Clinical Theranostics in Recurrent Gliomas: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Theranostics Overview
3. Theranostic Use in Gliomas
4. Current Radioligands
5. Delivery of Radiotracers
6. Radiotracer Dosimetry
7. Functional Neuro-Oncologic Implications
8. Challenges and Limitations
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Thakkar, J.P.; Dolecek, T.A.; Horbinski, C.; Ostrom, Q.T.; Lightner, D.D.; Barnholtz-Sloan, J.S.; Villano, J.L. Epidemiologic and Molecular Prognostic Review of Glioblastoma. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2014, 23, 1985–1996. [Google Scholar] [CrossRef] [PubMed]
- Strauss, S.B.; Meng, A.; Ebani, E.J.; Chiang, G.C. Imaging Glioblastoma Posttreatment: Progression, Pseudoprogression, Pseudoresponse, Radiation Necrosis. Radiol. Clin. N. Am. 2019, 57, 1199–1216. [Google Scholar] [CrossRef] [PubMed]
- van Linde, M.E.; Brahm, C.G.; de Witt Hamer, P.C.; Reijneveld, J.C.; Bruynzeel, A.M.E.; Vandertop, W.P.; van de Ven, P.M.; Wagemakers, M.; van der Weide, H.L.; Enting, R.H.; et al. Treatment Outcome of Patients with Recurrent Glioblastoma Multiforme: A Retrospective Multicenter Analysis. J. Neurooncol. 2017, 135, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Broekx, S.; Weyns, F.; De Vleeschouwer, S. 5-Aminolevulinic Acid for Recurrent Malignant Gliomas: A Systematic Review. Clin. Neurol. Neurosurg. 2020, 195, 105913. [Google Scholar] [CrossRef] [PubMed]
- de Groot, J.F.; Kim, A.H.; Prabhu, S.; Rao, G.; Laxton, A.W.; Fecci, P.E.; O’Brien, B.J.; Sloan, A.; Chiang, V.; Tatter, S.B.; et al. Efficacy of Laser Interstitial Thermal Therapy (LITT) for Newly Diagnosed and Recurrent IDH Wild-Type Glioblastoma. Neuro-Oncol. Adv. 2022, 4, vdac040. [Google Scholar] [CrossRef] [PubMed]
- Weller, M.; van den Bent, M.; Tonn, J.C.; Stupp, R.; Preusser, M.; Cohen-Jonathan-Moyal, E.; Henriksson, R.; Le Rhun, E.; Balana, C.; European Association for Neuro-Oncology (EANO) Task Force on Gliomas; et al. European Association for Neuro-Oncology (EANO) Guideline on the Diagnosis and Treatment of Adult Astrocytic and Oligodendroglial Gliomas. Lancet Oncol. 2017, 18, e315–e329. [Google Scholar] [CrossRef] [PubMed]
- Norden, A.D.; Bartolomeo, J.; Tanaka, S.; Drappatz, J.; Ciampa, A.S.; Doherty, L.M.; Lafrankie, D.C.; Ruland, S.; Quant, E.C.; Beroukhim, R.; et al. Safety of Concurrent Bevacizumab Therapy and Anticoagulation in Glioma Patients. J. Neurooncol. 2012, 106, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Wick, W.; Gorlia, T.; Bendszus, M.; Taphoorn, M.; Sahm, F.; Harting, I.; Brandes, A.A.; Taal, W.; Domont, J.; Idbaih, A.; et al. Lomustine and Bevacizumab in Progressive Glioblastoma. N. Engl. J. Med. 2017, 377, 1954–1963. [Google Scholar] [CrossRef]
- Wen, P.Y.; Stein, A.; van den Bent, M.; De Greve, J.; Wick, A.; de Vos, F.Y.F.L.; von Bubnoff, N.; van Linde, M.E.; Lai, A.; Prager, G.W.; et al. Dabrafenib plus Trametinib in Patients with BRAFV600E-Mutant Low-Grade and High-Grade Glioma (ROAR): A Multicentre, Open-Label, Single-Arm, Phase 2, Basket Trial. Lancet Oncol. 2022, 23, 53–64. [Google Scholar] [CrossRef]
