Electrochemotherapy in the Management of Keratinocyte Carcinomas: A Systematic Review
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy and Study Selection
2.2. Data Extraction
2.3. Quality Assessment
2.4. Statistical Analysis
3. Results
3.1. Included Studies
3.2. Risk of Bias of Included Studies
3.3. Patient and Tumor Characteristics
3.4. Treatment Characteristics
3.5. Outcomes
3.5.1. Tumor Response
3.5.2. Internal Comparisons
3.5.3. Toxicity
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Apalla, Z.; Lallas, A.; Sotiriou, E.; Lazaridou, E.; Ioannides, D. Epidemiological trends in skin cancer. Dermatol. Pract. Concept. 2017, 7, 1–6. [Google Scholar] [CrossRef]
- Parker, E.R. The influence of climate change on skin cancer incidence—A review of the evidence. Int. J. Women’s Dermatol. 2021, 7, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Keohane, S.G.; Botting, J.; Budny, P.G.; Dolan, O.M.; Fife, K.; Harwood, C.A.; Mallipeddi, R.; Marsden, J.R.; Mustapa, M.F.M.; Exton, L.S.; et al. British Association of Dermatologists guidelines for the management of people with cutaneous squamous cell carcinoma 2020. Br. J. Dermatol. 2021, 184, 401–414. [Google Scholar] [CrossRef] [PubMed]
- Villani, A.; Cinelli, E.; Fabbrocini, G.; Lallas, A.; Scalvenzi, M. Hedgehog inhibitors in the treatment of advanced basal cell carcinoma: Risks and benefits. Expert Opin. Drug Saf. 2020, 19, 1585–1594. [Google Scholar] [CrossRef]
- Kim, J.Y.S.; Kozlow, J.H.; Mittal, B.; Moyer, J.; Olenecki, T.; Rodgers, P. Guidelines of care for the management of cutaneous squamous cell carcinoma. J. Am. Acad. Dermatol. 2018, 78, 560–578. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.; Savas, J.; Doerfler, L. Current Basal and Squamous Cell Skin Cancer Management. Plast. Reconstr. Surg. 2018, 142, 373e–387e. [Google Scholar]
- Collins, A.; Savas, J.; Doerfler, L. Nonsurgical Treatments for Nonmelanoma Skin Cancer. Dermatol. Clin. 2019, 37, 435–441. [Google Scholar] [CrossRef]
- Doan, H.Q.; Chen, L.; Nawas, Z.; Lee, H.H.; Silapunt, S.; Migden, M. Switching Hedgehog inhibitors and other strategies to address resistance when treating advanced basal cell carcinoma. Oncotarget 2021, 12, 2089–2100. [Google Scholar] [CrossRef]
- Almeida, V.; Pires, D.; Silva, M.; Teixeira, M.; Teixeira, R.J.; Louro, A.; Teixeira, A. Dermatological Side Effects of Cancer Treatment: Psychosocial Implications—A Systematic Review of the Literature. Healthcare 2023, 11, 2621. [Google Scholar] [CrossRef]
- Mir, L.M.; Orlowski, S.; Belehradek, J., Jr.; Paoletti, C. Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses. Eur. J. Cancer Clin. Oncol. 1991, 27, 68–72. [Google Scholar] [CrossRef]
- Heller, R.; Jaroszeski, M.J.; Reintgen, D.S.; Puleo, C.A.; DeConti, R.C.; Gilbert, R.A.; Glass, L.F. Treatment of cutaneous and subcutaneous tumors with electrochemotherapy using intralesional bleomycin. Cancer 1998, 83, 148–157. [Google Scholar] [CrossRef]
- Gehl, J.; Geertsen, P.F. Efficient palliation of haemorrhaging malignant melanoma skin metastases by electrochemotherapy. Melanoma Res. 2000, 10, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Serša, G.; Štabuc, B.; Cemazar, M.; Miklavcic, D.; Rudolf, Z. Electrochemotherapy with cisplatin: Clinical experience in malignant melanoma patients. Clin. Cancer Res. 2000, 6, 863–867. [Google Scholar]
- Mir, L.M.; Belehradek, M.; Domenge, C.; Orlowski, S.; Poddevin, B.; Belehradek, J., Jr.; Paoletti, C. Electrochemotherapy, a new antitumor treatment: First clinical trial. Comptes Rendus L’academie Des Sciences. Ser. III Sci. Vie 1991, 313, 613–618. [Google Scholar]
- Longo, F.; Perri, F.; Pavone, E.; Aversa, C.; Maglione, M.G.; Guida, A.; Montano, M.; Villano, S.; Daponte, A.; Caponigro, F.; et al. Electrochemotherapy as palliative treatment in patients with advanced head and neck tumours: Outcome analysis in 93 patients treated in a single institution. Oral Oncol. 2019, 92, 77–84. [Google Scholar] [CrossRef]
- Bertino, G.; Sersa, G.; De Terlizzi, F.; Occhini, A.; Plaschke, C.C.; Groselj, A.; Benazzo, M. European Research on Electrochemotherapy in Head and Neck Cancer (EURECA) project: Results of the treatment of skin cancer. Eur. J. Cancer 2016, 63, 41–52. [Google Scholar] [CrossRef]
