Deregulation of New Cell Death Mechanisms in Leukemia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Regulation of Necroptosis in Leukemia
3. Regulation of Pyroptosis in Leukemia
4. Regulation of Immunogenic Cell Death in Leukemia
5. Regulation of Ferroptosis in Leukemia
6. Regulation of NETosis in Leukemia
7. Regulation of Lysosome-Dependent Cell Death in Leukemia
8. Regulation of Others RCD in Leukemia
9. RCD Mechanisms in MDS
10. Pharmacological Modulation of Novel RCD Pathways in Leukemia: Unlocking Therapeutic Strategies
10.1. Modulation of Necroptosis
10.2. Modulation of Pyroptosis
10.3. Modulation of ICD
10.4. Modulation of Ferroptosis
10.5. Modulation of LDCD
10.6. Modulation of Other RCD Mechanisms
11. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
3-MA | 3-methyladenine |
5AC | 5-azacytidine |
ACD | accidental cell death |
ALL | acute lymphoblastic leukemia |
AMKL | acute myelocaryoblastic leukemia |
AML | acute myeloid leukemia |
APL | acute promyelocytic leukemia |
ADP | adenosine diphosphate |
ATP | adenosine triphosphate |
Aldh3a2 | aldehyde dehydrogenase 3a2 |
ATRA | all-trans retinoic acid |
AMPK | AMP-activated protein kinase |
APC | antigen-presenting cells |
AIF | apoptosis-inducing factor |
ART | artesunate |
AHR | aryl hydrocarbon receptor |
ABCA3 | ATP binding cassette subfamily A member 3 |
ADCD | autophagy-dependent cell death |
BAK | BCL2 homologous antagonist/killer |
BM | bone marrow |
CALR | calreticulin |
CBD | cannabidiol |
CTSs | cathepsins |
CLL | chronic lymphocytic leukemia |
CML | chronic myeloid leukemia |
CMML | chronic myelomonocytic leukemia |
circRNAs | circular RNAs |
JNK | c-Jun-NH(2)-terminal kinase |
CK | creatine kinase |
CHX | cycloheximide |
CsA | cyclosporine A |
CYLD | cylindromatosis |
AraC | cytarabine |
DAMPs | damage-associated molecular patterns |
DAS | dasatinib |
DNR | daunorubicin |
DAC | decitabine |
Def | deferiprone |
DFO | deferoxamine |
DCs | dendritic cells |
DEXA | dexamethasone |
DLBCL | diffuse large B-cell lymphoma |
DHA | dihydroartemisinin |
DNMTs | DNA methyltransferases |
DXR | doxorubicin |
eEF-2 | elongation factor-2 |
EA | ethacrynic acid |
ETO | etoposide |
ecto-CALR | externalized CALR |
FADD | FAS-associated death domain protein |
FAC | ferric ammonium citrate |
FLT3-ITD | fms-like tyrosine kinase 3-internal tandem duplication |
FL | follicular lymphoma |
GSDM | gasdermine |
GPX | glutathione peroxidase |
GSH | gluthatione |
DT-GMCSF | GM-CSF diphtheria toxin |
GVHD | graft versus host disease |
G-CSF | granulocyte colony-stimulating factor |
GM-CSFR | granulocyte-macrophage colony-stimulating factor receptor |
HSPs | heat-shock proteins |
HSCs | hematopoietic stem cells |
HMGB1 | high-mobility group box 1 |
HDC | histamine dihydrochloride |
HDACi | histone deacetylase inhibitors |
HOX | homeobox protein |
HHT | homoharringtonine |
ISGs | IFN-stimulated genes |
ICD | immunogenic cell death |
IDO1 | indoleamine 2,3-dioxygenase 1 |
IAP | inhibitor of apoptosis |
IFN-α | interferon alpha |
IFN-γ | interferon-γ |
IL-1β | interleukin-1 beta |
IL-1R | interleukin-1 receptor |
IL-1RAP | interleukin-1 receptor accessory protein |
IL-18 | interleukin-18 |
LDH | lactate dehydrogenase |
LAA | leukemia-associated antigens |
LSCs | leukemic stem cells |
LC3 | light chain 3 |
