Whispers in the Lungs: Small Extracellular Vesicles in Lung Cancer and COPD Crosstalk
Simple Summary
Abstract
1. Introduction
Dual Battles: Immune Dynamics in COPD and Lung Cancer Progression
2. Small EVs as a Hidden Language
3. From Cells to Circulation
4. From Sample to Signal: The Challenge of Isolation and Characterization
Method | Advantage | Disadvantage | Reference | |
---|---|---|---|---|
Isolation | Ultracentrifugation | Large volumes processing | Time-consuming, costly equipment, non-EV contamination risk | [42] |
Density graident centrifugatin | Higher purity | Labor and time intensive | [43] | |
Immunoaffinity capture | High specificity | Potentia.antibody carryover, expensive | [44] | |
Polymer precipitation | Simple | Contaminants, co-precipitation | ||
Size exclusion chromatography | Gentle on EVs | Limited sample volume, EV dilution | [45] | |
Microfluidic device | Rapid | Device.fabrication complexity; potential for clogging | [49] | |
Characterization | NTA | Provides size distribution and concentration, relatively quick | Limited sensitivity for small EVs, affected by sample purity | [46] |
Western blotting | Confirms presence of EVs marker | Labor and time consuming | [50] | |
Flowcytometry | Multiparametric analysis | Limited sensitivity for small EVs | [50] | |
TEM | Detailed, structural information visually | potential artifacts, not quantitative | [47] | |
Dynamic light scattering | Quick | Less accurate for polydisperse samples | [55] | |
SPR | Measures EV binding affinity | Complex data interpretation | [53] |
5. Unlocking Cargos
6. Bridging the Dual Treats: Expression Role in Comorbid Lung Cancer and COPD
7. Concluding the Promise of sEVs
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luo, G.; Zhang, Y.; Rumgay, H.; Morgan, E.; Langselius, O.; Vignat, J.; Vignat, J.; Colombet, M.; Bray, F. Estimated worldwide variation and trends in incidence of lung cancer by histological subtype in 2022 and over time: A population-based study. Lancet Respir. Med. 2025, 13, 348–363. [Google Scholar] [CrossRef]
- Zhou, C.; Qin, Y.; Zhao, W.; Liang, Z.; Li, M.; Liu, D.; Bai, L.; Chen, Y.; Chen, Y.; Cheng, Y.; et al. International expert consensus on diagnosis and treatment of lung cancer complicated by chronic obstructive pulmonary disease. Transl. Lung Cancer Res. 2023, 12, 1661–1701. [Google Scholar] [CrossRef] [PubMed]
- Gessner, P.; Tessema, B.; Scholz, M.; Sack, U.; Boldt, A.; Kühnapfel, A.; Gessner, C. The influence of anti-cancer therapies on lymphocyte subpopulations of lung cancer patients. Front Immunol. 2023, 14, 1239097. [Google Scholar] [CrossRef] [PubMed]
- Figarol, S.; Delahaye, C.; Gence, R.; Doussine, A.; Cerapio, J.P.; Brachais, M.; Tardy, C.; Béry, N.; Asslan, R.; Colinge, J.; et al. Farnesyltransferase inhibition overcomes cancer adaptive resistance to targeted therapies. Nat. Commun. 2024, 15, 5345. [Google Scholar] [CrossRef]
- Di Noia, V.; D’Aveni, A.; D’Argento, E.; Rossi, S.; Ghirardelli, P.; Bortolotti, L.; Vavassori, V.; Bria, E.; Ceresoli, G.L. Treating disease progression with osimertinib in EGFR-mutated non-small-cell lung cancer: Novel targeted agents and combination strategies. ESMO Open 2021, 6, 100280. [Google Scholar] [CrossRef]
- Dai, X.; Lu, L.; Deng, S.; Meng, J.; Wan, C.; Huang, J.; Sun, Y.; Hu, Y.; Wu, B.; Wu, G.; et al. USP7 targeting modulates anti-tumor immune response by reprogramming Tumor-associated Macrophages in Lung Cancer. Theranostics 2020, 10, 9332–9347. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Jiang, D.; Zhang, F.; Li, K.; Jiao, K.; Hu, J.; Song, H.; Ma, Q.Y.; Wang, J. A new immune signature for survival prediction and immune checkpoint molecules in non-small cell lung cancer. Front. Oncol. 2023, 13, 1095313. [Google Scholar] [CrossRef]
- Gaga, M.; Chorostowska-Wynimko, J.; Horváth, I.; Tammemagi, M.C.; Shitrit, D.; Eisenberg, V.H.; Liang, H.; Stav, D.; Levy Faber, D.; Jansen, M.; et al. Validation of Lung EpiCheck, a novel methylation-based blood assay, for the detection of lung cancer in European and Chinese high-risk individuals. Eur. Respir. J. 2021, 57, 2002682. [Google Scholar] [CrossRef]
