Deep-Learning-Based Prediction of t(11;14) in Multiple Myeloma H&E-Stained Samples
Simple Summary
Abstract
1. Introduction
2. Methods
3. Results
3.1. Study Population
3.2. Accuracy of the AI Model
3.3. Factors Associated with AI Model Success
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bal, S.; Kumar, S.K.; Fonseca, R.; Gay, F.; Hungria, V.T.; Dogan, A.; Costa, L.J. Multiple Myeloma with t(11;14): Unique Biology and Evolving Landscape. Am. J. Cancer Res. 2022, 12, 2950–2965. [Google Scholar] [PubMed]
- Fonseca, R.; Blood, E.A.; Oken, M.M.; Kyle, R.A.; Dewald, G.W.; Bailey, R.J.; Van Wier, S.A.; Henderson, K.J.; Hoyer, J.D.; Harrington, D.; et al. Myeloma and the t(11;14)(Q13;Q32); Evidence for a Biologically Defined Unique Subset of Patients. Blood 2002, 99, 3735–3741. [Google Scholar] [CrossRef] [PubMed]
- González, D.; van der Burg, M.; García-Sanz, R.; Fenton, J.A.; Langerak, A.W.; González, M.; van Dongen, J.J.M.; San Miguel, J.F.; Morgan, G.J. Immunoglobulin Gene Rearrangements and the Pathogenesis of Multiple Myeloma. Blood 2007, 110, 3112–3121. [Google Scholar] [CrossRef]
- Garand, R.; Avet-Loiseau, H.; Accard, F.; Moreau, P.; Harousseau, J.L.; Bataille, R. T(11;14) and t(4;14) Translocations Correlated with Mature Lymphoplasmacytoid and Immature Morphology, Respectively, in Multiple Myeloma. Leukemia 2003, 17, 2032–2035. [Google Scholar] [CrossRef]
- Hoyer, J.D.; Hanson, C.A.; Fonseca, R.; Greipp, P.R.; Dewald, G.W.; Kurtin, P.J. The (11;14)(Q13;Q32) Translocation in Multiple Myeloma: A Morphologic and Immunohistochemical Study. Am. J. Clin. Pathol. 2000, 113, 831–837. [Google Scholar] [CrossRef]
- Kumar, S.K.; Harrison, S.J.; Cavo, M.; de la Rubia, J.; Popat, R.; Gasparetto, C.; Hungria, V.; Salwender, H.; Suzuki, K.; Kim, I.; et al. Venetoclax or Placebo in Combination with Bortezomib and Dexamethasone in Patients with Relapsed or Refractory Multiple Myeloma (BELLINI): A Randomised, Double-Blind, Multicentre, Phase 3 Trial. Lancet Oncol. 2020, 21, 1630–1642. [Google Scholar] [CrossRef]
- Bahlis, N.J.; Popat, R.; Beksac, M.; Dimopoulos, M.A.; Gatt, M.E.; Gay, F.; Jo, J.-C.; Kapoor, P.; Kortüm, M.; Ling, S.; et al. Efficacy of Venetoclax-Dexamethasone (VenDex) v Pomalidomide-Dexamethasone (PomDex) in Patients (Pts) with t(11;14)-Positive Relapsed/Refractory Multiple Myeloma [t(11;14)+ RRMM]: Phase 3 CANOVA Study Biomarker Subgroup Analysis. J. Clin. Oncol. 2024, 42, 7510. [Google Scholar] [CrossRef]
- Hashim, L.; Faisal, M.S.; Ahmed, Z.; Selene, I.I.; Shahzad, M.; Abdullah, S.M.; Samhouri, Y.; Yasir, M.; Wahab, A.; Ehsan, H.; et al. Efficacy of Venetoclax Based Regimens in Relapsed Refractory Multiple Myeloma: A Systematic Review and Meta-Analysis. Blood 2020, 136, 39–40. [Google Scholar] [CrossRef]