- Desjardins, A.; Reardon, D.A.; Coan, A.; Marcello, J.; Herndon, J.E.; Bailey, L.; Peters, K.B.; Friedman, H.S.; Vredenburgh, J.J. Bevacizumab and Daily Temozolomide for Recurrent Glioblastoma. Cancer 2012, 118, 1302–1312. [Google Scholar] [CrossRef]
- Ringel, F.; Pape, H.; Sabel, M.; Krex, D.; Bock, H.C.; Misch, M.; Weyerbrock, A.; Westermaier, T.; Senft, C.; SN1 Study Group; et al. Clinical Benefit from Resection of Recurrent Glioblastomas: Results of a Multicenter Study Including 503 Patients with Recurrent Glioblastomas Undergoing Surgical Resection. Neuro-Oncology 2016, 18, 96–104. [Google Scholar] [CrossRef]
- Kong, D.-S.; Lee, J.-I.; Park, K.; Kim, J.H.; Lim, D.-H.; Nam, D.-H. Efficacy of Stereotactic Radiosurgery as a Salvage Treatment for Recurrent Malignant Gliomas. Cancer 2008, 112, 2046–2051. [Google Scholar] [CrossRef]
- Scoccianti, S.; Francolini, G.; Carta, G.A.; Greto, D.; Detti, B.; Simontacchi, G.; Visani, L.; Baki, M.; Poggesi, L.; Bonomo, P.; et al. Re-Irradiation as Salvage Treatment in Recurrent Glioblastoma: A Comprehensive Literature Review to Provide Practical Answers to Frequently Asked Questions. Crit. Rev. Oncol. Hematol. 2018, 126, 80–91. [Google Scholar] [CrossRef]
- Hu, L.S.; Hawkins-Daarud, A.; Wang, L.; Li, J.; Swanson, K.R. Imaging of Intratumoral Heterogeneity in High-Grade Glioma. Cancer Lett. 2020, 477, 97–106. [Google Scholar] [CrossRef] [PubMed]
- van Dijken, B.R.J.; van Laar, P.J.; Smits, M.; Dankbaar, J.W.; Enting, R.H.; van der Hoorn, A. Perfusion MRI in Treatment Evaluation of Glioblastomas: Clinical Relevance of Current and Future Techniques. J. Magn. Reson. Imaging JMRI 2019, 49, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Verger, A.; Langen, K.-J. PET Imaging in Glioblastoma: Use in Clinical Practice. In Glioblastoma; De Vleeschouwer, S., Ed.; Codon Publications: Brisbane, QLD, Australia, 2017. [Google Scholar]
- Baum, R.P.; Kulkarni, H.R. THERANOSTICS: From Molecular Imaging Using Ga-68 Labeled Tracers and PET/CT to Personalized Radionuclide Therapy—The Bad Berka Experience. Theranostics 2012, 2, 437–447. [Google Scholar] [CrossRef]
- Roman, D.D.; Sperduto, P.W. Neuropsychological Effects of Cranial Radiation: Current Knowledge and Future Directions. Int. J. Radiat. Oncol. Biol. Phys. 1995, 31, 983–998. [Google Scholar] [CrossRef]
- Klein, M.; Heimans, J.J.; Aaronson, N.K.; van der Ploeg, H.M.; Grit, J.; Muller, M.; Postma, T.J.; Mooij, J.J.; Boerman, R.H.; Beute, G.N.; et al. Effect of Radiotherapy and Other Treatment-Related Factors on Mid-Term to Long-Term Cognitive Sequelae in Low-Grade Gliomas: A Comparative Study. Lancet 2002, 360, 1361–1368. [Google Scholar] [CrossRef] [PubMed]
- Meador, K.J. Cognitive Side Effects of Medications. Neurol. Clin. 1998, 16, 141–155. [Google Scholar] [CrossRef]
- Gomes Marin, J.F.; Nunes, R.F.; Coutinho, A.M.; Zaniboni, E.C.; Costa, L.B.; Barbosa, F.G.; Queiroz, M.A.; Cerri, G.G.; Buchpiguel, C.A. Theranostics in Nuclear Medicine: Emerging and Re-Emerging Integrated Imaging and Therapies in the Era of Precision Oncology. Radiographics 2020, 40, 1715–1740. [Google Scholar] [CrossRef]