- Yi, M.; Liao, Z.; Deng, L.; Xu, L.; Tan, Y.; Liu, K.; Chen, Z.; Zhang, Y. High diagnostic value of miRNAs for NSCLC: Quantitative analysis for both single and combined miRNAs in lung cancer. Ann. Med. 2021, 53, 2178–2193. [Google Scholar] [CrossRef]
- Huda, M.N.; Nafiujjaman, M.; Deaguero, I.G.; Okonkwo, J.; Hill, M.L.; Kim, T.; Nurunnabi, M. Potential Use of Exosomes as Diagnostic Biomarkers and in Targeted Drug Delivery: Progress in Clinical and Preclinical Applications. ACS Biomater. Sci. Eng. 2021, 7, 2106–2149. [Google Scholar] [CrossRef]
- Binnewies, M.; Roberts, E.W.; Kersten, K.; Chan, V.; Fearon, D.F.; Merad, M.; Coussens, L.M.; Gabrilovich, D.; Ostrand-Rosenberg, S.; Hedrick, C.C.; et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 2018, 24, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Wang, W.; Gao, X.; Wu, L.; Jin, P.; Wu, H.; Yu, J.; Meng, X. Efficacy of Immune Checkpoint Inhibitors in Patients With EGFR Mutated NSCLC and Potential Risk Factors Associated With Prognosis: A Single Institution Experience. Front. Immunol. 2022, 13, 832419. [Google Scholar] [CrossRef]
- Chen, D.S.; Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature 2017, 541, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Manevski, M.; Devadoss, D.; Long, C.; Singh, S.P.; Nasser, M.W.; Borchert, G.M.; Nair, M.N.; Rahman, I.; Sopori, M.; Chand, H.S. Increased Expression of LASI lncRNA Regulates the Cigarette Smoke and COPD Associated Airway Inflammation and Mucous Cell Hyperplasia. Front. Immunol. 2022, 13, 803362. [Google Scholar]
- Guiedem, E.; Ikomey, G.M.; Nkenfou, C.; Walter, P.Y.E.; Mesembe, M.; Chegou, N.N.; Jacobs, G.B.; Okomo Assoumou, M.C. Chronic obstructive pulmonary disease (COPD): Neutrophils, macrophages and lymphocytes in patients with anterior tuberculosis compared to tobacco related COPD. BMC Res. Notes 2018, 11, 192. [Google Scholar] [CrossRef]
- Eyraud, E.; Maurat, E.; Sac-Epée, J.M.; Henrot, P.; Zysman, M.; Esteves, P.; Trian, T.; Dupuy, J.W.; Leipold, A.; Saliba, A.E.; et al. Short-range interactions between fibrocytes and CD8+ T cells in COPD bronchial inflammatory response. Elife 2023, 12, RP85875. [Google Scholar] [CrossRef]
- Qi, C.; Sun, S.W.; Xiong, X.Z. From COPD to Lung Cancer: Mechanisms Linking, Diagnosis, Treatment, and Prognosis. Int. J. COPD 2022, 17, 2603–2621. [Google Scholar] [CrossRef]
- O’Shaughnessy, M.; Sheils, O.; Baird, A.M. The Lung Microbiome in COPD and Lung Cancer: Exploring the Potential of Metal-Based Drugs. Int. J. Mol. Sci. 2023, 24, 12296. [Google Scholar] [CrossRef]
- Gazourian, L.; Regis, S.M.; Pagura, E.J.; Price, L.L.; Gawlik, M.; Lamb, C.; Rieger-Christ, K.M.; Thedinger, W.B.; Sanayei, A.M.; Sanayei, A.M.; et al. Qualitative coronary artery calcification scores and risk of all cause, COPD and pneumonia hospital admission in a large CT lung cancer screening cohort. Respir. Med. 2021, 186, 106540. [Google Scholar] [CrossRef]
- Rahman, H.H.; Niemann, D.; Munson-McGee, S.H. Association between asthma, chronic bronchitis, emphysema, chronic obstructive pulmonary disease, and lung cancer in the US population. Environ. Sci. Pollut. Res. 2023, 30, 20147–20158. [Google Scholar] [CrossRef]
- Hasan, H.; Sohal, I.S.; Soto-Vargas, Z.; Byappanhalli, A.M.; Humphrey, S.E.; Kubo, H.; Kitdumrongthum, S.; Copeland, S.; Tian, F.; Chairoungdua, A.; et al. Extracellular vesicles released by non-small cell lung cancer cells drive invasion and permeability in non-tumorigenic lung epithelial cells. Sci. Rep. 2022, 12, 972. [Google Scholar]
- Mao, S.; Zheng, S.; Lu, Z.; Wang, X.; Wang, Y.; Zhang, G.; Xu, H.; Huang, J.; Lei, Y.; Liu, C.; et al. Exosomal miR-375-3p breaks vascular barrier and promotes small cell lung cancer metastasis by targeting claudin-1. Transl. Lung Cancer Res. 2021, 10, 3155–3172. [Google Scholar] [CrossRef]
- Crescitelli, R.; Lässer, C.; Jang, S.C.; Cvjetkovic, A.; Malmhäll, C.; Karimi, N.; Höög, J.L.; Johansson, I.; Fuchs, J.; Thorsell, A.; et al. Subpopulations of extracellular vesicles from human metastatic melanoma tissue identified by quantitative proteomics after optimized isolation. J. Extracell. Vesicles 2020, 9, 1722433. [Google Scholar] [CrossRef] [PubMed]