- Kambhampati, S.; Galligan, D.; Huang, C.Y.; Wong, S.; Wolf, J.; Martin, T.; Shah, N. A Single-Center Retrospective Cohort Analysis of Venetoclax in Relapsed/Refractory Multiple Myeloma. Leuk. Lymphoma 2020, 61, 1211–1219. [Google Scholar] [CrossRef]
- Badawi, M.A.; Engelhardt, B.; Dobkowska, E.; Deng, R.; Kaufman, J.L.; Menon, R.; Salem, A.H. Exposure-Response Relationships of Venetoclax in Combination with Carfilzomib and Dexamethasone in Relapsed/Refractory t(11;14) Multiple Myeloma Patients. Investig. New Drugs 2024, 42, 635–643. [Google Scholar] [CrossRef]
- Fonseca, R.; Bergsagel, P.L.; Drach, J.; Shaughnessy, J.; Gutierrez, N.; Stewart, A.K.; Morgan, G.; Van Ness, B.; Chesi, M.; Minvielle, S.; et al. International Myeloma Working Group Molecular Classification of Multiple Myeloma: Spotlight Review. Leukemia 2009, 23, 2210–2221. [Google Scholar] [CrossRef] [PubMed]
- Baughn, L.B.; Mearns, E.S.; Nixon, M.; Chopra, V.S.; Girvan, A.; Cornell, R.F.; Saxena, J.; Slifko, B.M.; Clark, J.; Kumar, S.K. Current Testing Practices for t(11;14) Rearrangements in Patients with Newly Diagnosed Multiple Myeloma in the United States. Blood 2022, 140, 10114–10115. [Google Scholar] [CrossRef]
- Huber, D.; Voith von Voithenberg, L.; Kaigala, G.V. Fluorescence in Situ Hybridization (FISH): History, Limitations and What to Expect from Micro-Scale FISH? Micro Nano Eng. 2018, 1, 15–24. [Google Scholar] [CrossRef]
- Mascarello, J.T.; Hirsch, B.; Kearney, H.M.; Ketterling, R.P.; Olson, S.B.; Quigley, D.I.; Rao, K.W.; Tepperberg, J.H.; Tsuchiya, K.D.; Wiktor, A.E. Section E9 of the American College of Medical Genetics Technical Standards and Guidelines: Fluorescence in Situ Hybridization. Genet. Med. 2011, 13, 667–675. [Google Scholar] [CrossRef]
- Ha, J.; Cho, H.; Lee, T.G.; Shin, S.; Chung, H.; Jang, J.E.; Kim, S.J.; Cheong, J.W.; Lee, S.T.; Kim, J.S.; et al. Cytogenetic Testing by Fluorescence in Situ Hybridization Is Improved by Plasma Cell Sorting in Multiple Myeloma. Sci. Rep. 2022, 12, 8287. [Google Scholar] [CrossRef]
- Niazi, M.K.K.; Parwani, A.V.; Gurcan, M.N. Digital Pathology and Artificial Intelligence. Lancet Oncol. 2019, 20, e253–e261. [Google Scholar] [CrossRef]
- Dehkharghanian, T.; Mu, Y.; Tizhoosh, H.R.; Campbell, C.J.V. Applied Machine Learning in Hematopathology. Int. J. Lab. Hematol. 2023, 45, 87–94. [Google Scholar] [CrossRef]
- Shmatko, A.; Ghaffari Laleh, N.; Gerstung, M.; Kather, J.N. Artificial Intelligence in Histopathology: Enhancing Cancer Research and Clinical Oncology. Nat. Cancer 2022, 3, 1026–1038. [Google Scholar] [CrossRef]