- Plaschke, C.C.; Bertino, G.; McCaul, J.A.; Grau, J.J.; de Bree, R.; Sersa, G.; Occhini, A.; Benazzo, M.; De Terlizzi, F.; Wessel, I.; et al. European Research on Electrochemotherapy in Head and Neck Cancer (EURECA) project: Results from the treatment of mucosal cancers. Eur. J. Cancer 2017, 87, 172–181. [Google Scholar] [CrossRef]
- Mir, L.M.; Gehl, J.S.; Sersa, G.; Collins, C.G.; Garbay, J.R.; Billard, V.; Marty, M. Standard operating procedures of the electrochemotherapy: Instructions for the use of bleomycin or cisplatin administered either systemically or locally and electric pulses delivered by the CliniporatorTM by means of invasive or non-invasive electrodes. Eur. J. Cancer Suppl. 2006, 4, 14–25. [Google Scholar] [CrossRef]
- Petrelli, F.; Ghidini, A.; Simioni, A.; Campana, L.G. Impact of electrochemotherapy in metastatic cutaneous melanoma: A contemporary systematic review and meta-analysis. Acta Oncol. 2022, 61, 533–544. [Google Scholar] [CrossRef]
- Ferioli, M.; Lancellotta, V.; Perrone, A.M.; Arcelli, A.; Galuppi, A.; Strigari, L.; Tagliaferri, L.; Morganti, A.G. Electrochemotherapy of skin metastases from malignant melanoma: A PRISMA-compliant systematic review. Clin. Exp. Metastasis 2022, 39, 743–755. [Google Scholar] [CrossRef]
- Hendel, K.; Jemec, G.B.E.; Haedersdal, M.; Wiegell, S.R. Electrochemotherapy with bleomycin for basal cell carcinomas: A systematic review. J. Eur. Acad. Dermatol. Venereol. 2021, 35, 2208–2215. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Higgins, J.P. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Higgins, J.P. RoB 2: A revised tool for assessing risk of bias in randomised trials. bmj 2019, 366, l4898. [Google Scholar] [CrossRef]
- Higgins, J.P. Cochrane Handbook for Systematic Reviews of Interventions; John Wiley and Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Clover, A.J.P.; Salwa, S.P.; Bourke, M.G.; McKiernan, J.; Forde, P.F.; O’Sullivan, S.T.; Kelly, E.J.; Soden, D.M. Electrochemotherapy for the treatment of primary basal cell carcinoma; A randomised control trial comparing electrochemotherapy and surgery with five year follow up. Eur. J. Surg. Oncol. 2020, 46, 847–854. [Google Scholar] [CrossRef] [PubMed]
- Pichi, B.; Pellini, R.; Virgilio, A.D.E.; Spriano, G. Electrochemotherapy: A well-accepted palliative treatment by patients with head and neck tumours. Acta Otorhinolaryngol. Ital. 2018, 38, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Lyons, P.; Polini, D.; Russell-Ryan, K.; Clover, A.J.P. High-Frequency Electroporation and Chemotherapy for the Treatment of Cutaneous Malignancies: Evaluation of Early Clinical Response. Cancers 2023, 15, 3212. [Google Scholar] [CrossRef]
- Solari, N.; Spagnolo, F.; Ponte, E.; Quaglia, A.; Lillini, R.; Battista, M.; Queirolo, P.; Cafiero, F. Electrochemotherapy for the management of cutaneous and subcutaneous metastasis: A series of 39 patients treated with palliative intent. J. Surg. Oncol. 2014, 109, 270–274. [Google Scholar] [CrossRef]
- Kis, E.G.; Baltás, E.; Ócsai, H.; Vass, A.; Németh, I.B.; Varga, E.; Oláh, J.; Kemény, L.; Tóth-Molnár, E. Electrochemotherapy in the treatment of locally advanced or recurrent eyelid-periocular basal cell carcinomas. Sci. Rep. 2019, 9, 4285. [Google Scholar] [CrossRef]
- Campana, L.G.; Testori, A.; Curatolo, P.; Quaglino, P.; Mocellin, S.; Bonadies, A. Treatment efficacy with electrochemotherapy: A multi-institutional prospective observational study on 376 patients with superficial tumors. Eur. J. Surg. Oncol. 2016, 42, 1914–1923. [Google Scholar] [CrossRef]
- Bertino, G.; Muir, T.; Odili, J.; Groselj, A.; Marconato, R.; Curatolo, P.; Kis, E.; Group, T.I.B.W. Treatment of Basal Cell Carcinoma with Electrochemotherapy: Insights from the InspECT Registry (2008–2019). Curr. Oncol. 2022, 29, 5324–5337. [Google Scholar] [CrossRef]
- Jamsek, C.; Sersa, G.; Bosnjak, M.; Groselj, A. Long Term Response of Electrochemotherapy with Reduced Dose of Bleomycin in Elderly Patients with Head and Neck Non-melanoma Skin Cancer. Radiol. Oncol. 2020, 54, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Groselj, A.; Bosnjak, M.; Strojan, P.; Krzan, M.; Cemazar, M.; Sersa, G. Efficiency of electrochemotherapy with reduced bleomycin dose in the treatment of nonmelanoma head and neck skin cancer: Preliminary results. Head Neck 2018, 40, 120–125. [Google Scholar] [CrossRef]