- Sokolova, V.; Ludwig, A.K.; Hornung, S.; Rotan, O.; Horn, P.A.; Epple, M.; Giebel, B. Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf. B Biointerfaces 2011, 87, 146–150. [Google Scholar] [CrossRef]
- Bazzan, E.; Radu, C.M.; Tine, M.; Neri, T.; Biondini, D.; Semenzato, U.; Casara, A.; Balestro, E.; Simioni, P.; Celi, A.; et al. Microvesicles in bronchoalveolar lavage as a potential biomarker of COPD. Am. J. Physiol. Lung Cell Mol. Physiol. 2021, 320, L241–L245. [Google Scholar] [CrossRef]
- Bonsergent, E.; Grisard, E.; Buchrieser, J.; Schwartz, O.; Théry, C.; Lavieu, G. Quantitative characterization of extracellular vesicle uptake and content delivery within mammalian cells. Nat. Commun. 2021, 12, 1864. [Google Scholar] [CrossRef]
- Niu, L.; Song, X.; Wang, N.; Xue, L.; Song, X.; Xie, L. Tumor-derived exosomal proteins as diagnostic biomarkers in non-small cell lung cancer. Cancer Sci. 2019, 110, 433–442. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Chung, Y.; Tu, C.R.; Zhang, W.; Mu, X.; Wang, M.; Chan, G.C.; Leung, W.H.; Lau, Y.L.; et al. Tumor vaccine based on extracellular vesicles derived from γδ-T cells exerts dual antitumor activities. J. Extracell. Vesicles 2023, 12, e12360. [Google Scholar] [CrossRef]
- Li, X.; Zhang, H.; Wang, X.; Lu, M.; Ding, Q.; Chen, A.F.; Xiang, M.; Chen, S. iPSC-derived exosomes promote angiogenesis in naturally aged mice. Aging 2023, 15, 5854–5872. [Google Scholar] [CrossRef]
- Banerjee, M.; Rajeswari, V.D. Critical Review on the Different Roles of Exosomes in TNBC and Exosomal-Mediated Delivery of microRNA/siRNA/lncRNA and Drug Targeting Signalling Pathways in Triple-Negative Breast Cancer. Molecules 2023, 28, 1802. [Google Scholar] [CrossRef]
- Lai, X.; Zhong, J.; Zhang, B.; Zhu, T.; Liao, R. Exosomal Non-Coding RNAs: Novel Regulators of Macrophage-Linked Intercellular Communication in Lung Cancer and Inflammatory Lung Diseases. Biomolecules 2023, 13, 536. [Google Scholar] [CrossRef] [PubMed]
- Koba, T.; Takeda, Y.; Narumi, R.; Shiromizu, T.; Nojima, Y.; Ito, M.; Kuroyama, M.; Futami, Y.; Takimoto, T.; Matsuki, T.; et al. Proteomics of serum extracellular vesicles identifies a novel copd biomarker, fibulin-3 from elastic fibres. ERJ Open Res. 2021, 7, 00658-2020. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.B.A.; Armitage, J.; Teo, T.H.; Ong, N.E.; Shin, H.; Moodley, Y.P. Elevated levels of circulating exosome in COPD patients are associated with systemic inflammation. Respir. Med. 2017, 132, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Ling, M.; Xue, J.; Dai, X.; Sun, Q.; Chen, C.; Liu, Y.; Zhou, L.; Liu, J.; Luo, F.; et al. Exosomal microRNA-21 derived from bronchial epithelial cells is involved in aberrant epithelium-fibroblast cross-talk in COPD induced by cigarette smoking. Theranostics 2018, 8, 5419–5433. [Google Scholar] [CrossRef]
- O’Farrell, H.E.; Bowman, R.V.; Fong, K.M.; Yang, I.A. Plasma extracellular vesicle mirnas can identify lung cancer, current smoking status, and stable copd. Int. J. Mol. Sci. 2021, 22, 5803. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, L.; Wu, Y.; Ou, Y.; Lu, H.; Yao, X. A novel diagnostic signature based on three circulating exosomal mircoRNAs for chronic obstructive pulmonary disease. Exp. Ther. Med. 2021, 22, 717. [Google Scholar] [CrossRef]
- Xian, J.; Su, W.; Liu, L.; Rao, B.; Lin, M.; Feng, Y.; Qiu, F.; Chen, J.; Zhou, Q.; Zhao, Z.; et al. Identification of Three Circular RNA Cargoes in Serum Exosomes as Diagnostic Biomarkers of Non–Small-Cell Lung Cancer in the Chinese Population. J. Mol. Diagn. 2020, 22, 1096–1108. [Google Scholar] [CrossRef]
- Li, X.; Chen, C.; Wang, Z.; Liu, J.; Sun, W.; Shen, K.; Lv, Y.; Zhu, S.; Zhan, P.; Lv, T.; et al. Elevated exosome-derived miRNAs predict osimertinib resistance in non-small cell lung cancer. Cancer Cell Int. 2021, 21, 428. [Google Scholar] [CrossRef]
- Hisakane, K.; Seike, M.; Sugano, T.; Yoshikawa, A.; Matsuda, K.; Takano, N.; Takahashi, S.; Noro, R.; Gemma, A. Exosome-derived miR-210 involved in resistance to osimertinib and epithelial–mesenchymal transition in EGFR mutant non-small cell lung cancer cells. Thorac. Cancer 2021, 12, 1690–1698. [Google Scholar] [CrossRef]