LOXs | lipoxygenases |
lncRNAs | long non-coding RNAs |
LEF1 | lymphoid enhancer binding factor 1 |
LMP | lysosomal membrane permeabilization |
LDCD | lysosome-dependent cell death |
mTOR | mammalian target of rapamycin |
ML | mantle cell lymphoma |
MQ | mefloquine |
miRNA | microRNA |
MMP | mitochondrial membrane potential |
MPT | mitochondrial permeability transition |
mPTPs | mitochondrial permeability transition pores |
MM | multiple myeloma |
MDS | myelodysplastic syndrome |
MPO | myeloperoxidase |
NK | natural killer |
NE | neutrophil elastase |
NETs | neutrophil extracellular traps |
NAMPT | nicotinamide phosphoribosyltransferase |
NLRP3 | NLR family pyrin domain containing 3 |
NCCD | nomenclature committee on cell death |
NDGA | nordihydroguaiaretic acid |
NRF-2 | nuclear factor erythroid 2–related factor 2 |
NR3C1 | nuclear receptor 3C1 |
Ph | Philadelphia |
PAF | platelet-activating factor |
PAR | poly (ADP-ribose) |
PARP-1 | poly (ADP-ribose)-polymerase-1 |
PUFAs | polyunsaturated fatty acids |
PAA | poricoic acid |
PBX | pre-B-cell leukemia homeobox |
PCD | programmed cell death |
PKC | protein kinase C |
MLKL | pseudokinase mixed lineage kinase like |
RAPA | rapamycin |
ROS | reactive oxygen species |
RIPK1 | receptor-interacting serine/threonine-protein kinases 1 |
RIPK3 | receptor-interacting serine/threonine-protein kinases 3 |
RCD | regulated cell death |
Tregs | regulatory T lymphocytes |
SMAC | second mitochondria-derived activator of caspases |
SIRPα | signal regulatory protein α |
SM | solamargine |
sXc− | system Xc− |
TQ | tafenoquine |
TCF | T-cell factor |
Th cells | T-helper cells |
TXNRD1 | thioredoxin reductase 1 |
TSP1 | thrombospondin-1 |
TRAF6 | TNF receptor-associated factor 6 |
TLR4 | toll like receptor 4 |
TPT | topotecan |
TME | tumor microenvironment |
TNFα | tumor necrosis factor α |
TRAIL | tumor necrosis factor-related apoptosis-inducing ligand |
TPC2 | two-pore channel 2 |
TYP | typaneoside |
TKI | tyrosine kinase inhibitor |
UPS | ubiquitin-proteasome system |
FDA | US Food and Drug Administration |
VCR | vincristine |
WIN-55 | WIN-55,212-2 |
z-VAD | z-VAD-fmk |
References
- Méndez-Ferrer, S.; Bonnet, D.; Steensma, D.P.; Hasserjian, R.P.; Ghobrial, I.M.; Gribben, J.G.; Andreeff, M.; Krause, D.S. Bone Marrow Niches in Haematological Malignancies. Nat. Rev. Cancer 2020, 20, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Chennamadhavuni, A.; Lyengar, V.; Mukkamalla, S.K.R.; Shimanovsky, A. Leukemia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- DiNardo, C.D.; Garcia-Manero, G.; Pierce, S.; Nazha, A.; Bueso-Ramos, C.; Jabbour, E.; Ravandi, F.; Cortes, J.; Kantarjian, H. Interactions and Relevance of Blast Percentage and Treatment Strategy among Younger and Older Patients with Acute Myeloid Leukemia (AML) and Myelodysplastic Syndrome (MDS). Am. J. Hematol. 2016, 91, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Chan, S.C.; Ngai, C.H.; Lok, V.; Zhang, L.; Lucero-Prisno, D.E.; Xu, W.; Zheng, Z.-J.; Elcarte, E.; Withers, M.; et al. Disease Burden, Risk Factors, and Trends of Leukaemia: A Global Analysis. Front. Oncol. 2022, 12, 904292. [Google Scholar] [CrossRef] [PubMed]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th Edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef]