- Tomassini, G.M.; Covarelli, P.; Tomassini, M.A.; Corsi, A.; Bianchi, L.; Hansel, K.; Stingeni, L. Electrochemotherapy with intravenous bleomycin for advanced non-melanoma skin cancers and for cutaneous and subcutaneous metastases from melanoma. G. Ital. Dermatol. Venereol. 2016, 151, 499–506. [Google Scholar]
- Claussen, C.S.; Moir, G.; Bechara, F.G.; Orlando, A.; Matteucci, P.; Mowatt, D.; Kunte, C. Prospective cohort study by InspECT on safety and efficacy of electrochemotherapy for cutaneous tumors and metastases depending on ulceration. J. Ger. Soc. Dermatol. 2022, 20, 470–481. [Google Scholar] [CrossRef] [PubMed]
- Clover, A.J.P.; de Terlizzi, F.; Bertino, G.; Curatolo, P.; Odili, J.; Campana, L.G.; Kunte, C.; Gehl, J. Electrochemotherapy in the treatment of cutaneous malignancy: Outcomes and subgroup analysis from the cumulative results from the pan-European International Network for Sharing Practice in Electrochemotherapy database for 2482 lesions in 987 patients (2008–2019). Eur. J. Cancer 2020, 138, 30–40. [Google Scholar]
- Bertino, G.; Groselj, A.; Campana, L.G.; Kunte, C.; Schepler, H.; Gehl, J.; Sersa, G. Electrochemotherapy for the treatment of cutaneous squamous cell carcinoma: The INSPECT experience (2008–2020). Front. Oncol. 2022, 12, 951662. [Google Scholar] [CrossRef]
- Riva, G.; Salonia, L.; Fassone, E.; Sapino, S.; Piano, F.; Pecorari, G. Quality of Life in Electrochemotherapy for Cutaneous and Mucosal Head and Neck Tumors. J. Clin. Med. 2021, 10, 4366. [Google Scholar] [CrossRef]
- Sersa, G.; Mascherini, M.; Di Prata, C.; Odili, J.; de Terlizzi, F.; McKenzie, G.A.G.; Clover, A.J.P.; Bertino, G.; Campana, L.G. Outcomes of older adults aged 90 and over with cutaneous malignancies after electrochemotherapy with bleomycin: A matched cohort analysis from the InspECT registry. Eur. J. Surg. Oncol. 2021, 47, 902–912. [Google Scholar] [CrossRef] [PubMed]
- Bonadies, A.; Bertozzi, E.; Cristiani, R.; Govoni, F.A.; Migliano, E. Electrochemotherapy in Skin Malignancies of Head and Neck Cancer Patients: Clinical Efficacy and Aesthetic Benefits. Acta Derm.-Venereol. 2019, 99, 1246–1252. [Google Scholar] [CrossRef]
- Campana, L.G.; Marconato, R.; Valpione, S.; Galuppo, S.; Alaibac, M.; Rossi, C.R.; Mocellin, S. Basal cell carcinoma: 10-year experience with electrochemotherapy. J. Transl. Med. 2017, 15, 122. [Google Scholar] [CrossRef]
- Rotunno, R.; Campana, L.G.; Quaglino, P.; de Terlizzi, F.; Kunte, C.; Odili, J.; Gehl, J.; Ribero, S.; Liew, S.H.; Curatolo, P. Electrochemotherapy of unresectable cutaneous tumours with reduced dosages of intravenous bleomycin: Analysis of 57 patients from the International Network for Sharing Practices of Electrochemotherapy registry. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 1147–1154. [Google Scholar] [CrossRef]
- Kreuter, A.; van Eijk, T.; Lehmann, P.; Fischer, M.; Horn, T.; Assaf, C.; Schley, G.; Lommel, K. Electrochemotherapy in advanced skin tumors and cutaneous metastases—A retrospective multicenter analysis. J. Ger. Soc. Dermatol. 2015, 13, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Monta, D.; Caracò, C.; Simeone, E.; Grimaldi, A.M.; Marone, U.; Di Marzo, M.; Vanella, V.; Festino, L.; Ascierto, P.A. Electrochemotherapy efficacy evaluation for treatment of locally advanced stage III cutaneous squamous cell carcinoma: A 22-cases retrospective analysis. J. Transl. Med. 2017, 15, 82. [Google Scholar] [CrossRef] [PubMed]
- Derebaşınlıoğlu, H. Distribution of skin cancers of the head and neck according to anatomical subunit. Eur. Arch. Oto-Rhino-Laryngol. 2021, 279, 1461–1466. [Google Scholar] [CrossRef]
- Bleomycin for Injection USP (Bleomycin Sulphate): Pfizer Canada. Homepage. Available online: https://www.pfizer.ca/en/our-products/bleomycin-injection-usp-bleomycin-sulphate (accessed on 21 May 2025).
- Groselj, A.; Krzan, M.; Kosjek, T.; Bosnjak, M.; Sersa, G.; Cemazar, M.; Groselj, A.; Krzan, M.; Kosjek, T.; Bosnjak, M.; et al. Bleomycin pharmacokinetics of bolus bleomycin dose in elderly cancer patients treated with electrochemotherapy. Cancer Chemother. Pharmacol. 2016, 77, 939–947. [Google Scholar] [CrossRef]
- Gehl, J.; Sersa, G.; Matthiessen, L.W.; Muir, T.; Soden, D.; Dahlstrom, K.; Benazzo, M.; Mir, L.M. Updated standard operating procedures for electrochemotherapy of cutaneous tumours and skin metastases. Acta Oncol. 2018, 57, 874–882. [Google Scholar] [CrossRef]