- Zarella, M.D.; McClintock, D.S.; Batra, H.; Gullapalli, R.R.; Valante, M.; Tan, V.O.; Dayal, S.; Oh, K.S.; Lara, H.; Garcia, C.A.; et al. Artificial Intelligence and Digital Pathology: Clinical Promise and Deployment Considerations. J. Med. Imaging 2023, 10, 051802. [Google Scholar] [CrossRef]
- Andrade, C.L.B.; Ferreira, M.V.; Alencar, B.M.; Junior, A.M.A.; Lopes, T.J.S.; dos Santos, A.S.; dos Santos, M.M.; Silva, M.I.C.S.; Rosa, I.M.D.R.P.; Filho, J.L.S.B.; et al. Enhancing Diagnostic Accuracy of Multiple Myeloma through ML-Driven Analysis of Hematological Slides: New Dataset and Identification Model to Support Hematologists. Sci. Rep. 2024, 14, 11176. [Google Scholar] [CrossRef]
- Hagos, Y.B.; Lecat, C.S.Y.; Patel, D.; Mikolajczak, A.; Castillo, S.P.; Lyon, E.J.; Foster, K.; Tran, T.A.; Lee, L.S.H.; Rodriguez-Justo, M.; et al. Deep Learning Enables Spatial Mapping of the Mosaic Microenvironment of Myeloma Bone Marrow Trephine Biopsies. Cancer Res. 2024, 84, 493–508. [Google Scholar] [CrossRef] [PubMed]
- Allegra, A.; Tonacci, A.; Sciaccotta, R.; Genovese, S.; Musolino, C.; Pioggia, G.; Gangemi, S. Machine Learning and Deep Learning Applications in Multiple Myeloma Diagnosis, Prognosis, and Treatment Selection. Cancers 2022, 14, 606. [Google Scholar] [CrossRef] [PubMed]
- Perry, C.; Greenberg, O.; Haberman, S.; Herskovitz, N.; Gazy, I.; Avinoam, A.; Paz-Yaacov, N.; Hershkovitz, D.; Avivi, I. Image-Based Deep Learning Detection of High-Grade B-Cell Lymphomas Directly from Hematoxylin and Eosin Images. Cancers 2023, 15, 5205. [Google Scholar] [CrossRef]
- Stanford-Moore, A.; Liu, Y.; Akiti, C.; Behrooz, A.; Rahsepar, B.; Glass, B.; Shrotre, A.; Ross, J.A.; French, D. A Sensitive Machine Learning-Based Approach to Assess Multiple Myeloma t(11;14) Genetic Subtype from Histopathology Images. Blood 2022, 140, 7846–7847. [Google Scholar] [CrossRef]
- Lewis, J.E.; Shebelut, C.W.; Attieh, M.; Horwath, M.C.; Khanna, A.; Al-Rusan, O.M.; Ponnatt, T.; Smith, G.H.; Gutman, D.A.; Gupta, V.A.; et al. Machine Learning Models Predict Molecular Genetic Subtypes of Multiple Myeloma from Whole-Slide Bone Marrow Aspirate Smears. Blood 2023, 142, 7158. [Google Scholar] [CrossRef]
- Lewis, J.; Horwath, M.; Shebelut, C.; Attieh, M.; Khanna, A.; Al-Rusan, O.; Ponnatt, T.; Smith, G.; Gutman, D.; Gupta, V. Deep Learning-Based Integration of Morphology and Immunophenotype Predicts Molecular Genetic Subtypes of Multiple Myeloma. Am. J. Clin. Pathol. 2024, 162, S154–S155. [Google Scholar] [CrossRef]