- Kim, S.J.; Puranik, N.; Yadav, D.; Lee, P.C.W. Lipid nanocarrier-based drug delivery systems: Therapeutic advances in the treatment of lung cancer. Int. J. Nanomed. 2023, 18, 2659–2676. [Google Scholar] [CrossRef]
- Thuya, W.L.; Peyper, J.M.; Myen, T.T.; Anuar, N.D.; Anwar, A.; Gudimella, R.; Rutt, N.H.; Rosli, N.S.M.; Badri, N.H.; Rahman, T.N.A.; et al. Exosome autoantibody biomarkers for detection of lung cancer. Mil. Med. Res. 2024, 11, 72. [Google Scholar] [CrossRef]
- Helwa, I.; Cai, J.; Drewry, M.D.; Zimmerman, A.; Dinkins, M.B.; Khaled, M.L.; Seremwe, M.; Dismuke, W.M.; Bieberich, E.; Stamer, W.D.; et al. A comparative study of serum exosome isolation using differential ultracentrifugation and three commercial reagents. PLoS ONE 2017, 12, e0170628. [Google Scholar] [CrossRef]
- Shu, S.L.; Allen, C.L.; Benjamin-Davalos, S.; Koroleva, M.; MacFarland, D.; Minderman, H.; Ernstoff, M.S. A Rapid Exosome Isolation Using Ultrafiltration and Size Exclusion Chromatography (REIUS) Method for Exosome Isolation from Melanoma Cell Lines. Methods Mol. Biol. 2021, 2265, 289–304. [Google Scholar]
- Torres-Bautista, A.; Torres-Acosta, M.A.; González-Valdez, J. Characterization and optimization of polymer-polymer aqueous two-phase systems for the isolation and purification of CaCo2 cell-derived exosomes. PLoS ONE 2022, 17, e0273243. [Google Scholar] [CrossRef]
- An, M.; Wu, J.; Zhu, J.; Lubman, D.M. Comparison of an Optimized Ultracentrifugation Method versus Size-Exclusion Chromatography for Isolation of Exosomes from Human Serum. J. Proteome Res. 2018, 17, 3599–3605. [Google Scholar] [CrossRef]
- Auger, C.; Brunel, A.; Darbas, T.; Akil, H.; Perraud, A.; Bégaud, G.; Bessette, B.; Christou, N.; Verdier, M. Extracellular Vesicle Measurements with Nanoparticle Tracking Analysis: A Different Appreciation of Up and Down Secretion. Int. J. Mol. Sci. 2022, 23, 2310. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Xue, H.; Chen, Q.; Yang, G. A method for extraction of exosomes from breast tumour cells and characterisation by transmission electron microscopy. J. Microsc. 2023, 292, 117–122. [Google Scholar] [CrossRef]
- Desgeorges, A.; Hollerweger, J.; Lassacher, T.; Rohde, E.; Helmbrecht, C.; Gimona, M. Differential fluorescence nanoparticle tracking analysis for enumeration of the extracellular vesicle content in mixed particulate solutions. Methods 2020, 177, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Leong, S.Y.; Lok, W.W.; Goh, K.Y.; Ong, H.B.; Tay, H.M.; Su, C.; Kong, F.; Upadya, M.; Wang, W.; Radnaa, E.; et al. High-Throughput Microfluidic Extraction of Platelet-free Plasma for MicroRNA and Extracellular Vesicle Analysis. ACS Nano 2024, 18, 6623–6637. [Google Scholar] [CrossRef]
- Welsh, J.A.; Goberdhan, D.C.I.; O’Driscoll, L.; Buzas, E.I.; Blenkiron, C.; Bussolati, B.; Cai, H.; Di Vizio, D.; Driedonks, T.A.P.; Erdbrügger, U.; et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J. Extracell. Vesicles 2024, 13, e12404. [Google Scholar] [CrossRef]
- Biadglegne, F.; Schmidt, J.R.; Engel, K.M.; Lehmann, J.; Lehmann, R.T.; Reinert, A.; König, B.; Schiller, J.; Kalkhof, S.; Sack, U. Mycobacterium tuberculosis Affects Protein and Lipid Content of Circulating Exosomes in Infected Patients Depending on Tuberculosis Disease State. Biomedicines 2022, 10, 783. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Guo, H.; Yang, W.; Li, J. Exosomal Circular RNA RNA-seq Profiling and the Carcinogenic Role of Exosomal circ-CYP24A1 in Cutaneous Squamous Cell Carcinoma. Front. Med. 2021, 8, 675842. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, A.; Gajda-Walczak, A.; Ruzycka-Ayoush, M.; Targonska, A.; Mosieniak, G.; Glogowski, M.; Cieckiewicz, A.S.; Prochorec-Sobieszek, M.; Bamburowicz-Klimkowska, M.; Nowicka, A.M.; et al. Parallel SPR and QCM-D Quantitative Analysis of CD9, CD63, and CD81 Tetraspanins: A Simple and Sensitive Way to Determine the Concentration of Extracellular Vesicles Isolated from Human Lung Cancer Cells. Anal. Chem. 2023, 95, 9520–9530. [Google Scholar] [CrossRef]