- Pandit-Taskar, N. Targeted Radioimmunotherapy and Theranostics with Alpha Emitters. J. Med. Imaging Radiat. Sci. 2019, 50 (4 Suppl. 1), S41–S44. [Google Scholar] [CrossRef]
- Pruis, I.J.; van Dongen, G.A.M.S.; Veldhuijzen van Zanten, S.E.M. The Added Value of Diagnostic and Theranostic PET Imaging for the Treatment of CNS Tumors. Int. J. Mol. Sci. 2020, 21, 1029. [Google Scholar] [CrossRef] [PubMed]
- Hooper, G.W.; Ansari, S.; Johnson, J.M.; Ginat, D.T. Advances in the Radiological Evaluation of and Theranostics for Glioblastoma. Cancers 2023, 15, 4162. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Ballal, S.; Yadav, M.P.; ArunRaj, S.T.; Haresh, K.P.; Gupta, S.; Damle, N.A.; Garg, A.; Tripathi, M.; Bal, C. 177Lu-/68Ga-PSMA Theranostics in Recurrent Glioblastoma Multiforme: Proof of Concept. Clin. Nucl. Med. 2020, 45, e512–e513. [Google Scholar] [CrossRef] [PubMed]
- Kunikowska, J.; Charzyńska, I.; Kuliński, R.; Pawlak, D.; Maurin, M.; Królicki, L. Tumor Uptake in Glioblastoma Multiforme after IV Injection of [177Lu]Lu-PSMA-617. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 1605–1606. [Google Scholar] [CrossRef] [PubMed]
- Graef, J.; Bluemel, S.; Brenner, W.; Amthauer, H.; Truckenmueller, P.; Kaul, D.; Vajkoczy, P.; Onken, J.S.; Furth, C. [177Lu]Lu-PSMA Therapy as an Individual Treatment Approach for Patients with High-Grade Glioma: Dosimetry Results and Critical Statement. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2023, 64, 892–895. [Google Scholar] [CrossRef] [PubMed]
- Krolicki, L.; Bruchertseifer, F.; Kunikowska, J.; Koziara, H.; Królicki, B.; Jakuciński, M.; Pawlak, D.; Apostolidis, C.; Mirzadeh, S.; Rola, R.; et al. Prolonged Survival in Secondary Glioblastoma Following Local Injection of Targeted Alpha Therapy with 213Bi-Substance P Analogue. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1636–1644. [Google Scholar] [CrossRef] [PubMed]
- Afshari, A.R.; Motamed-Sanaye, A.; Sabri, H.; Soltani, A.; Karkon-Shayan, S.; Radvar, S.; Javid, H.; Mollazadeh, H.; Sathyapalan, T.; Sahebkar, A. Neurokinin-1 Receptor (NK-1R) Antagonists: Potential Targets in the Treatment of Glioblastoma Multiforme. Curr. Med. Chem. 2021, 28, 4877–4892. [Google Scholar] [CrossRef] [PubMed]
- Heute, D.; Kostron, H.; von Guggenberg, E.; Ingorokva, S.; Gabriel, M.; Dobrozemsky, G.; Stockhammer, G.; Virgolini, I.J. Response of Recurrent High-Grade Glioma to Treatment with (90)Y-DOTATOC. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2010, 51, 397–400. [Google Scholar] [CrossRef]
- D’Souza, M.M.; Sharma, R.; Jaimini, A.; Panwar, P.; Saw, S.; Kaur, P.; Mondal, A.; Mishra, A.; Tripathi, R.P. 11C-MET PET/CT and Advanced MRI in the Evaluation of Tumor Recurrence in High-Grade Gliomas. Clin. Nucl. Med. 2014, 39, 791–798. [Google Scholar] [CrossRef]
- Nakano, T.; Tamura, K.; Tanaka, Y.; Inaji, M.; Hayashi, S.; Kobayashi, D.; Nariai, T.; Toyohara, J.; Ishii, K.; Maehara, T. Usefulness of 11C-Methionine Positron Emission Tomography for Monitoring of Treatment Response and Recurrence in a Glioblastoma Patient on Bevacizumab Therapy: A Case Report. Case Rep. Oncol. 2018, 11, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Hirono, S.; Hasegawa, Y.; Sakaida, T.; Uchino, Y.; Hatano, K.; Iuchi, T. Feasibility Study of Finalizing the Extended Adjuvant Temozolomide Based on Methionine Positron Emission Tomography (Met-PET) Findings in Patients with Glioblastoma. Sci. Rep. 2019, 9, 17794. [Google Scholar] [CrossRef] [PubMed]