- Morley, J.; Grocott, P.; Purssell, E.; Murrells, T. Electrochemotherapy for the palliative management of cutaneous metastases: A systematic review and meta-analysis. Eur. J. Surg. Oncol. 2019, 45, 2257–2267. [Google Scholar] [CrossRef]
- Ariffin, A.B.; Forde, P.F.; Jahangeer, S.; Soden, D.M.; Hinchion, J. Releasing pressure in tumors: What do we know so far and where do we go from here? A review. Cancer Res. 2014, 74, 2655–2662. [Google Scholar] [CrossRef] [PubMed]
- Gaudy, C.; Richard, M.A.; Folchetti, G.; Bonerandi, J.J.; Grob, J.J. Randomized controlled study of electrochemotherapy in the local treatment of skin metastases of melanoma. J. Cutan. Med. Surg. 2006, 10, 115–121. [Google Scholar] [CrossRef]
- Heppt, M.V.; Eigentler, T.K.; Kähler, K.C.; Herbst, R.A.; Göppner, D.; Matheis, F.; Tietze, J.K.; Berking, C. Immune checkpoint blockade with concurrent electrochemotherapy in advanced melanoma: A retrospective multicenter analysis. Cancer Immunol. Immunother. CII 2016, 65, 951–959. [Google Scholar] [CrossRef]
- Mir-Bonafé, J.M.; Vilalta, A.; Alarcón, I.; Carrera, C.; Puig, S.; Malvehy, J.; Rull, R.; Bennàssar, A. Electrochemotherapy in the treatment of melanoma skin metastases: A report on 31 cases. Actas Dermo-Sifiliogr. 2015, 106, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Xu, C.; Song, B.; Zhang, S.; Chen, C.; Li, C.; Zhang, S. Tissue fibrosis induced by radiotherapy: Current understanding of the molecular mechanisms, diagnosis and therapeutic advances. J. Transl. Med. 2023, 21, 708. [Google Scholar] [CrossRef] [PubMed]
- Campana, L.G.; Clover, A.J.P.; Valpione, S.; Quaglino, P.; Gehl, J.; Kunte, C.; Sersa, G. Recommendations for improving the quality of reporting clinical electrochemotherapy studies based on qualitative systematic review. Radiol. Oncol. 2016, 50, 1–13. [Google Scholar] [CrossRef] [PubMed]
Study | Design | Disease Stage | Treatment Intent | Number of Participants Treated | Age, Median (Range), Years | Number of Tumors Treated | Tumors per Patient, Median (Range), Number | Site of Tumors | Dimension of Tumors, Median (Range) |
---|---|---|---|---|---|---|---|---|---|
Kis et al. 2019 [29] | Prospective | NR | Curative | 12 | 61.6 a (11–86) | 15 | 1 (1–2) | H-N, trunk, extremities | 12 mm (2–43) |
Clover et al. 2020 [25] | Randomized controlled trial | NR | Curative | ECT: 50 Surgery: 42 | ECT: 66.8 (24–92) a, b Surgery: 63.8 (37–91) a, b | ECT: 69 Surgery: 48 | 1 (81.5%), 2 (14.1%), 3 (3.3%), 7 (1.1%) | NR | ECT: 17 mm2 (2.4–105) Surgery: 14 mm2 (2.5–5) |
Campana et al., 2016 [30] | Prospective | IV (38.3%) c | Curative | 24 | 71 (24–100) c | 1304 c | 3 (1–5) c | H-N, trunk, extremities | 10 mm (6–20) c |
Bertino et al. 2022 [31] | Prospective | NR | Curative | 330 | 72 (23–98) | 623 | 1 (1–7) | H-N, trunk, extremities | 13 mm (5–350) |
Riva et al. 2021 [38] | Retrospective | NR | Palliative | 4 | 78 c | NR | NR | H-N | <30 mm: 27% >30 mm: 63% |
Sersa et al. 2021 [39] | Retrospective | NR | Curative | ≥90 years: 11 <90 years: 22 | ≥90 years: 92 (90–104) c <90 years: 77 (23–89) c | NR | 1 (1–7) c | H-N, trunk, extremities | ≥90 years: 15 mm (5–450) c <90 years: 15 mm (5–500) c |
Jamsek et al. 2020 [32] | Prospective | NR | Curative | Reduced dose: 10 Standard dose: 14 | Reduced dose: 81.5 (67–92) Standard dose: 79.5 (65–89) | Reduced dose: 17 Standard dose: 25 | Reduced dose: 1.5 (1–4) Standard dose: 1 (1–5) | H-N | Reduced dose: 15 mm (7–80) Standard dose: 11 mm (4–50) |
Bonadies et al. 2019 [40] | Retrospective | NS | Curative | 3 | 80 (30–102) c | NR | 1 (37%), ≥2 (63%) c | H-N, trunk, extremities | NR |
Groselj et al. 2018 [33] | Prospective | NR | Curative | Reduced dose: 10 Standard dose: 13 | Reduced dose: 81.5 (67–92) Standard dose: 79.5 (65–89) | Reduced dose: 16 Standard dose: 25 | Reduced dose: 1.5 (1–4) Standard dose: 1 (1–5) | H-N | Reduced dose: 15 mm (7–80) Standard dose: 11 mm (4–50) |
Bertino et al., 2016 [16] | Prospective | I–II (83.8%), III–IV (16.2%) c | Curative | 34 | 77 (39–96) c | 34 | 1 (1) | H-N | ≤30 mm: 91.2% >30 mm: 8.8% |
Tomassini et al., 2016 [34] | Prospective | NR | Curative | 4 | 85 (40–95) | 19 c | NR | H-N | 110 mm (30–180) d |