- Davis, A.S.; Viera, A.J.; Mead, M.D. Leukemia: An Overview for Primary Care. Am. Fam. Physician 2014, 89, 731–738. [Google Scholar] [PubMed]
- Estey, E.; Hasserjian, R.P.; Döhner, H. Distinguishing AML from MDS: A Fixed Blast Percentage May No Longer Be Optimal. Blood 2022, 139, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Manero, G.; Chien, K.S.; Montalban-Bravo, G. Myelodysplastic Syndromes: 2021 Update on Diagnosis, Risk Stratification and Management. Am. J. Hematol. 2020, 95, 1399–1420. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, B.A.; El-Deiry, W.S. Targeting Apoptosis in Cancer Therapy. Nat. Rev. Clin. Oncol. 2020, 17, 395–417. [Google Scholar] [CrossRef] [PubMed]
- Emran, T.B.; Shahriar, A.; Mahmud, A.R.; Rahman, T.; Abir, M.H.; Siddiquee, M.F.-R.; Ahmed, H.; Rahman, N.; Nainu, F.; Wahyudin, E.; et al. Multidrug Resistance in Cancer: Understanding Molecular Mechanisms, Immunoprevention and Therapeutic Approaches. Front. Oncol. 2022, 12, 891652. [Google Scholar] [CrossRef]
- Ross, D.D. Novel Mechanisms of Drug Resistance in Leukemia. Leukemia 2000, 14, 467–473. [Google Scholar] [CrossRef]
- Santagostino, S.F.; Assenmacher, C.-A.; Tarrant, J.C.; Adedeji, A.O.; Radaelli, E. Mechanisms of Regulated Cell Death: Current Perspectives. Vet. Pathol. 2021, 58, 596–623. [Google Scholar] [CrossRef] [PubMed]
- Gibellini, L.; Moro, L. Programmed Cell Death in Health and Disease. Cells 2021, 10, 1765. [Google Scholar] [CrossRef] [PubMed]
- Vitale, I.; Pietrocola, F.; Guilbaud, E.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostini, M.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; et al. Apoptotic Cell Death in Disease-Current Understanding of the NCCD 2023. Cell Death Differ. 2023, 30, 1097–1154. [Google Scholar] [CrossRef] [PubMed]
- Galluzzi, L.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D.W.; et al. Molecular Mechanisms of Cell Death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018, 25, 486–541. [Google Scholar] [CrossRef] [PubMed]
- Samudio, I.; Konopleva, M.; Carter, B.; Andreeff, M. Apoptosis in Leukemias: Regulation and Therapeutic Targeting. Cancer Treat. Res. 2010, 145, 197–217. [Google Scholar] [CrossRef] [PubMed]
- Rothe, K.; Porter, V.; Jiang, X. Current Outlook on Autophagy in Human Leukemia: Foe in Cancer Stem Cells and Drug Resistance, Friend in New Therapeutic Interventions. Int. J. Mol. Sci. 2019, 20, 461. [Google Scholar] [CrossRef] [PubMed]
- Harrer, D.C.; Dörrie, J.; Schaft, N. CARs and Drugs: Pharmacological Ways of Boosting CAR-T-Cell Therapy. Int. J. Mol. Sci. 2023, 24, 2342. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Wang, S.; Li, F.; Lian, J.; Cheng, S.; Yue, D.; Zhang, Z.; Liu, S.; Ren, F.; Zhang, D.; et al. High Mobility Group Protein B1 Decreases Surface Localization of PD-1 to Augment T-Cell Activation. Cancer Immunol. Res. 2022, 10, 844–855. [Google Scholar] [CrossRef] [PubMed]
- Deng, T.; Tang, C.; Zhang, G.; Wan, X. DAMPs Released by Pyroptotic Cells as Major Contributors and Therapeutic Targets for CAR-T-Related Toxicities. Cell Death Dis. 2021, 12, 129. [Google Scholar] [CrossRef]
- Samir, P.; Malireddi, R.K.S.; Kanneganti, T.-D. The PANoptosome: A Deadly Protein Complex Driving Pyroptosis, Apoptosis, and Necroptosis (PANoptosis). Front. Cell Infect. Microbiol. 2020, 10, 238. [Google Scholar] [CrossRef]