- Quach, S.; Holzgreve, A.; Kaiser, L.; Unterrainer, M.; Dekorsy, F.J.; Nelwan, D.V.; Bartos, L.M.; Kirchleitner, S.V.; Weller, J.; Weidner, L.; et al. TSPO PET Signal Using [18F]GE180 Is Associated with Survival in Recurrent Gliomas. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, K.; Czernin, J.; Cloughesy, T.; Lai, A.; Pomykala, K.L.; Benz, M.R.; Buck, A.K.; Phelps, M.E.; Chen, W. Comparison of Visual and Semiquantitative Analysis of 18F-FDOPA-PET/CT for Recurrence Detection in Glioblastoma Patients. Neuro-Oncol. 2014, 16, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Puranik, A.D.; Rangarajan, V.; Dev, I.D.; Jain, Y.; Purandare, N.C.; Sahu, A.; Choudhary, A.; Gupta, T.; Chatterjee, A.; Moiyadi, A.; et al. Brain FET PET Tumor-to-White Mater Ratio to Differentiate Recurrence from Post-Treatment Changes in High-Grade Gliomas. J. Neuroimaging Off. J. Am. Soc. Neuroimaging 2021, 31, 1211–1218. [Google Scholar] [CrossRef] [PubMed]
- Dunet, V.; Pomoni, A.; Hottinger, A.; Nicod-Lalonde, M.; Prior, J.O. Performance of 18F-FET versus 18F-FDG-PET for the Diagnosis and Grading of Brain Tumors: Systematic Review and Meta-Analysis. Neuro-Oncology 2016, 18, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Verburg, F.A.; Sweeney, R.; Hänscheid, H.; Dießl, S.; Israel, I.; Löhr, M.; Vince, G.H.; Flentje, M.; Reiners, C.; Samnick, S. Patients with Recurrent Glioblastoma Multiforme. Initial Experience with p-[(131)I]Iodo-L-Phenylalanine and External Beam Radiation Therapy. Nukl. Nucl. Med. 2013, 52, 36–42. [Google Scholar] [CrossRef]
- Collet, S.; Guillamo, J.S.; Berro, D.H.; Chakhoyan, A.; Constans, J.M.; Lechapt-Zalcman, E.; Derlon, J.M.; Hatt, M.; Visvikis, D.; Guillouet, S.; et al. Simultaneous Mapping of Vasculature, Hypoxia, and Proliferation Using Dynamic Susceptibility Contrast MRI, 18F-FMISO PET, and 18F-FLT PET in Relation to Contrast Enhancement in Newly Diagnosed Glioblastoma. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2021, 62, 1349–1356. [Google Scholar] [CrossRef]
- Barajas, R.F., Jr.; Pampaloni, M.H.; Clarke, J.L.; Seo, Y.; Savic, D.; Hawkins, R.A.; Behr, S.C.; Chang, S.M.; Berger, M.; Dillon, W.P.; et al. Assessing Biological Response to Bevacizumab Using 18F-Fluoromisonidazole PET/MR Imaging in a Patient with Recurrent Anaplastic Astrocytoma. Case Rep. Radiol. 2015, 2015, 731361. [Google Scholar] [CrossRef]
- Owen, D.R.J.; Matthews, P.M. Imaging Brain Microglial Activation Using Positron Emission Tomography and Translocator Protein-Specific Radioligands. Int. Rev. Neurobiol. 2011, 101, 19–39. [Google Scholar] [CrossRef]
- Vlodavsky, E.; Soustiel, J.F. Immunohistochemical Expression of Peripheral Benzodiazepine Receptors in Human Astrocytomas and Its Correlation with Grade of Malignancy, Proliferation, Apoptosis and Survival. J. Neurooncol. 2007, 81, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Albert, N.L.; Unterrainer, M.; Fleischmann, D.F.; Lindner, S.; Vettermann, F.; Brunegraf, A.; Vomacka, L.; Brendel, M.; Wenter, V.; Wetzel, C.; et al. TSPO PET for Glioma Imaging Using the Novel Ligand 18F-GE-180: First Results in Patients with Glioblastoma. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 2230–2238. [Google Scholar] [CrossRef] [PubMed]