- Bracht, J.W.P.; Los, M.; van Eijndhoven, M.A.J.; Bettin, B.; van der Pol, E.; Pegtel, D.M.; Nieuwland, R. Platelet removal from human blood plasma improves detection of extracellular vesicle-associated miRNA. J. Extracell. Vesicles 2023, 12, e12302. [Google Scholar] [CrossRef]
- Lyu, T.S.; Ahn, Y.; Im, Y.J.; Kim, S.S.; Lee, K.H.; Kim, J.; Choi, Y.; Lee, D.; Kang, E.; Jin, G.; et al. The characterization of exosomes from fibrosarcoma cell and the useful usage of Dynamic Light Scattering (DLS) for their evaluation. PLoS ONE 2021, 16, e0231994. [Google Scholar] [CrossRef]
- Ginini, L.; Billan, S.; Fridman, E.; Gil, Z. Insight into Extracellular Vesicle-Cell Communication: From Cell Recognition to Intracellular Fate. Cells. 2022, 11, 1375. [Google Scholar] [CrossRef]
- Liu, Q.; Yu, Z.; Yuan, S.; Xie, W.; Li, C.; Hu, Z.; Xiang, Y.; Wu, N.; Wu, L.; Bai, L.; et al. Circulating exosomal microRNAs as prognostic biomarkers for non-small-cell lung cancer. Oncotarget 2017, 8, 13048–13058. [Google Scholar] [CrossRef]
- Hassanin, A.A.I.; Ramos, K.S. Circulating Exosomal miRNA Profiles in Non-Small Cell Lung Cancers. Cells 2024, 13, 1562. [Google Scholar] [CrossRef] [PubMed]
- Abdipourbozorgbaghi, M.; Vancura, A.; Radpour, R.; Haefliger, S. Circulating miRNA panels as a novel non-invasive diagnostic, prognostic, and potential predictive biomarkers in non-small cell lung cancer (NSCLC). Br. J. Cancer 2024, 131, 1350–1362. [Google Scholar] [CrossRef]
- Pontis, F.; Roz, L.; Mensah, M.; Segale, M.; Moro, M.; Bertolini, G.; Petraroia, I.; Centonze, G.; Ferretti, A.M.; Suatoni, P.; et al. Circulating extracellular vesicles from individuals at high-risk of lung cancer induce pro-tumorigenic conversion of stromal cells through transfer of miR-126 and miR-320. J. Exp. Clin. Cancer Res. 2021, 40, 237. [Google Scholar] [CrossRef]
- Kim, D.H.; Park, H.; Choi, Y.J.; Im, K.; Lee, C.W.; Kim, D.S.; Pack, C.G.; Kim, H.Y.; Choi, C.M.; Lee, J.C.; et al. Identification of exosomal microRNA panel as diagnostic and prognostic biomarker for small cell lung cancer. Biomark. Res. 2023, 11, 80. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, B.; Li, R.; Wang, F.; Wang, N.; Zhang, M.; Bai, Y.; Wu, J.; Liu, L.; Han, D.; et al. miR-146a-5p Plays an Oncogenic Role in NSCLC via Suppression of TRAF6. Front. Cell Dev. Biol. 2020, 8, 847. [Google Scholar] [CrossRef]
- Wang, B.; Chen, J.; Fan, M. Plasma Exosomal miRNAs as Response Biomarkers of Immunotherapy in Extensive-Stage Small-Cell Lung Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2023, 117, e70. [Google Scholar] [CrossRef]
- Yang, B.; Xin, X.; Cao, X.; Nasifu, L.; Nie, Z.; He, B. The diagnostic and prognostic value of exosomal microRNAs in lung cancer: A systematic review. Clin. Transl. Oncol. 2024, 26, 1921–1933. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yin, Z.; Lu, P.; Ma, Y.; Luo, B.; Xiang, L.; Zhang, W.; He, Y.; Liang, X. Lung carcinoma cells secrete exosomal malat1 to inhibit dendritic cell phagocytosis, inflammatory response, costimulatory molecule expression and promote dendritic cell autophagy via AKT/MTOR pathway. Onco. Targets Ther. 2020, 13, 10693–10705. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, L.; Deng, G.; Ding, Y.; Bi, K.; Jin, H.; Shu, J.; Yang, J.; Deng, H.; Wang, Z.; et al. Exosomal HOTAIR promotes proliferation, migration and invasion of lung cancer by sponging miR-203. Sci. China Life Sci. 2020, 63, 1265–1268. [Google Scholar] [CrossRef] [PubMed]
- Min, L.; Zhu, T.; Lv, B.; An, T.; Zhang, Q.; Shang, Y.; Shang, Y.; Zheng, L.; Wang, Q. Exosomal LncRNA RP5-977B1 as a novel minimally invasive biomarker for diagnosis and prognosis in non-small cell lung cancer. Int. J. Clin. Oncol. 2022, 27, 1013–1024. [Google Scholar] [CrossRef]
- Xiong, D.; Wang, C.; Yang, Z.; Han, F.; Zhan, H. Clinical Significance of Serum-Derived Exosomal LINC00917 in Patients With Non-Small Cell Lung Cancer. Front. Genet. 2021, 12, 728763. [Google Scholar] [CrossRef]
- Stiller, C.; Viktorsson, K.; Gomero, E.P.; Hååg, P.; Arapi, V.; Kaminskyy, V.O.; Kamali, C.; De Petris, L.; Ekman, S.; Lewensohn, R.; et al. Detection of tumor-associated membrane receptors on extracellular vesicles from non-small cell lung cancer patients via immuno-pcr. Cancers 2021, 13, 922. [Google Scholar] [CrossRef]