Claussen et al. 2022 [35] | Prospective | NR | Curative | 193 | 72 a, c | 1784 c | NR | H-N, trunk, extremities | Non-ulcerated lesions: 15 mm (5–450) a Ulcerated lesions: 30 mm (5–500) a |
Lyons et al. 2023 [27] | Single-arm trial | NR | Curative | 25 c | 73.6 a, c | 30 | NR | NR | 3206 mm3 a |
Clover et al. 2020 [36] | Prospective | NR | Curative | 298 | 75 (20–104) c | 567 | NR | H-N, trunk, extremities | 23 mm (5–500) c |
Campana et al. 2017 [41] | Retrospective | I–III (96%), IV (4%) | Palliative | 84 | 69 (24–89) | 185 | 2 (1–3) | H-N, trunk, extremities | 20 mm (5–267) |
Rotunno et al. 2018 [42] | Retrospective | NR | Curative | 10 | 78 (43–97) c | 147 c | 2 (1–7) c | H-N, trunk, extremities | 10 mm (5–190) c |
Solari et al. 2014 [28] | Single-arm trial | NR | Palliative | 2 | 72 (47–91) c | NR | 20 (1–60) c, e | H-N, trunk, extremities | < 20 mm: 43.6% c ≥ 20 mm: 56.4% c |
Study | Design | Disease Stage | Mucosal/Cutaneous | Treatment Intent | Number of Participants Treated | Age, Median (Range), Years | Number of Tumors Treated | Tumors per Patient, Median (Range), Number | Site of Tumors | Dimension of Tumors, Median (Range) |
---|---|---|---|---|---|---|---|---|---|---|
Campana et al., 2016 [30] | Prospective | IV (38.3%) a | Cutaneous | Curative | 41 | 71 (24–100) a | 1304 a | 3 (1–5) a | H-N, trunk, extremities | 10 mm (6–20) a |
Bertino et al. 2022 [37] | Prospective | NS | Cutaneous | Curative | 162 | 80 (41–104) | 342 | 1 (1–7) | H-N, trunk, extremities | 21 mm (5–250) |
Riva et al. 2021 [38] | Retrospective | NR | Cutaneous and mucosal | Palliative | 18 | 78 a | NR | NR | H-N | <30 mm: 27% >30 mm: 63% |
Sersa et al. 2021 [39] | Retrospective | NR | Cutaneous | Curative | ≥90 years: 16 <90 years: 32 | ≥90 years: 92 (90–104) a <90 years: 77 (23–89) a | NR | 1 (1–7) a | H-N, trunk, extremities | ≥90 years: 15 mm (5–450) a <90 years: 15 mm (5–500) a |
Jamsek et al. 2020 [32] | Prospective | NR | Cutaneous | Curative | Reduced dose: 3 Standard dose: 3 | Reduced dose: 82 (76–83) Standard dose: 85 (67–89) | Reduced dose: 7 Standard dose: 3 | Reduced dose: 3 (1–3) Standard dose: 1 (1–2) | H-N | Reduced dose: 10 mm (6–35) Standard dose: 25 mm (22–45) |
Bonadies et al. 2019 [40] | Retrospective | NS | Cutaneous | Curative | 12 | 80 (30–102) a | NR | 1 (37%), ≥2 (63%) a | H-N, trunk, extremities | NR |
Pichi et al. 2018 [26] | Single-arm trial | IV (16.7%) | Cutaneous and mucosal | Palliative | 20 | 72.5 (52–92) | NR | NR | H-N | NR |
Groselj et al. 2018 [33] | Prospective | NR | NS | Curative | Reduced dose: 3 Standard dose: 3 | Reduced dose: 82 (76–83) Standard dose: 85 (67–89) | Reduced dose: 8 Standard dose: 3 | Reduced dose: 3 (2–3) Standard dose: 1 (1–2) | H-N | Reduced dose: 20 mm (6–35) Standard dose: 25 mm (22–45) |
Bertino et al., 2016 [16] | Prospective | I–II (83.8%), III–IV (16.2%) a | NS | Curative | 50 | 77 (39–96) a | 50 | 1 (1) | H-N | ≤30 mm: 52% >30 mm: 48% |
Tomassini et al., 2016 [34] | Prospective | NR | Cutaneous | Curative | 2 | 78.5 (75–82) | 19 a | NR | H-N | 110 mm (30–180) b |
Kreuter et al. 2015 [43] | Retrospective | III–IV (100%) | Cutaneous | Curative | 5 | 73.1 a | NR | NR | H-N, trunk, extremities | NR |
Claussen et al. 2022 [35] | Prospective | NR | Cutaneous | Curative | 129 | 72 a, c | 1784 a | NR | H-N, trunk, extremities | Non-ulcerated lesions: 15 mm (5–450) a Ulcerated lesions: 30 mm (5–500) a |
Lyons et al. 2023 [27] | Single-arm trial | NR | NR | Curative | 25 a | 73.6 a, c | 2 | NR | NR | 2055 mm3 c |
Clover et al. 2020 [36] | Prospective | NR | NR | Curative | 156 | 75 (20–104) a | 284 | NR | H-N, trunk, extremities | 23 mm (5–500) a |
Rotunno et al. 2018 [42] | Retrospective | NR | NR | Curative | 13 | 78 (43–97) a | 147 a | 2 (1–7) a | H-N, trunk, extremities | 10 mm (5–190) a |
Di Monta et al. 2017 [44] | Retrospective | III (100%) | Cutaneous | Curative | 22 | 72 (51–88) | 22 | 1 (1) | H-N, trunk, extremities | NR |
Solari et al. 2014 [28] | Single-arm trial | NR | NR | Palliative | 5 | 72 (47–91) a | NR | 20 (1–60) a, d | H-N, trunk, extremities | <20 mm: 43.6% a ≥20 mm: 56.4% a |
Study | Drug | Route | Dose (Range) | Electrode | Anesthesia | Number of Cycles | Previous Therapies | Concurrent Therapies |
---|---|---|---|---|---|---|---|---|
Kis et al. 2019 [29] | BLM | IV (75%), IT (25%) | NR | Needle (hexagonal), row | GA | 1–5 | Surgery, IMT (75%) | None |