- Unterrainer, M.; Fleischmann, D.F.; Diekmann, C.; Vomacka, L.; Lindner, S.; Vettermann, F.; Brendel, M.; Wenter, V.; Ertl-Wagner, B.; Herms, J.; et al. Comparison of 18F-GE-180 and Dynamic 18F-FET PET in High Grade Glioma: A Double-Tracer Pilot Study. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 580–590. [Google Scholar] [CrossRef]
- Unterrainer, M.; Fleischmann, D.F.; Vettermann, F.; Ruf, V.; Kaiser, L.; Nelwan, D.; Lindner, S.; Brendel, M.; Wenter, V.; Stöcklein, S.; et al. TSPO PET, Tumour Grading and Molecular Genetics in Histologically Verified Glioma: A Correlative 18F-GE-180 PET Study. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 1368–1380. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Pu, Y.; Huang, S.; Yang, C.; Yang, F.; Pu, Y.; Li, J.; Chen, L.; Huang, Y. FAPI-PET/CT in Cancer Imaging: A Potential Novel Molecule of the Century. Front. Oncol. 2022, 12, 854658. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, S.; Liao, S.Y.; Ivanova, A.; Danilkovitch-Miagkova, A.; Tarasova, N.; Weirich, G.; Merrill, M.J.; Proescholdt, M.A.; Oldfield, E.H.; Lee, J.; et al. Expression of Hypoxia-Inducible Cell-Surface Transmembrane Carbonic Anhydrases in Human Cancer. Am. J. Pathol. 2001, 158, 905–919. [Google Scholar] [CrossRef] [PubMed]
- Tolboom, N.; Verger, A.; Albert, N.L.; Fraioli, F.; Guedj, E.; Traub-Weidinger, T.; Morbelli, S.; Herrmann, K.; Zucchetta, P.; Plasschaert, S.L.A.; et al. Theranostics in Neurooncology: Heading Toward New Horizons. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2024, 65, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Vonken, E.-J.P.A.; Bruijnen, R.C.G.; Snijders, T.J.; Seute, T.; Lam, M.G.E.H.; de Keizer, B.; Braat, A.J.A.T. Intraarterial Administration Boosts 177Lu-HA-DOTATATE Accumulation in Salvage Meningioma Patients. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2022, 63, 406–409. [Google Scholar] [CrossRef]
- Tolboom, N.; Verger, A.; Albert, N.L.; Brendel, M.; Cecchin, D.; Fernandez, P.A.; Fraioli, F.; Guedj, E.; Herrmann, K.; Traub-Weidinger, T.; et al. EANM Position Paper: Theranostics in Brain Tumours-the Present and the Future. Eur. J. Nucl. Med. Mol. Imaging 2023, 51, 202–205. [Google Scholar] [CrossRef]
- Pasciak, A.S.; Manupipatpong, S.; Hui, F.K.; Gainsburg, L.; Krimins, R.; Zink, M.C.; Brayton, C.F.; Morris, M.; Sage, J.; Donahue, D.R.; et al. Yttrium-90 Radioembolization as a Possible New Treatment for Brain Cancer: Proof of Concept and Safety Analysis in a Canine Model. EJNMMI Res. 2020, 10, 96. [Google Scholar] [CrossRef]
- Liu, S.; Ma, H.; Zhang, Z.; Lin, L.; Yuan, G.; Tang, X.; Nie, D.; Jiang, S.; Yang, G.; Tang, G. Synthesis of Enantiopure 18F-Trifluoromethyl Cysteine as a Structure-Mimetic Amino Acid Tracer for Glioma Imaging. Theranostics 2019, 9, 1144–1153. [Google Scholar] [CrossRef] [PubMed]