- Rajkumar, S.V.; Dimopoulos, M.A.; Palumbo, A.; Blade, J.; Merlini, G.; Mateos, M.V.; Kumar, S.; Hillengass, J.; Kastritis, E.; Richardson, P.; et al. International Myeloma Working Group Updated Criteria for the Diagnosis of Multiple Myeloma. Lancet Oncol. 2014, 15, e538–e548. [Google Scholar] [CrossRef]
- Greipp, P.R.; Miguel, J.S.; Dune, B.G.M.; Crowley, J.J.; Barlogie, B.; Bladé, J.; Boccadoro, M.; Child, J.A.; Harousseau, J.L.; Kyle, R.A.; et al. International Staging System for Multiple Myeloma. J. Clin. Oncol. 2005, 23, 3412–3420. [Google Scholar] [CrossRef]
- Rajkumar, S.V. Multiple Myeloma: 2024 Update on Diagnosis, Risk-Stratification, and Management. Am. J. Hematol. 2024, 99, 1802–1824. [Google Scholar] [CrossRef]
- Xu, L.; Wu, S. New Diagnostic Strategy for Multiple Myeloma: A Review. Medicine 2023, 102, e36660. [Google Scholar] [CrossRef]
- Zhu, R.; He, H.; Chen, Y.; Yi, M.; Ran, S.; Wang, C.; Wang, Y. Deep Learning for Rapid Virtual H&E Staining of Label-Free Glioma Tissue from Hyperspectral Images. Comput. Biol. Med. 2024, 180, 108958. [Google Scholar] [CrossRef]
- Banna, G.L.; Olivier, T.; Rundo, F.; Malapelle, U.; Fraggetta, F.; Libra, M.; Addeo, A. The Promise of Digital Biopsy for the Prediction of Tumor Molecular Features and Clinical Outcomes Associated With Immunotherapy. Front. Med. 2019, 6, 172. [Google Scholar] [CrossRef]
Entire Cohort (n = 268) | t(11;14) Positive Cohort (n = 73) | None-t(11;14) Cohort (n = 195) | p Value | |
---|---|---|---|---|
Age years, median (range) | 69.9 (41.8–92.1) | 68.8 (45.7–92.1) | 70.2 (41.8–91.4) | 0.915 |
Sex, (Males), n (%) | 147 (54.9) | 42 (57.5) | 105 (53.8) | 0.589 |
PCD type | - | 0.349 | ||
Active MM | 196 (73.1) | 50 (68.5) | 146 (74.9) | |
Smoldering MM | 47 (17.5) | 14 (19.2) | 33 (16.9) | |
Active MM with AL | 22 (8.2) | 7 (9.6) | 15 (7.7) | |
Other * | 3 (1.1) | 2 (2.7) | 1 (0.5) | |
Hypercalcemia ‡, n (%) | 17 (7) | 4 (6.3) | 13 (7.2) | 0.815 |
Renal insufficiency α, n (%) | 29 (11.4) | 6 (8.8) | 23 (12.4) | 0.432 |
Hemoglobin mg/dL, mean (SD) | 11.4 (2) | 11.4 (1.84) | 11.4 (2.07) | 0.815 |
Anemia β, n (%) | 61 (23.7) | 13 (18.6) | 48 (25.7) | 0.234 |
Lytic bone lesions, n (%) | 128 (50.6) | 31 (45.6) | 97 (52.4) | 0.334 |
Heavy Chain Subtype, n (%) | - | 0.076 | ||
IgG | 126 (48.8) | 28 (40) | 98 (52.4) | |
Non IgG | 131 (51.2) | 42 (60) | 89 (47.6) | |
Light Chain Subtype, n (%) | - | 0.129 | ||
Kappa | 173 (65) | 43 (58.9) | 130 (67.4) | |
Lambda | 92 (34.6) | 29 (39.7) | 63 (32.6) | |
Nonsecretory MM | 1 (0.4) | 1 (1.4) | 0 (0) | |
FLCr, median (IQR) | 55 (8.4–214) | 55 (8.4–186) | 59.4 (8.5–285.8) | 0.614 |
High risk cytogenetics γ, n (%) | 109 (40.7) | 22 (30.1) | 87 (44.6) | 0.032 |