- Urwanisch, L.; Luciano, M.; Horejs-Hoeck, J. The NLRP3 Inflammasome and Its Role in the Pathogenicity of Leukemia. Int. J. Mol. Sci. 2021, 22, 1271. [Google Scholar] [CrossRef] [PubMed]
- Olsson, A.-K.; Cedervall, J. NETosis in Cancer—Platelet-Neutrophil Crosstalk Promotes Tumor-Associated Pathology. Front. Immunol. 2016, 7, 373. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhang, K.; Shen, H.; Yao, X.; Sun, Q.; Chen, G. Necroptosis: A Novel Manner of Cell Death, Associated with Stroke (Review). Int. J. Mol. Med. 2018, 41, 624–630. [Google Scholar] [CrossRef] [PubMed]
- Berghe, T.V.; Linkermann, A.; Jouan-Lanhouet, S.; Walczak, H.; Vandenabeele, P. Regulated Necrosis: The Expanding Network of Non-Apoptotic Cell Death Pathways. Nat. Rev. Mol. Cell Biol. 2014, 15, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Fan, Z.; Luo, G.; Yang, C.; Huang, Q.; Fan, K.; Cheng, H.; Jin, K.; Ni, Q.; Yu, X.; et al. The Role of Necroptosis in Cancer Biology and Therapy. Mol. Cancer 2019, 18, 100. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Xiao, F.; Li, Y.; Qian, W.; Ding, W.; Ye, X. Bypassing Drug Resistance by Triggering Necroptosis: Recent Advances in Mechanisms and Its Therapeutic Exploitation in Leukemia. J. Exp. Clin. Cancer Res. 2018, 37, 310. [Google Scholar] [CrossRef] [PubMed]
- Xin, J.; You, D.; Breslin, P.; Li, J.; Zhang, J.; Wei, W.; Cannova, J.; Volk, A.; Gutierrez, R.; Xiao, Y.; et al. Sensitizing Acute Myeloid Leukemia Cells to Induced Differentiation by Inhibiting the RIP1/RIP3 Pathway. Leukemia 2017, 31, 1154–1165. [Google Scholar] [CrossRef]
- Höckendorf, U.; Yabal, M.; Herold, T.; Munkhbaatar, E.; Rott, S.; Jilg, S.; Kauschinger, J.; Magnani, G.; Reisinger, F.; Heuser, M.; et al. RIPK3 Restricts Myeloid Leukemogenesis by Promoting Cell Death and Differentiation of Leukemia Initiating Cells. Cancer Cell 2016, 30, 75–91. [Google Scholar] [CrossRef] [PubMed]
- Nugues, A.-L.; El Bouazzati, H.; Hétuin, D.; Berthon, C.; Loyens, A.; Bertrand, E.; Jouy, N.; Idziorek, T.; Quesnel, B. RIP3 Is Downregulated in Human Myeloid Leukemia Cells and Modulates Apoptosis and Caspase-Mediated P65/RelA Cleavage. Cell Death Dis. 2014, 5, e1384. [Google Scholar] [CrossRef] [PubMed]
- Hillert, L.K.; Bettermann-Bethge, K.; Nimmagadda, S.C.; Fischer, T.; Naumann, M.; Lavrik, I.N. Targeting RIPK1 in AML Cells Carrying FLT3-ITD. Int. J. Cancer 2019, 145, 1558–1569. [Google Scholar] [CrossRef]
- Rathore, R.; McCallum, J.E.; Varghese, E.; Florea, A.-M.; Büsselberg, D. Overcoming Chemotherapy Drug Resistance by Targeting Inhibitors of Apoptosis Proteins (IAPs). Apoptosis 2017, 22, 898–919. [Google Scholar] [CrossRef] [PubMed]
- Aguadé-Gorgorió, J.; McComb, S.; Eckert, C.; Guinot, A.; Marovca, B.; Mezzatesta, C.; Jenni, S.; Abduli, L.; Schrappe, M.; Dobay, M.P.; et al. TNFR2 Is Required for RIP1-Dependent Cell Death in Human Leukemia. Blood Adv. 2020, 4, 4823–4833. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Xu, B.; Shen, W.; Zhu, H.; Wu, W.; Fu, Y.; Chen, H.; Dong, H.; Zhu, Y.; Miao, K.; et al. Dysregulation of TNFα-Induced Necroptotic Signaling in Chronic Lymphocytic Leukemia: Suppression of CYLD Gene by LEF1. Leukemia 2012, 26, 1293–1300. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Miao, F.; Liu, K.; Wu, J.; Xu, J. Downregulation of LEF1 Impairs Myeloma Cell Growth Through Modulating CYLD/NF-κB Signaling. Technol. Cancer Res. Treat. 2021, 20, 15330338211034270. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Li, J.; Wang, H.; Liu, J.; Li, J.; Sun, F.; Feng, D.C. RIPK1 Is Aberrantly Expressed in Multiple B-Cell Cancers and Implicated in the Underlying Pathogenesis. Discov. Oncol. 2023, 14, 131. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, L.; Xu, J. The Role of Pyroptosis in Modulating the Tumor Immune Microenvironment. Biomark. Res. 2022, 10, 45. [Google Scholar] [CrossRef] [PubMed]
- Loveless, R.; Bloomquist, R.; Teng, Y. Pyroptosis at the Forefront of Anticancer Immunity. J. Exp. Clin. Cancer Res. 2021, 40, 264. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Qin, X.; Liang, J.; Ge, P. Induction of Pyroptosis: A Promising Strategy for Cancer Treatment. Front. Oncol. 2021, 11, 635774. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Han, F.; Yu, J.; Hu, X.; Hua, M.; Zhong, C.; Wang, R.; Zhao, X.; Shi, Y.; Ji, C.; et al. Investigation of NF-κB-94ins/Del ATTG and CARD8 (Rs2043211) Gene Polymorphism in Acute Lymphoblastic Leukemia. Front. Endocrinol. 2019, 10, 501. [Google Scholar] [CrossRef]
- Yin, C.; He, N.; Li, P.; Zhang, C.; Yu, J.; Hua, M.; Ji, C.; Ma, D. Polymorphisms of Interlukin-1β Rs16944 Confer Susceptibility to Myelodysplastic Syndromes. Life Sci. 2016, 165, 109–112. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, Q. Uncoupled Pyroptosis and IL-1β Secretion Downstream of Inflammasome Signaling. Front. Immunol. 2023, 14, 1128358. [Google Scholar] [CrossRef]
- Lyu, T.; Yin, Q. Research Progress on Pyroptosis in Hematological Malignancies. Curr. Treat. Options Oncol. 2023, 24, 1439–1450. [Google Scholar] [CrossRef]
- Sabnis, A.J.; Cheung, L.S.; Dail, M.; Kang, H.C.; Santaguida, M.; Hermiston, M.L.; Passegué, E.; Shannon, K.; Braun, B.S. Oncogenic Kras Initiates Leukemia in Hematopoietic Stem Cells. PLoS Biol. 2009, 7, e59. [Google Scholar] [CrossRef]
- Hamarsheh, S.; Osswald, L.; Saller, B.S.; Unger, S.; De Feo, D.; Vinnakota, J.M.; Konantz, M.; Uhl, F.M.; Becker, H.; Lübbert, M.; et al. Oncogenic KrasG12D Causes Myeloproliferation via NLRP3 Inflammasome Activation. Nat. Commun. 2020, 11, 1659. [Google Scholar] [CrossRef]
- Abais, J.M.; Xia, M.; Zhang, Y.; Boini, K.M.; Li, P.-L. Redox Regulation of NLRP3 Inflammasomes: ROS as Trigger or Effector? Antioxid. Redox Signal. 2015, 22, 1111–1129. [Google Scholar] [CrossRef]
- Jia, Y.; Zhang, C.; Hua, M.; Wang, M.; Chen, P.; Ma, D. Aberrant NLRP3 Inflammasome Associated with Aryl Hydrocarbon Receptor Potentially Contributes to the Imbalance of T-Helper Cells in Patients with Acute Myeloid Leukemia. Oncol. Lett. 2017, 14, 7031–7044. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.; Wang, R.; Hua, M.; Zhang, C.; Han, F.; Xu, M.; Yang, X.; Li, G.; Hu, X.; Sun, T.; et al. NLRP3 Inflammasome Promotes the Progression of Acute Myeloid Leukemia via IL-1β Pathway. Front. Immunol. 2021, 12, 661939. [Google Scholar] [CrossRef] [PubMed]
- Arranz, L.; Arriero, M.D.M.; Villatoro, A. Interleukin-1β as Emerging Therapeutic Target in Hematological Malignancies and Potentially in Their Complications. Blood Rev. 2017, 31, 306–317. [Google Scholar] [CrossRef]