- Wu, F.; Yin, Z.; Yang, L.; Fan, J.; Xu, J.; Jin, Y.; Yu, J.; Zhang, D.; Yang, G. Smoking induced extracellular vesicles release and their distinct properties in non-small cell lung cancer. J. Cancer 2019, 10, 3435–3443. [Google Scholar] [CrossRef]
- Schöne, N.; Kemper, M.; Menck, K.; Evers, G.; Krekeler, C.; Schulze, A.B.; Carter-Cooper, B.A.; Lapidus, R.; Peleg, A.; Arroyo-Hernández, M.; et al. PD-L1 on large extracellular vesicles is a predictive biomarker for therapy response in tissue PD-L1-low and -negative patients with non-small cell lung cancer. J. Extracell. Vesicles 2024, 13, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Abudula, M.; Li, C.; Chen, Z.; Zhang, Y.; Chen, Y. Icotinib-resistant HCC827 cells produce exosomes with mRNA MET oncogenes and mediate the migration and invasion of NSCLC. Respir. Res. 2019, 20, 217. [Google Scholar] [CrossRef] [PubMed]
- Chanteloup, G.; Cordonnier, M.; Isambert, N.; Bertaut, A.; Hervieu, A.; Hennequin, A.; Luu, M.; Zanetta, S.; Coudert, B.; Bengrine, L.; et al. Monitoring HSP70 exosomes in cancer patients’ follow up: A clinical prospective pilot study. J. Extracell. Vesicles 2020, 9, 1766192. [Google Scholar] [CrossRef]
- Diao, X.; Guo, C.; Zheng, H.; Zhao, K.; Luo, Y.; An, M.; Lin, Y.; Chen, J.; Li, Y.; Gao, X.; et al. SUMOylation-triggered ALIX activation modulates extracellular vesicles circTLCD4-RWDD3 to promote lymphatic metastasis of non-small cell lung cancer. Signal Transduct. Target. Ther. 2023, 8, 426. [Google Scholar] [CrossRef]
- Irani, K.; Siampour, H.; Allahverdi, A.; Moshaii, A.; Naderi-Manesh, H. Lung Cancer Cell-Derived Exosome Detection Using Electrochemical Approach towards Early Cancer Screening. Int. J. Mol. Sci. 2023, 24, 17225. [Google Scholar] [CrossRef]
- Koh, H.M.; An, H.J.; Jung, J.J.; Song, D.H. The prognostic significance of cd63 expression in patients with non-small cell lung cancer. Pol. J. Pathol. 2019, 70, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wang, H.; Zhang, Y.; Jiang, H.; Li, T.; Liu, L.; Zhao, Y. Label-Free Multiplex Profiling of Exosomal Proteins with a Deep Learning-Driven 3D Surround-Enhancing SERS Platform for Early Cancer Diagnosis. Anal. Chem. 2024, 96, 6794–6801. [Google Scholar] [CrossRef]
- Shen, X.; Yang, Y.; Chen, Y.; Zhou, C.; Zhao, X.; Li, N.; Lou, C.; Huang, Y.; Tian, D.; Shen, Y.; et al. Evaluation of EpCAM-specific exosomal lncRNAs as potential diagnostic biomarkers for lung cancer using droplet digital PCR. J. Mol. Med. 2022, 100, 87–100. [Google Scholar] [CrossRef]
- Jakobsen, K.R.; Paulsen, B.S.; Bæk, R.; Varming, K.; Sorensen, B.S.; Jørgensen, M.M. Exosomal proteins as potential diagnostic markers in advanced non-small cell lung carcinoma. J. Extracell. Vesicles 2015, 4, 26659. [Google Scholar] [CrossRef]
- Pan, D.; Chen, J.; Feng, C.; Wu, W.; Wang, Y.; Tong, J.; Zhou, D. Preferential localization of MUC1 glycoprotein in exosomes secreted by non-small cell lung carcinoma cells. Int. J. Mol. Sci. 2019, 20, 323. [Google Scholar] [CrossRef]
- Novikova, S.E.; Soloveva, N.A.; Farafonova, T.E.; Tikhonova, O.V.; Liao, P.C.; Zgoda, V.G. Proteomic signature of extracellular vesicles for lung cancer recognition. Molecules 2021, 26, 6145. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.S.; Faruque, H.; Al Kim, J.H.; Kim, K.J.; Choi, J.E.; Kim, B.A.; Kim, B.; Kim, Y.J.; Woo, M.H.; Park, J.Y.; et al. Cd5l as an extracellular vesicle-derived biomarker for liquid biopsy of lung cancer. Diagnostics 2021, 11, 620. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, S.; Zhu, R.; Li, H.; Han, Q.; Zhao, R.C. Lung tumor exosomes induce a pro-inflammatory phenotype in mesenchymal stem cells via NFκB-TLR signaling pathway. J. Hematol. Oncol. 2016, 9, 42. [Google Scholar] [CrossRef]
- Fan, T.W.M.; Zhang, X.; Wang, C.; Yang, Y.; Kang, W.Y.; Arnold, S.; Higashi, R.M.; Liu, J.; Lane, A.N. Exosomal lipids for classifying early and late stage non-small cell lung cancer. Anal. Chim. Acta 2018, 1037, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Smolarz, M.; Kurczyk, A.; Jelonek, K.; Żyła, J.; Mielańczyk, Ł.; Sitkiewicz, M.; Pietrowska, M.; Polańska, J.; Rzyman, W.; Widłak, P. The lipid composition of serum-derived small extracellular vesicles in participants of a lung cancer screening study. Cancers 2021, 13, 3414. [Google Scholar] [CrossRef]
