-genetic predisposition [47]; CNV [48]; MD of autosomal SNPs [49]; C-3SFBP, C-7IUVU [50] |
mRNAs | PTC transcriptomic signature [51]; CCNG1, PHPT1 [52]; RET/PTC1 rearrangement [46]; KDR, CEACAM8, OSM [53]; CLIP2 [54,55]; Agpat9, Plau, Prf1, S100a8 genes [56]; gene expression signatures [57,58,59]; NF-κB1, NF-κB2, Rel genes [60]; radiation-responsive “signature” genes [61]; CLIP2-PPIL3 co-expression [62]; ERCC1, ESCO2 [63]; 15 mRNAs [64]; 131I exposure novel biomarkers [65]; GRB7, B2M, PMAIP1 [66]; CXCL10, FDXR [43] |
microRNAs | miRNA-150 [67]; miR-21 [68]; miRNA signatures [69,70]; 5-miRNA composite signature [71] |
Proteins | Low proliferation index [46]; CRP [72]; CD11b+CD13+, CD29+CD13+, cell adhesion and migration [73]; chronic viral infection [74]; intracellular protein parameters [58]; SAA1 [45]; glutathione transferase, glutathione peroxidase [75]; Keratins K1 and K10 [76]; AMY1A, FLT3L, MCP1 [77]; A2m, CHGA, GPX3 [78]; γ-H2AX mean fluorescence intensity [79]; 30+ proteomic biomarkers [80]; BPIFA2 [44]; 131I exposure novel biomarkers [65]; BRAF/NRAS mutation, PD-L1, PD-1, P16INK4A, Ki-67 [81]; serum sSelectin-L [82]; BAX, DDB2 [83] |
Metabolites | 26 metabolite signals [84]; lipid metabolism (postnatal), steroid hormone metabolism (adult) [85]; urinary metabolic signatures [86] |
Cells | CD4+ cells, CD4+/CD8+ ratio [53]; absolute neutrophil count, monocyte count [72]; PHA [87,88]; lectin–erythrocyte interactions [89]; telomere length [58,59,74]; TCR-CD4+, γ-H2AX+, and CyclinD1+ cell counts [90]; cellular immunity [58]; PPHA [91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Khan, M.G.M.; Mayassi, N.; Kaushal, B.; Wang, Y. Single-Cell Sequencing: An Emerging Tool for Biomarker Development in Nuclear Emergencies and Radiation Oncology. Cancers 2025, 17, 1801. https://doi.org/10.3390/cancers17111801
Yu J, Khan MGM, Mayassi N, Kaushal B, Wang Y. Single-Cell Sequencing: An Emerging Tool for Biomarker Development in Nuclear Emergencies and Radiation Oncology. Cancers. 2025; 17(11):1801. https://doi.org/10.3390/cancers17111801
Chicago/Turabian StyleYu, Jihang, Md Gulam Musawwir Khan, Nada Mayassi, Bhuvnesh Kaushal, and Yi Wang. 2025. "Single-Cell Sequencing: An Emerging Tool for Biomarker Development in Nuclear Emergencies and Radiation Oncology" Cancers 17, no. 11: 1801. https://doi.org/10.3390/cancers17111801
APA StyleYu, J., Khan, M. G. M., Mayassi, N., Kaushal, B., & Wang, Y. (2025). Single-Cell Sequencing: An Emerging Tool for Biomarker Development in Nuclear Emergencies and Radiation Oncology. Cancers, 17(11), 1801. https://doi.org/10.3390/cancers17111801