Clover et al. 2020 [25] | BLM | IT | 1653 IU (500–5000) | Needle (hexagonal), parallel | LA, GA | 1–2 | NR | None |
Campana et al., 2016 [30] a | BLM, CDDP | IV BLM (93.4%), IT BLM (6.1%), IV CDDP (0.5%) | NR | Needle (hexagonal, linear), plate, multiple | LA, GA | 1 (76.3%), 2 (19.1%), 3 (3.5%), 3 (0.8%), 6 (0.3%) | Surgery, CHT, RT, IMT (81.4%) | Surgery (6.1%) |
Bertino et al. 2022 [31] | BLM | IV (56%), IT (44%) | IV: 15,000–30,000 IU/m2 IT: 1000 IU | Needle (hexagonal), row, plate | LA, GA | 1 (84%), 2 (16%) | Surgery, RT, CYT, PDT, ECT, TT (39%) | None |
Riva et al., 2021 [38] a | BLM | IV | 15,000 IU/m2 | Needle (linear), finger | NR | NR | RT (44.4%) | None |
Sersa et al. 2021 [39] a | BLM | ≥90 years: IV (66%), IT (34%) <90 years: IV (73%), IT (27%) | NR | Needle (hexagonal, linear), plate, multiple | LA, GA | ≥90 years: 1 (90%), 2 (10%) <90 years: 1 (89%), 2 (11%) | ≥90 years: Surgery, RT, CYT, PDT (51%) <90 years: Surgery, RT, CYT, PDT (56%) | None |
Jamsek et al. 2020 [32] a | BLM | IV | Reduced dose: 10,000 IU/m2 Standard dose: 15,000 IU/m2 | Plate, needle (linear, hexagonal) | LA, GA | NR | NR | NR |
Bonadies et al. 2019 [40] a | BLM | IV | 15,000 IU/m2 | Plate, finger, needle (linear, hexagonal) | NR | 1 (48%), 2 (37%), 3 (12%), 6 (3%) | Surgery, CHT, PDT (67%) None (33%) | None |
Groselj et al. 2018 [33] a | BLM | IV | Reduced dose: 10,000 IU/m2 Standard dose: 15,000 IU/m2 | Plate, needle (linear, hexagonal) | LA, GA | NR | Surgery, RT (25%) | None |
Bertino et al., 2016 [16] a | BLM | IV (92%), IT (8%) | NR | Plate, needle (hexagonal), row, combination | LA, GA | 1 (82%), 2 (18%) | Surgery (31%), CHT/RT (9%), surgery with CHT/RT (31%), unknown (2%) | None |
Tomassini et al., 2016 [34] a | BLM | IV | 15,000 IU/m2 | Finger | LA | 1 (53.8%), 2 (46.2%) | NR | None |
Claussen et al. 2022 [35] a | BLM | IV, IT | IV: 15,000 IU/m2 IT: 1000 IU | Needle (linear, hexagonal), plate | NR | NR | NR | None |
Lyons et al. 2023 [27] a | BLM | IV, IT | IV: 15,000 IU/m2 IT: 1000 IU | NR | LA, GA, spinal anesthesia | NR | NR | None |
Clover et al. 2020 [36] a | BLM | IV (75%), IT (25%) | IV: 15,000 IU/m2 IT: 1000 IU | Plate, needle (hexagonal), row, combination | LA, GA, regional anesthesia | NR | NR | None |
Campana et al. 2017 [41] | BLM | IV, IT | IV: 15,000 IU/m2 IT: 250–1000 IU | Needle (linear, hexagonal), finger | LA, GA, sedation, general | 1 (71.4%), 2 (27.4%), 4 (1.2%) | Surgery (46%), RT (24%), IMT (7%), PDT (2.4%), CYT (6.0%), TT (1.2%) | None |
Rotunno et al. 2018 [42] a | BLM | IV | IV: 7500, 10,000, 13,500 IU/m2 | Needle (linear, hexagonal), plate, multiple | LA, GA, regional | 1 (74%), 2 (19%), 3 (7%) | RT (6.8%) | None |
Solari et al. 2014 [28] a | BLM | IV | 15,000 IU/m2 | Needle (hexagonal) | GA | 1 (56.4%), 2 (30.8%), 3 (10.3%), 4 (4.5%) | NR | None |
Study | Drug | Route | Dose (Range) | Electrode | Anesthesia | Number of Cycles | Previous Therapies | Concurrent Therapies |
---|---|---|---|---|---|---|---|---|
Campana et al., 2016 [30] a | BLM, CDDP | IV BLM (93.4%), IT BLM (6.1%), IV CDDP (0.5%) | NR | Needle (hexagonal, linear), plate, multiple | LA, GA | 1 (76.3%), 2 (19.1%), 3 (3.5%), 3 (0.8%), 6 (0.3%) | Surgery, CHT, RT, IMT (81.4%) | Surgery (6.1%) |
Bertino et al. 2022 [37] | BLM | IV (83%), IT (17) | IV: 15,000 IU/m2 IT: 1000 IU | Needle (hexagonal, linear), plate, multiple | LA, GA | 1 (90.1%), 2 (9.3%), 3 (0.6%) | Surgery, RT, CHT, CYT, PDT, IMT, ECT (70%) | None |
Riva et al., 2021 [38] a | BLM | IV | 15,000 IU/m2 | Needle (linear), finger | NR | NR | RT (44.4%) | None |
Sersa et al. 2021 [39] a | BLM | ≥90 years: IV (66%), IT (34%) <90 years: IV (73%), IT (27%) | NR | Needle (hexagonal, linear), plate, multiple | LA, GA | ≥90 years: 1 (90%), 2 (10%) <90 years: 1 (89%), 2 (11%) | ≥90 years: Surgery, RT, CYT, PDT (51%) <90 years: Surgery, RT, CYT, PDT (56%) | None |
Jamsek et al. 2020 [32] a | BLM | IV | Reduced dose: 10,000 IU/m2 Standard dose: 15,000 IU/m2 | Plate, needle (linear, hexagonal) | LA, GA | NR | NR | NR |
Bonadies et al. 2019 [40] a | BLM | IV | 15,000 IU/m2 | Plate, finger, needle (linear, hexagonal) | NR | 1 (48%), 2 (37%), 3 (12%), 6 (3%) | Surgery, CHT, PDT (67%) | None |
Pichi et al. 2018 [26] | BLM | IV | 15,000 IU/m2 | Finger, needle (hexagonal) | LA | 1 (60%), 2 (25%), 3 (10%), 4 (5%) | NR | IMT with cetuximab, PDT, CHT with MTX (20%) |