- Machala, M.; Slavík, J.; Kováč, O.; Procházková, J.; Pěnčíková, K.; Pařenicová, M.; Straková, N.; Kotouček, J.; Kulich, P.; Mollerup, S.; et al. Changes in sphingolipid profile of benzo[a]pyrene-transformed human bronchial epithelial cells are reflected in the altered composition of sphingolipids in their exosomes. Int. J. Mol. Sci. 2021, 22, 9195. [Google Scholar] [CrossRef]
- Bhatta, M.; Shenoy, G.N.; Loyall, J.L.; Gray, B.D.; Bapardekar, M.; Conway, A.; Minderman, H.; Kelleher, R.J., Jr.; Carreno, B.M.; Linette, G.; et al. Novel phosphatidylserine-binding molecule enhances antitumor T-cell responses by targeting immunosuppressive exosomes in human tumor microenvironments. J. Immunother. Cancer 2021, 9, e003148. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.M.; Zou, Y.Q.; Lin, J.; Huang, B.; Liu, J.; Li, J.; Zhang, J.; Yang, W.M.; Min, Q.H.; et al. Identification of differential expressed PE exosomal miRNA in lung adenocarcinoma, tuberculosis, and other benign lesions. Medicine 2017, 96, e8361. [Google Scholar] [CrossRef]
- Gurunathan, S.; Kang, M.H.; Jeyaraj, M.; Kim, J.H. Platinum nanoparticles enhance exosome release in human lung epithelial adenocarcinoma cancer cells (A549): Oxidative stress and the ceramide pathway are key players. Int. J. Nanomed. 2021, 16, 515–538. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, J.; Gan, J.; Wang, W.; Liu, Y.; Song, T.; Yang, Y.; Ji, G.; Li, W. Proteomic Analysis of Plasma Exosomes Enables the Identification of Lung Cancer in Patients With Chronic Obstructive Pulmonary Disease. Thorac. Cancer 2025, 16, e15517. [Google Scholar] [CrossRef]
- Petraroia, I.; Ghidotti, P.; Bertolini, G.; Pontis, F.; Roz, L.; Balsamo, M.; Suatoni, P.; Pastorino, U.; Ferretti, A.M.; Sozzi, G.; et al. Extracellular vesicles from subjects with COPD modulate cancer initiating cells phenotype through HIF-1α shuttling. Cell Death Dis. 2023, 14, 681. [Google Scholar] [CrossRef] [PubMed]
EV Types | Size | Density (g/mL) | Markers | Biogenesis and Secretion | Pathway | Reference |
---|---|---|---|---|---|---|
Small EVs | 30–150 nm | 1.12–1.19 | CD9, CD63, CD81 | Inward budding of the late endosome lumen and fusion with the plasma membrane | ESCRET-dependent and Tetraspanin-dependent | [24] |
Microvesicles | 100–1000 nm | 1.12–1.21 | CD40-ligand, se-lectin, flotillin-2, annexin 1 | Outward budding and fission of the plasma membrane | Ca2+-dependent and Stimuli-and-cell-dependent | [25] |
Apoptotic bodies | 1–4 µm | 1.16–1.28 | AnexinV, DNA, histones, phosphatidylserine | Plasma membrane blebs of cells undergoing apoptosis | Apoptosis-related | [26] |
Marker | Specific Types | Measurement | Clinical Significance | Reference |
---|---|---|---|---|
Genetic markers I. MicroRNA | miR-21 | Overexpression | poor prognosis, invasion, and tumor growth | [57] |
Let-7 | Downregulated | tumor aggressiveness | [58] | |
miR-155 | Upregulation | invasion | [59] | |
miR-375-P | Low expression | metastasis | [22] | |
miR-210p | Overexpression | poor prognosis | [9] | |
miR-126 | Downregulation | tumor progress | [60] | |
miR 200 | Overexpression | tumor metastasis, drug resistance, and immune modulation | [61] | |
miR-199a-5p | Low expression | metastasis | [35] | |
mir 146a-5p | Over expression | metastasis | [62] | |
miR-320 | Low expression | treatment resistance | [63] | |
miR-486-5p | Lower expression | advanced stages and poor prognosis | [64] | |
II. Long non-coding RNAs (lncRNAs): | Metastasis-Associated Lung Adenocarcinoma Transcript1 (MALAT1) | Overexpression | poor prognosis and invasion | [65] |
HOX Transcript Antisense Intergenic RNA (HOTAIR) | Dysregulated Overexpression | metastasis and poor prognosis. | [66] | |
RP5-977B1 | Elevated expression | tumor growth, proliferation | [67] | |
Long intergenic non-coding RNA 917 (LINC00917) | Elevated levels | metastasis | [68] | |
III. mRNAs (messenger RNAs) and DNA mutations | Epidermal Growth Factor Receptor (EGFR) | Mutations | progression | [69] |