- Tan, Y.; Chen, Q.; Li, X.; Zeng, Z.; Xiong, W.; Li, G.; Li, X.; Yang, J.; Xiang, B.; Yi, M. Pyroptosis: A New Paradigm of Cell Death for Fighting against Cancer. J. Exp. Clin. Cancer Res. 2021, 40, 153. [Google Scholar] [CrossRef] [PubMed]
- Paugh, S.W.; Bonten, E.J.; Savic, D.; Ramsey, L.B.; Thierfelder, W.E.; Gurung, P.; Malireddi, R.K.S.; Actis, M.; Mayasundari, A.; Min, J.; et al. NALP3 Inflammasome Upregulation and CASP1 Cleavage of the Glucocorticoid Receptor Cause Glucocorticoid Resistance in Leukemia Cells. Nat. Genet. 2015, 47, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Fang, Y.; Chen, X.; Wang, Z.; Liang, X.; Zhang, T.; Liu, M.; Zhou, N.; Lv, J.; Tang, K.; et al. Gasdermin E-Mediated Target Cell Pyroptosis by CAR T Cells Triggers Cytokine Release Syndrome. Sci. Immunol. 2020, 5, eaax7969. [Google Scholar] [CrossRef]
- Sha, Y.; Jiang, R.; Miao, Y.; Qin, S.; Wu, W.; Xia, Y.; Wang, L.; Fan, L.; Jin, H.; Xu, W.; et al. The Pyroptosis-Related Gene Signature Predicts Prognosis and Indicates the Immune Microenvironment Status of Chronic Lymphocytic Leukemia. Front. Immunol. 2022, 13, 939978. [Google Scholar] [CrossRef]
- Salaro, E.; Rambaldi, A.; Falzoni, S.; Amoroso, F.S.; Franceschini, A.; Sarti, A.C.; Bonora, M.; Cavazzini, F.; Rigolin, G.M.; Ciccone, M.; et al. Involvement of the P2 × 7-NLRP3 Axis in Leukemic Cell Proliferation and Death. Sci. Rep. 2016, 6, 26280. [Google Scholar] [CrossRef]
- Stramucci, L.; Perrotti, D. Twisting IL-1 Signaling to Kill CML Stem Cells. Blood 2016, 128, 2592–2593. [Google Scholar] [CrossRef]
- Ågerstam, H.; Hansen, N.; von Palffy, S.; Sandén, C.; Reckzeh, K.; Karlsson, C.; Lilljebjörn, H.; Landberg, N.; Askmyr, M.; Högberg, C.; et al. IL1RAP Antibodies Block IL-1-Induced Expansion of Candidate CML Stem Cells and Mediate Cell Killing in Xenograft Models. Blood 2016, 128, 2683–2693. [Google Scholar] [CrossRef]
- Krysko, D.V.; Garg, A.D.; Kaczmarek, A.; Krysko, O.; Agostinis, P.; Vandenabeele, P. Immunogenic Cell Death and DAMPs in Cancer Therapy. Nat. Rev. Cancer 2012, 12, 860–875. [Google Scholar] [CrossRef]
- Cruickshank, B.; Giacomantonio, M.; Marcato, P.; McFarland, S.; Pol, J.; Gujar, S. Dying to Be Noticed: Epigenetic Regulation of Immunogenic Cell Death for Cancer Immunotherapy. Front. Immunol. 2018, 9, 654. [Google Scholar] [CrossRef]
- Ahmed, A.; Tait, S.W.G. Targeting Immunogenic Cell Death in Cancer. Mol. Oncol. 2020, 14, 2994–3006. [Google Scholar] [CrossRef]
- Fucikova, J.; Truxova, I.; Hensler, M.; Becht, E.; Kasikova, L.; Moserova, I.; Vosahlikova, S.; Klouckova, J.; Church, S.E.; Cremer, I.; et al. Calreticulin Exposure by Malignant Blasts Correlates with Robust Anticancer Immunity and Improved Clinical Outcome in AML Patients. Blood 2016, 128, 3113–3124. [Google Scholar] [CrossRef]
- Truxova, I.; Kasikova, L.; Salek, C.; Hensler, M.; Lysak, D.; Holicek, P.; Bilkova, P.; Holubova, M.; Chen, X.; Mikyskova, R.; et al. Calreticulin Exposure on Malignant Blasts Correlates with Improved Natural Killer Cell-Mediated Cytotoxicity in Acute Myeloid Leukemia Patients. Haematologica 2020, 105, 1868–1878. [Google Scholar] [CrossRef]