Groselj et al. 2018 [33] a | BLM | IV | Reduced dose: 10,000 IU/m2 Standard dose: 15,000 IU/m2 | Plate, needle (linear, hexagonal) | LA, GA | NR | Surgery, RT (25%) | None |
Bertino et al., 2016 [16] a | BLM | IV (92%), IT (8%) | NR | Plate, needle (hexagonal), row, combination | LA, GA | 1 (82%), 2 (18%) | Surgery (31%), CHT/RT (9%), surgery with CHT/RT (31%), unknown (2%) | None |
Tomassini et al., 2016 [34] a | BLM | IV | 15,000 IU/m2 | Finger | LA | 1 (53.8%), 2 (46.2%) | NR | None |
Kreuter et al. 2015 [43] a | BLM | IV | NR | Needle (linear, hexagonal), plate | NR | 2.1 b | Surgery, RT, CHT c | None |
Claussen et al. 2022 [35] a | BLM | IV, IT | IV: 15,000 IU/m2 IT: 1000 IU | Needle (linear, hexagonal), plate | NR | NR | NR | None |
Lyons et al. 2023 [27] a | BLM | IV, IT | IV: 15,000 IU/m2 IT: 1000 IU | NR | LA, GA, spinal anesthesia | NR | NR | None |
Clover et al. 2020 [36] a | BLM | IV (75%), IT (25%) | IV: 15,000 IU/m2 IT: 1000 IU | Plate, needle (hexagonal), row, combination | LA, GA, regional anesthesia | NR | NR | None |
Rotunno et al. 2018 [42] a | BLM | IV | IV: 7500, 10,000, 13,500 IU/m2 | Needle (linear, hexagonal), plate, multiple | LA, GA, regional | 1 (74%), 2 (19%), 3 (7%) | RT (6.8%) | None |
Di Monta et al. 2017 [44] | BLM | IV | 15,000 IU/m2 | Needle (linear) | GA | 1 (68.2%), 2 (27.3%), 3 (4.5%) | NR | None |
Solari et al. 2014 [28] a | BLM | IV | 15,000 IU/m2 | Needle (hexagonal) | GA | 1 (56.4%), 2 (30.8%), 3 (10.3%), 4 (4.5%) | NR | None |
Study | Response Scale | Response Evaluation | Time of Response Evaluation | Follow-Up Duration, Median (Range) | CR (%) | PR (%) | SD (%) | PD (%) | Toxicity Scale | Toxicity | OS | Local Tumour Control |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Kis et al. 2019 [29] | RECIST | Patient | NR | 19 months (15–56) | 58.3% a | NR | NR | NR | NR | Hyperemia and edema (80%), pain (50%) | NR | NR |
Clover et al. 2020 [25] | RECIST | Patient/Lesion | 60 days | Up till 5 years | ECT: 88.9%/88.4% b Surgery: 95.1%/95.8% c | NR | NR | NR | CTCAE | ECT: Infection, ulceration, erythema, pain Surgery: Infection, erythema, swelling | NR | NR |
Campana et al. 2016 [30] | RECIST | Patient | 60 days | 13.9 months (0.4–63.2) | 66.7% | NR | NR | NR | CTCAE | Grade 0–1 (100%), 2–4 (0%) | NS | NS |
Bertino et al. 2022 [31] | RECIST | Patient/Lesion | 60 days | 17 months (2–103) | 81.5% e/84.3% f | 15.5% e/13.1% f | 3.0% e/2.6% f | 0% e/0% f | CTCAE | Hyperpigmentation, ulceration | 14-month: 95% g | 1-year LPFS: 96% 2-year LPFS: 90% |
Riva et al., 2021 [38] d | RECIST | Patient | 1 month | Up till 6 months | NS | NS | NS | NS | NR | Edema | NR | NR |
Sersa et al. 2021 [39] d | RECIST | Patient | 38 and 80 days | ≥90 years: 8 months (2–37) <90 years: 9 months (2–46) | NS | NS | NS | NS | CTCAE | Ulceration, odor, infection, hyperpigmentation | NS | NS |
Jamsek et al. 2020 [32] d | RECIST | Patient | 2 months | Reduced dose: 28 months Standard dose: 40 months | Reduced dose: 100% Standard dose: 96% | NR | NR | NR | NR | NR | NR | NR |
Bonadies et al. 2019 [40] | RECIST | Patient | 2 months | NR | 100% | 0% | NR | NR | CTCAE | Necrosis, edema d | NR | NS |
Groselj et al. 2018 [33] | RECIST | Lesion | 2 months | NR | Reduced dose: 100% Standard dose: 96% | Reduced dose: 0% Standard dose: 0% | Reduced dose: 0% Standard dose: 4% | Reduced dose: 0% Standard dose: 0% | CTCAE | Ulceration, infection, odor d | NR | NR |
Bertino et al., 2016 [16] | RECIST | Lesion | 2 months | 6 months (15 days–12 months) | ≤3 cm: 93.5% >3 cm: 66.7% | ≤3 cm: 6.5% >3 cm: 0% | ≤3 cm: 0% >3 cm: 33.3% | ≤3 cm: 0% >3 cm: 0% | CTCAE | Ulceration, hyperpigmentation, suppuration, headache, odor, dysphagia, rash d | 1 year: 100% | 1-year LDFS: 89% |
Tomassini et al., 2016 [34] d | RECIST | Lesion | 2 months | NR | NS | NS | NS | NS | NR | NR | NR | NR |
Claussen et al. 2022 [35] d | RECIST | Lesion | 1–2 months | Minimum of 180 days | NS | NS | NS | NS | CTCAE | Pain, hyperpigmentation | NR | NR |
Lyons et al. 2023 [27] | RECIST | Lesion | 12 weeks | 18 months | 85% h | 15% h | NR | 0% h | NR | NR | NR | NR |
Clover et al. 2020 [36] | RECIST | Lesion | At least 45 days | NR | 85% | 11% | NR | NR | NR | NR | NR | NR |