ALK (Anaplastic Lymphoma Kinase), BRAF, MET | Gene rearrangements | tumor shrinkage or stable disease | [70] | |
Kirsten Rat Sarcoma Viral Oncogene-Homolog (KRAS) | Mutations | poor prognosis and limited response to certain, targeted therapies. | [70] | |
ROS Proto-Oncogene 1, Receptor Tyrosine Kinase (ROS1) | Gene rearrangements | metastasis NSCLC | [70] | |
Programmed Death-Ligand 1 (PD-L1) and tPDL-1 | Overexpression | immune evasion | [71] | |
Kirsten Rat Sarcoma Viral Oncogene.Homolog (KRAS) | Mutations | poorer prognosis | [72] | |
V-Raf Murine Sarcoma Viral Oncogene Homolog B (BRAF) | Mutations and over-expression | cancer development and progression | [38] | |
Tumor Protein P53 (TP53) | Mutations | aggressive phenotype and poor prognosis | [38] | |
Rearranged-During Transfection (RET) | RET fusions | metastasis | [70] | |
Proteins | Heat Shock Protein 70 (HSP70, HSP90) | Elevated expression | poor prognosis, metastasis | [73] |
Carcino-embryonic Antigen (CEA) | Elevated expression | poor survival | [27] | |
ALIX | Elevated level | metastasis | [74] | |
CD151 | Elevated level | tumor growth | [75] | |
CD63, CD133 | Elevated level | metastasis and immune invasion | [76,77] | |
CD105 | Elevated levels | Metastasis | [57] | |
EpCAM (Epithelial Cell Adhesion Molecule) | Upregulation | tumoral transformation | [78] | |
Tetraspanin proteins CD9, CD63, and CD81 | Elevated dysregulation | cancer cell growth, drug resistance, metastasis, stemness, | [79] | |
EGFR.(Epidermal GrowthFactor Receptor) | Overexpression | Poor survival | [71] | |
MUC1 (Mucin 1) | Overexpression | cancer development and metastasis | [80] | |
Tumor Susceptibility Gene 101 (TSG101) | Mutation | Metastasis | [81] | |
CD5L | Elevated expression | cancer progression | [82] | |
IL-6, IL-8 | Elevated expression | high-inflammation, chemoresistance, immune evasion | [83] | |
Lipids | Cholesterol Ester | Altered levels | disease progression | [84] |
High-Density Lipoprotein (HDL) and Low-Density Lipoprotein (LDL) | Low levels | Metastasis | [85] | |
Sphingomyelin (SM) | High levels | metastasis/angiogenesis | [86] | |
Phosphatidylserine (PS) | Alterations | cancer progression | [87] | |
Phosphatidylethanolamine (PE) | Overexpression | Poor prognosis | [88] | |
Phosphatidylcholine (PC) | Overexpression | Poor prognosis | [85] | |
phosphoinositide 3-kinase (PIK3CA): | High expression | lung cancer progression. | [85] | |
Lysophosphatidylcholine (LPC) | Low expression | cancer progression | [85] | |
Ceramide-Synthase Enzymes | Dysregulation | Progression. | [89] | |
C16:0 Ceramide | High expression | cancer progression and metastasis | [86] | |
C18:0 Ceramide | Low expression | cancer progression | [86] |
Marker | Expression | Role in Comorbidity | Reference |
---|---|---|---|
CD 9 | Dysregulated | altered cell adhesion and metastasis | [91] |
CD 63 | Elevated | immune evasion, chronic inflammation, | [91] |
CD 81 | Increased | tumor progression | [91] |
TSG 101 | upregulated | tumor progression | [35] |
ALIX | Increased | tumor cell survival and COPD-related lung remodeling | [32] |
PD-L1 | Upregulated | immune evasion | [90] |
HSP70 and HSP90 | Elevated | tumor survival | [90] |
miR-21 | overexpressed | tumor progression | [35] |
miR-155 | Overexpressed | immune suppression | [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aleka, Y.; Biadglegne, F.; Sack, U. Whispers in the Lungs: Small Extracellular Vesicles in Lung Cancer and COPD Crosstalk. Cancers 2025, 17, 1612. https://doi.org/10.3390/cancers17101612
Aleka Y, Biadglegne F, Sack U. Whispers in the Lungs: Small Extracellular Vesicles in Lung Cancer and COPD Crosstalk. Cancers. 2025; 17(10):1612. https://doi.org/10.3390/cancers17101612
Chicago/Turabian StyleAleka, Yetemwork, Fantahun Biadglegne, and Ulrich Sack. 2025. "Whispers in the Lungs: Small Extracellular Vesicles in Lung Cancer and COPD Crosstalk" Cancers 17, no. 10: 1612. https://doi.org/10.3390/cancers17101612
APA StyleAleka, Y., Biadglegne, F., & Sack, U. (2025). Whispers in the Lungs: Small Extracellular Vesicles in Lung Cancer and COPD Crosstalk. Cancers, 17(10), 1612. https://doi.org/10.3390/cancers17101612