ISS | - | 0.794 | ||
I | 77 (42.3) | 21 (42.9) | 56 (42.1) | |
II | 45 (24.7) | 13 (26.5) | 32 (24.1) | |
III | 60 (33) | 15 (30.6) | 45 (33.6) | |
Missing | 86 | 24 | 62 | |
% of PCs in BMB, median (range; IQR) | 30 (10–100; 20–60) | 30 (10–100; 20–60) | 30 (10–100; 20–50) | 0.307 |
% of t(11;14) positive cells †, median (range; IQR) | - | 26 (2–100; 12.5–52) | - | |
Time from BMB to screening, years, median (IQR) | 3.1 (1.9–4.3) | 3.1 (1.6–4.1) | 3 (2–4.5) | 0.735 |
False Positive n = 13 (16.9%) | True Negative n = 64 (83.1%) | p Value | |
---|---|---|---|
Age years, median (range) | 70.5 (50–82.8) | 70.1 (41.8–89.7) | 0.999 |
Sex, (Males), n (%) | 6 (46.2) | 34 (53.1) | 0.646 |
PCD type, n (%) | 0.803 | ||
Active MM | 11 (84.6) | 54 (84.4) | |
Smoldering MM | 2 (15.4) | 7 (10.9) | |
Active MM with AL | 0 (0) | 2 (3.1) | |
Other * | 0 (0) | 1 (1.6) | |
Slide Age, years, median (IQR) | 3.7 (2.3–5.3) | 3.1 (2.3–5.2) | 0.838 |
Number of CA, median (IQR) | 0 (0–1) | 1 (0–2) | 0.183 |
High Cytogenetic Risk, n (%) | 1 (7.7) | 30 (46.9) | 0.009 |
ISS, n (%) | 0.514 | ||
I | 4 (40) | 13 (30.2) | |
II | 3 (30) | 13 (30.2) | |
III | 3 (30) | 17 (39.5) | |
Missing | 3 | 21 | |
% of PCs in BMB, median (range; IQR) | 60 (10–90; 10–75) | 50 (10–100; 20–67.5) | 0.984 |
Calcium mg/dL, median (IQR) | 9.6 (9.4–10.4) | 9.4 (9–9.9) | 0.123 |
Hypercalcemia ‡, n (%) | 0 (0) | 4 (6.7) | 0.999 |
Renal insufficiency α, n (%) | 2 (16.7) | 7 (10.9) | 0.627 |
Hemoglobin mg/dL, mean (SD) | 10.7 (1.6) | 10.9 (2.1) | 0.693 |
Anemia β, n (%) | 5 (41.7) | 20 (31.3) | 0.515 |
Lytic bone lesions, n (%) | 9 (69.2) | 39 (61.9) | 0.757 |
Heavy Chain Subtype, n (%) | 0.201 | ||
IgG | 5 (38.5) | 37 (57.8) | |
Non-IgG | 8 (61.5) | 27 (42.2) | |
Light Chain Subtype, n (%) | 0.269 | ||
Kappa | 10 (90.9) | 45 (70.3) | |
Lambda | 1 (9.1) | 19 (29.7) | |
FLCr, median (IQR) | 69 (7–488) | 74 (10–262) | 0.87 |
Entire Cohort (n = 268) | Successful Detection of t(11;14) (n = 86, 32.1%) | Failure of Detection of t(11;14) (n = 182, 67.9%) | p Value | |
---|---|---|---|---|
t(11;14) positive, n (%) | 73 (27.2) | 22 (25.6) | 51 (28) | 0.675 |
Age years, median (range) | 69.9 (41.8–92.1) | 69.9 (41.8–89.7) | 69.8 (44.3–92.1) | 0.276 |
Sex, (Males), n (%) | 147 (54.9) | 48 (55.8) | 99 (54.4) | 0.828 |
PCD type, n (%) | - | 0.009 | ||
Active MM | 196 (73.1) | 72 (83.7) | 124 (68.1) | |
Smoldering MM | 47 (17.5) | 9 (10.5) | 38 (20.9) | |
Active MM with AL | 22 (8.2) | 3 (3.5) | 19 (10.4) | |
Other * | 3 (1.1) | 2 (2.3) | 1 (0.5) | |
% of PCs in BMB, median (range; IQR) | 30 (10–100; 20–60) | 50 (10–100; 20–63) | 25 (10–100; 19–50) | 0.0003 |