- Johnsen, K.B.; Bak, M.; Melander, F.; Thomsen, M.S.; Burkhart, A.; Kempen, P.J.; Andresen, T.L.; Moos, T. Modulating the Antibody Density Changes the Uptake and Transport at the Blood-Brain Barrier of Both Transferrin Receptor-Targeted Gold Nanoparticles and Liposomal Cargo. J. Control. Release Off. J. Control. Release Soc. 2019, 295, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Patel, C.B.; Xu, G.; Iagaru, A.; Zhu, Z.; Zhang, L.; Cheng, Z. Visualization of Diagnostic and Therapeutic Targets in Glioma With Molecular Imaging. Front. Immunol. 2020, 11, 592389. [Google Scholar] [CrossRef] [PubMed]
- Pineda, E.; Domenech, M.; Hernández, A.; Comas, S.; Balaña, C. Recurrent Glioblastoma: Ongoing Clinical Challenges and Future Prospects. OncoTargets Ther. 2023, 16, 71–86. [Google Scholar] [CrossRef] [PubMed]
- Sgouros, G.; Roeske, J.C.; McDevitt, M.R.; Palm, S.; Allen, B.J.; Fisher, D.R.; Brill, A.B.; Song, H.; Howell, R.W.; Akabani, G.; et al. MIRD Pamphlet No. 22 (Abridged): Radiobiology and Dosimetry of Alpha-Particle Emitters for Targeted Radionuclide Therapy. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2010, 51, 311–328. [Google Scholar] [CrossRef] [PubMed]
- Dadgar, H.; Jokar, N.; Nemati, R.; Larvie, M.; Assadi, M. PET Tracers in Glioblastoma: Toward Neurotheranostics as an Individualized Medicine Approach. Front. Nucl. Med. 2023, 3, 3. [Google Scholar] [CrossRef]
- Bolcaen, J.; Kleynhans, J.; Nair, S.; Verhoeven, J.; Goethals, I.; Sathekge, M.; Vandevoorde, C.; Ebenhan, T. A Perspective on the Radiopharmaceutical Requirements for Imaging and Therapy of Glioblastoma. Theranostics 2021, 11, 7911–7947. [Google Scholar] [CrossRef]
- Karakatsanis, N.A.; Fokou, E.; Tsoumpas, C. Dosage Optimization in Positron Emission Tomography: State-of-the-Art Methods and Future Prospects. Am. J. Nucl. Med. Mol. Imaging 2015, 5, 527–547. [Google Scholar] [PubMed]
- van Sluis, J.; Borra, R.; Tsoumpas, C.; van Snick, J.H.; Roya, M.; Ten Hove, D.; Brouwers, A.H.; Lammertsma, A.A.; Noordzij, W.; Dierckx, R.A.J.O.; et al. Extending the Clinical Capabilities of Short- and Long-Lived Positron-Emitting Radionuclides through High Sensitivity PET/CT. Cancer Imaging Off. Publ. Int. Cancer Imaging Soc. 2022, 22, 69. [Google Scholar] [CrossRef]
- Liu, R.; Page, M.; Solheim, K.; Fox, S.; Chang, S.M. Quality of Life in Adults with Brain Tumors: Current Knowledge and Future Directions. Neuro-Oncology 2009, 11, 330–339. [Google Scholar] [CrossRef]
- Cella, D.; Chang, C.H.; Lai, J.S.; Webster, K. Advances in Quality of Life Measurements in Oncology Patients. Semin. Oncol. 2002, 29 (Suppl. 8), 60–68. [Google Scholar] [CrossRef]
- Heimans, J.J.; Taphoorn, M.J. Impact of Brain Tumour Treatment on Quality of Life. J. Neurol. 2002, 249, 955–960. [Google Scholar] [CrossRef]
- Osoba, D.; Brada, M.; Prados, M.D.; Yung, W.K. Effect of Disease Burden on Health-Related Quality of Life in Patients with Malignant Gliomas. Neuro-Oncology 2000, 2, 221–228. [Google Scholar] [CrossRef]
- Adult Central Nervous System Tumors Treatment (PDQ®)—NCI. Available online: https://www.cancer.gov/types/brain/hp/adult-brain-treatment-pdq (accessed on 26 March 2024).