Campana et al. 2017 [41] | RECIST | Patient | 1 month | 49.2 months (3.6–121.1) | 50.0% i | 35.7% i | 14.3% i | 0% i | CTCAE | Erythema, edema, pain, ulceration, infection | NR | 5-year LPFS: 70% |
Rotunno et al. 2018 [42] | RECIST | Lesion | 60 days | 165 days (60–1061) | 83% | 17% | 0% | 0% | NR | Pain, hyperpigmentation, ulceration, erythema, nausea, flu-like symptoms d | NR | NS |
Solari et al. 2014 [28] d | RECIST | Patient | NR | NR | NS | NS | NS | NS | NR | NR | NR | NR |
Study | Response Scale | Response Evaluation | Time of Response Evaluation | Follow-Up Duration, Median (Range) | CR (%) | PR (%) | SD (%) | PD (%) | Toxicity Scale | Toxicity | OS | Local Tumor Control |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Campana et al. 2016 [30] | RECIST | Patient | 60 days | 13.9 months (0.4–63.2) | 40.7% | NR | NR | NR | CTCAE | Grade 0–1 (60%), 2–4 (40%) | NS | NS |
Bertino et al. 2022 [37] | RECIST | Patient/Lesion | 45–90 days | 5.6 months (1.6–47.6) | 62%/61% | 21%/18% | 11%/13% | 5%/7% | CTCAE | Grade 1–2 (11%) | 8.6 months: 85.1% b | 1-year LPFS: 80%/49% c |
Riva et al. 2021 [38] a | RECIST | Patient | 1 month | Up till 6 months | NS | NS | NS | NS | NR | Edema | NR | NR |
Sersa et al. 2021 [39] a | RECIST | Patient | 38 and 80 days | ≥90 years: 8 months (2–37) <90 years: 9 months (2–46) | NS | NS | NS | NS | CTCAE | Ulceration, odor, infection, hyperpigmentation | NS | NS |
Jamsek et al. 2020 [32] a | RECIST | Patient | 2 months | Reduced dose: 28 months Standard dose: 40 months | Reduced dose: 100% Standard dose: 96% | NR | NR | NR | NR | NR | NR | NR |
Bonadies et al. 2019 [40] | RECIST | Patient | 2 months | NR | 92% | 8% | NR | NR | CTCAE | Necrosis, edema a | NR | NS |
Pichi et al. 2018 [26] | RECIST | Patient | 1 month | 7.6 months (2–18) | 10% | 90% | NR | NR | NR | Fever, pain a | NS | NR |
Groselj et al. 2018 [33] | RECIST | Lesion | 2 months | NR | Reduced dose: 100% Standard dose: 100% | Reduced dose: 0% Standard dose: 0% | Reduced dose: 0% Standard dose: 0% | Reduced dose: 0% Standard dose: 0% | CTCAE | Ulceration, infection, odor a | NR | NR |
Bertino et al., 2016 [16] | RECIST | Lesion | 2 months | 6 months (15 days–12 months) | ≤3 cm: 76.9% >3 cm: 28.6% d | ≤3 cm: 7.7% >3 cm: 42.9% d | ≤3 cm: 15.4% >3 cm: 14.3% d | ≤3 cm: 0% >3 cm: 9.5% d | CTCAE | Ulceration, hyperpigmentation, suppuration, headache, odor, dysphagia, rash a | 1 year: 64% | 1-year LDFS: 87% |
Tomassini et al., 2016 [34] a | RECIST | Lesion | 2 months | NR | NS | NS | NS | NS | NR | NR | NR | NR |
Kreuter et al. 2015 [43] a | RECIST | Patient | NR | NR | NS | NS | NS | NS | NR | Pain, muscle ache, necrosis, hyperpigmentation, bleeding, infection | NR | NR |
Claussen et al. 2022 [35] | RECIST | Lesion | 1–2 months | Minimum of 180 days | <3 cm: 71% e >3 cm: 41.5% f | <3 cm: 20.5% e >3 cm: 29.5% f | <3 cm: 7.5% e >3 cm: 21.5% f | <3 cm: 0.5% e >3 cm: 6.0% f | CTCAE | Pain, hyperpigmentation a | NR | NR |
Lyons et al. 2023 [27] | RECIST | Lesion | 12 weeks | 18 months | 100% g | 0% g | NR | 0% g | NR | NR | NR | NR |
Clover et al. 2020 [36] | RECIST | Lesion | At least 45 days | NR | 63% | 17% | NR | NR | NR | NR | NR | NR |
Rotunno et al. 2018 [42] | RECIST | Lesion | 60 days | 165 days (60–1061) | 86% | 0% | 14% | 0% | NR | Pain, hyperpigmentation, ulceration, erythema, nausea, flu-like symptoms a | NR | NS |
Di Monta et al. 2017 [44] | RECIST | Patient | 4 weeks | 34 months (5–48) | 22.7% | 59.1% | 13.6% | 4.5% | CTCAE | Pain, erythema | NR | NR |
Solari et al. 2014 [28] a | RECIST | Patient | NR | NR | NS | NS | NS | NS | NR | NR | NR | NR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, Y.T.N.; Oh, C.C. Electrochemotherapy in the Management of Keratinocyte Carcinomas: A Systematic Review. Cancers 2025, 17, 1766. https://doi.org/10.3390/cancers17111766
Tan YTN, Oh CC. Electrochemotherapy in the Management of Keratinocyte Carcinomas: A Systematic Review. Cancers. 2025; 17(11):1766. https://doi.org/10.3390/cancers17111766
Chicago/Turabian StyleTan, Yue Ting Nichole, and Choon Chiat Oh. 2025. "Electrochemotherapy in the Management of Keratinocyte Carcinomas: A Systematic Review" Cancers 17, no. 11: 1766. https://doi.org/10.3390/cancers17111766
APA StyleTan, Y. T. N., & Oh, C. C. (2025). Electrochemotherapy in the Management of Keratinocyte Carcinomas: A Systematic Review. Cancers, 17(11), 1766. https://doi.org/10.3390/cancers17111766