% of t(11;14) positive cells †, median (range; IQR) | 26 (2–100; 12.5–52) | 30.5 (2–90; 15–57) | 24 (3–100; 12–50) | 0.358 |
Calcium mg/dL (median, IQR) | 9.4 (9–9.9) | 9.4 (8.9–9.8) | 9.4 (9–9.9) | 0.816 |
Hypercalcemia ‡, n (%) | 17 (7) | 5 (6.3) | 12 (7.4) | 0.749 |
Creatinine mg/dL, median (IQR) | 0.99 (0.79–1.38) | 1.02 (0.8–1.47) | 0.98 (0.77–1.3) | 0.444 |
Renal insufficiency α, n (%) | 29 (11.4) | 10 (11.8) | 19 (11.2) | 0.902 |
Hemoglobin mg/dL, mean (SD) | 11.4 (2) | 11 (2.2) | 11.6 (1.88) | 0.025 |
Anemia β, n (%) | 61 (23.7) | 24 (28.2) | 37 (21.5) | 0.233 |
Lytic bone lesions, n (%) | 128 (50.6) | 51 (60.7) | 77 (45.6) | 0.023 |
Heavy Chain Subtype, n (%) | - | 0.123 | ||
IgG | 126 (49) | 48 (55.8) | 78 (45.6) | |
Non-IgG | 131 (51) | 38 (44.2) | 93 (54.4) | |
Light Chain Subtype, n (%) | - | 0.783 | ||
Kappa | 173 (65) | 58 (68.4) | 115 (63.9) | |
Lambda | 92 (34.6) | 28 (32.6) | 64 (35.6) | |
Nonsecretory MM | 1 (0.4) | 0 (0) | 1 (0.6) | |
FLCr, median (IQR) | 55 (8.4–214) | 82 (9.4–256) | 50 (8.3–182) | 0.09 |
Number of CA, median (IQR) | 1 (0–2) | 1 (0–2) | 1 (0–2) | 0.547 |
Any Other CA, n (%) | 25 (9.3) | 13 (15.1) | 12 (6.6) | 0.025 |
High Cytogenetic Risk γ, n (%) | 109 (40.7) | 38 (44.2) | 71 (39) | 0.421 |
ISS, n (%) | - | 0.504 | ||
I | 77 (42.3) | 24 (39.3) | 53 (43.8) | |
II | 45 (24.7) | 15 (24.6) | 30 (24.8) | |
III | 60 (33) | 22 (36.1) | 38 (31.4) | |
Missing, n | 86 | 25 | 61 | |
Slide Age, years, median (IQR) | 3.1 (1.9–4.3) | 3.1 (2.2–4.3) | 3 (1.8–4.2) | 0.347 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kerner, N.; Hershkovitz, D.; Trestman, S.; Shragai, T.; Nachmias, H.L.; Cohen, Y.C.; Ziv-Baran, T.; Avivi, I. Deep-Learning-Based Prediction of t(11;14) in Multiple Myeloma H&E-Stained Samples. Cancers 2025, 17, 1733. https://doi.org/10.3390/cancers17111733
Kerner N, Hershkovitz D, Trestman S, Shragai T, Nachmias HL, Cohen YC, Ziv-Baran T, Avivi I. Deep-Learning-Based Prediction of t(11;14) in Multiple Myeloma H&E-Stained Samples. Cancers. 2025; 17(11):1733. https://doi.org/10.3390/cancers17111733
Chicago/Turabian StyleKerner, Nadav, Dov Hershkovitz, Svetlana Trestman, Tamir Shragai, Hila Lederman Nachmias, Yael C. Cohen, Tomer Ziv-Baran, and Irit Avivi. 2025. "Deep-Learning-Based Prediction of t(11;14) in Multiple Myeloma H&E-Stained Samples" Cancers 17, no. 11: 1733. https://doi.org/10.3390/cancers17111733
APA StyleKerner, N., Hershkovitz, D., Trestman, S., Shragai, T., Nachmias, H. L., Cohen, Y. C., Ziv-Baran, T., & Avivi, I. (2025). Deep-Learning-Based Prediction of t(11;14) in Multiple Myeloma H&E-Stained Samples. Cancers, 17(11), 1733. https://doi.org/10.3390/cancers17111733