- Ocadlikova, D.; Lecciso, M.; Isidori, A.; Loscocco, F.; Visani, G.; Amadori, S.; Cavo, M.; Curti, A. Chemotherapy-Induced Tumor Cell Death at the Crossroads between Immunogenicity and Immunotolerance: Focus on Acute Myeloid Leukemia. Front. Oncol. 2019, 9, 1004. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Lin, Q.; Xiang, X.; Xiang, W. A Damage-Associated Molecular Patterns-Related Gene Signature for the Prediction of Prognosis and Immune Microenvironment in Children Stage III Acute Lymphoblastic Leukemia. Front. Pediatr. 2022, 10, 999684. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Stockwell, B.R.; Conrad, M. Ferroptosis: Mechanisms, Biology and Role in Disease. Nat. Rev. Mol. Cell Biol. 2021, 22, 266–282. [Google Scholar] [CrossRef] [PubMed]
- Bridges, R.J.; Natale, N.R.; Patel, S.A. System Xc− Cystine/Glutamate Antiporter: An Update on Molecular Pharmacology and Roles within the CNS. Br. J. Pharmacol. 2012, 165, 20–34. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Xie, Q.; Liu, X.; Wan, C.; Wu, W.; Fang, K.; Yao, Y.; Cheng, P.; Deng, D.; Liu, Z. Identification the Prognostic Value of Glutathione Peroxidases Expression Levels in Acute Myeloid Leukemia. Ann. Transl. Med. 2020, 8, 678. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, R.Z.; Saez, B.; Sharda, A.; van Gastel, N.; Yu, V.W.C.; Baryawno, N.; Scadden, E.W.; Acharya, S.; Chattophadhyay, S.; Huang, C.; et al. Aldehyde Dehydrogenase 3a2 Protects AML Cells from Oxidative Death and the Synthetic Lethality of Ferroptosis Inducers. Blood 2020, 136, 1303–1316. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Zhao, B.; Zhou, L.; Zhang, Z.; Shen, Y.; Lv, H.; AlQudsy, L.H.H.; Shang, P. Ferroptosis, a Novel Pharmacological Mechanism of Anti-Cancer Drugs. Cancer Lett. 2020, 483, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Li, H.; Yang, Q.; Zhang, G.; Liu, H.; Ma, Z.; Peng, H.; Nie, L.; Xiao, X.; Liu, J. A Ferroptosis Molecular Subtype-Related Signature for Predicting Prognosis and Response to Chemotherapy in Patients with Chronic Lymphocytic Leukemia. Biomed. Res. Int. 2022, 2022, 5646275. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.-S.; Song, Y.-M.; Zhou, Z.-Y.; Tong, T.; Li, Y.; Fu, M.; Guo, X.-L.; Dong, L.-J.; He, X.; Qiao, H.-X.; et al. Disruption of xCT Inhibits Cancer Cell Metastasis via the Caveolin-1/Beta-Catenin Pathway. Oncogene 2009, 28, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Vorobjeva, N.V.; Chernyak, B.V. NETosis: Molecular Mechanisms, Role in Physiology and Pathology. Biochemistry 2020, 85, 1178–1190. [Google Scholar] [CrossRef]
- de Bont, C.M.; Boelens, W.C.; Pruijn, G.J.M. NETosis, Complement, and Coagulation: A Triangular Relationship. Cell Mol. Immunol. 2019, 16, 19–27. [Google Scholar] [CrossRef]
- Zhao, J.; Jin, J. Neutrophil Extracellular Traps: New Players in Cancer Research. Front. Immunol. 2022, 13, 937565. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Zuo, N.; Yang, H.; Fang, S.; Shi, J. Extracellular Traps Increase Burden of Bleeding by Damaging Endothelial Cell in Acute Promyelocytic Leukaemia. Front. Immunol. 2022, 13, 841445. [Google Scholar] [CrossRef]
- Sprenkeler, E.G.G.; Tool, A.T.J.; Henriet, S.S.V.; van Bruggen, R.; Kuijpers, T.W. Formation of Neutrophil Extracellular Traps Requires Actin Cytoskeleton Rearrangements. Blood 2022, 139, 3166–3180. [Google Scholar] [CrossRef]