- Tofilon, P.J.; Fike, J.R. The Radioresponse of the Central Nervous System: A Dynamic Process. Radiat. Res. 2000, 153, 357–370. [Google Scholar] [CrossRef]
- Crossen, J.R.; Garwood, D.; Glatstein, E.; Neuwelt, E.A. Neurobehavioral Sequelae of Cranial Irradiation in Adults: A Review of Radiation-Induced Encephalopathy. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1994, 12, 627–642. [Google Scholar] [CrossRef]
- Gregor, A.; Cull, A.; Traynor, E.; Stewart, M.; Lander, F.; Love, S. Neuropsychometric Evaluation of Long-Term Survivors of Adult Brain Tumours: Relationship with Tumour and Treatment Parameters. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 1996, 41, 55–59. [Google Scholar] [CrossRef]
- Greene-Schloesser, D.; Moore, E.; Robbins, M.E. Molecular Pathways: Radiation-Induced Cognitive Impairment. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2013, 19, 2294–2300. [Google Scholar] [CrossRef]
- Surma-Aho, O.; Niemelä, M.; Vilkki, J.; Kouri, M.; Brander, A.; Salonen, O.; Paetau, A.; Kallio, M.; Pyykkönen, J.; Jääskeläinen, J. Adverse Long-Term Effects of Brain Radiotherapy in Adult Low-Grade Glioma Patients. Neurology 2001, 56, 1285–1290. [Google Scholar] [CrossRef]
- Taphoorn, M.J.B.; Stupp, R.; Coens, C.; Osoba, D.; Kortmann, R.; van den Bent, M.J.; Mason, W.; Mirimanoff, R.O.; European Organisation for Research and Treatment of Cancer Brain Tumour Group; EORTC Radiotherapy Group; et al. Health-Related Quality of Life in Patients with Glioblastoma: A Randomised Controlled Trial. Lancet Oncol. 2005, 6, 937–944. [Google Scholar] [CrossRef]
- Litofsky, N.S.; Farace, E.; Anderson, F.; Meyers, C.A.; Huang, W.; Laws, E.R.; Glioma Outcomes Project Investigators. Depression in Patients with High-Grade Glioma: Results of the Glioma Outcomes Project. Neurosurgery 2004, 54, 358–366. [Google Scholar] [CrossRef]
- Carson, K.A.; Grossman, S.A.; Fisher, J.D.; Shaw, E.G. Prognostic Factors for Survival in Adult Patients with Recurrent Glioma Enrolled onto the New Approaches to Brain Tumor Therapy CNS Consortium Phase I and II Clinical Trials. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2007, 25, 2601–2606. [Google Scholar] [CrossRef] [PubMed]
Tracer | Mechanism of Action | Advantages | Drawbacks |
---|---|---|---|
18F-FDG | Glucose metabolic activity | Widely available | High uptake in normal brain tissue |
11C-MET | Amino acid transport | Effective for treatment planning and evaluation | Short half-life |
18F-FET | Amino acid transport | Predictive of overall survival Helpful in evaluating tumor response | Limited availability |
18F-FDOPA | Amino acid transport | Treatment planning and evaluation | Increased uptake in striatum Limited availability |
18F-FMISO | Hypoxia marker | Can identify small tumor regions Treatment evaluation | Not yet validated for diagnostic performance |
18F-GE-180 | Neuroinflammation | Treatment evaluation | Not yet validated for diagnostic performance |
68Ga-PSMA-11 | Glioma neovasculature | Extremely high tumor-to-brain ratio Treatment evaluation | Not yet validated for diagnostic performance in gliomas |
Treatment Modality | Advantages | Limitations | Adverse Effects |
---|---|---|---|
Surgical resection |
|
|
|
|
|
| |
| |||
Chemotherapy |
|
|
|
|
| ||
| |||
Radiation Therapy |
|
|
|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoggarth, A.R.; Muthukumar, S.; Thomas, S.M.; Crowley, J.; Kiser, J.; Witcher, M.R. Clinical Theranostics in Recurrent Gliomas: A Review. Cancers 2024, 16, 1715. https://doi.org/10.3390/cancers16091715
Hoggarth AR, Muthukumar S, Thomas SM, Crowley J, Kiser J, Witcher MR. Clinical Theranostics in Recurrent Gliomas: A Review. Cancers. 2024; 16(9):1715. https://doi.org/10.3390/cancers16091715
Chicago/Turabian StyleHoggarth, Austin R., Sankar Muthukumar, Steven M. Thomas, James Crowley, Jackson Kiser, and Mark R. Witcher. 2024. "Clinical Theranostics in Recurrent Gliomas: A Review" Cancers 16, no. 9: 1715. https://doi.org/10.3390/cancers16091715
APA StyleHoggarth, A. R., Muthukumar, S., Thomas, S. M., Crowley, J., Kiser, J., & Witcher, M. R. (2024). Clinical Theranostics in Recurrent Gliomas: A Review. Cancers, 16(9), 1715. https://doi.org/10.3390/cancers16091715