- Ostafin, M.; Ciepiela, O.; Pruchniak, M.; Wachowska, M.; Ulińska, E.; Mrówka, P.; Głodkowska-Mrówka, E.; Demkow, U. Dynamic Changes in the Ability to Release Neutrophil ExtraCellular Traps in the Course of Childhood Acute Leukemias. Int. J. Mol. Sci. 2021, 22, 821. [Google Scholar] [CrossRef]
- Tanaka, F.; Goto, H.; Yokosuka, T.; Yanagimachi, M.; Kajiwara, R.; Naruto, T.; Nishimaki, S.; Yokota, S. Suppressed Neutrophil Function in Children with Acute Lymphoblastic Leukemia. Int. J. Hematol. 2009, 90, 311–317. [Google Scholar] [CrossRef]
- Jalali, A.; Alimoghaddam, K.; Mahmoudi, M.; Mohammad, K.; Mousavi, S.A.; Bahar, B.; Vaezi, M.; Zeraati, H.; Jahani, M.; Ghavamzadeh, A. The Effect of GVHD on Long-Term Outcomes after Peripheral Blood Allogeneic Stem Cell Transplantation from an HLA-Identical Sibling in Adult Acute Lymphocytic Leukemia: A Landmark Analysis Approach in Competing Risks. Int. J. Hematol. Oncol. Stem Cell Res. 2014, 8, 1. [Google Scholar]
- Liang, E.C.; Craig, J.; Torelli, S.; Cunanan, K.; Iglesias, M.; Arai, S.; Frank, M.J.; Johnston, L.; Lowsky, R.; Meyer, E.H.; et al. Allogeneic Hematopoietic Cell Transplantation for Adult Acute Lymphoblastic Leukemia in the Modern Era. Transpl. Cell Ther. 2022, 28, 490–495. [Google Scholar] [CrossRef]
- Podaza, E.; Sabbione, F.; Risnik, D.; Borge, M.; Almejún, M.B.; Colado, A.; Fernández-Grecco, H.; Cabrejo, M.; Bezares, R.F.; Trevani, A.; et al. Neutrophils from Chronic Lymphocytic Leukemia Patients Exhibit an Increased Capacity to Release Extracellular Traps (NETs). Cancer Immunol. Immunother. 2017, 66, 77–89. [Google Scholar] [CrossRef]
- Wachowska, M.; Wojciechowska, A.; Muchowicz, A. The Role of Neutrophils in the Pathogenesis of Chronic Lymphocytic Leukemia. Int. J. Mol. Sci. 2021, 23, 365. [Google Scholar] [CrossRef]
- Laridan, E.; Martinod, K.; De Meyer, S.F. Neutrophil Extracellular Traps in Arterial and Venous Thrombosis. Semin. Thromb. Hemost. 2019, 45, 86–93. [Google Scholar] [CrossRef]
- Whittle, A.M.; Allsup, D.J.; Bailey, J.R. Chronic Lymphocytic Leukaemia Is a Risk Factor for Venous Thromboembolism. Leuk. Res. 2011, 35, 419–421. [Google Scholar] [CrossRef]
- Šimkovič, M.; Vodárek, P.; Motyčková, M.; Belada, D.; Vrbacký, F.; Žák, P.; Smolej, L. Venous Thromboembolism in Patients with Chronic Lymphocytic Leukemia. Thromb. Res. 2015, 136, 1082–1086. [Google Scholar] [CrossRef]
- Telerman, A.; Granot, G.; Leibovitch, C.; Yarchovsky-Dolberg, O.; Shacham-Abulafia, A.; Partouche, S.; Yeshurun, M.; Ellis, M.H.; Raanani, P.; Wolach, O. Neutrophil Extracellular Traps Are Increased in Chronic Myeloid Leukemia and Are Differentially Affected by Tyrosine Kinase Inhibitors. Cancers 2021, 14, 119. [Google Scholar] [CrossRef]
- Demers, M.; Krause, D.S.; Schatzberg, D.; Martinod, K.; Voorhees, J.R.; Fuchs, T.A.; Scadden, D.T.; Wagner, D.D. Cancers Predispose Neutrophils to Release Extracellular DNA Traps That Contribute to Cancer-Associated Thrombosis. Proc. Natl. Acad. Sci. USA 2012, 109, 13076–13081. [Google Scholar] [CrossRef]
- Ma, R.; Li, T.; Cao, M.; Si, Y.; Wu, X.; Zhao, L.; Yao, Z.; Zhang, Y.; Fang, S.; Deng, R.; et al. Extracellular DNA Traps Released by Acute Promyelocytic Leukemia Cells through Autophagy. Cell Death Dis. 2016, 7, e2283. [Google Scholar] [CrossRef]
- Wang, F.; Gómez-Sintes, R.; Boya, P. Lysosomal Membrane Permeabilization and Cell Death. Traffic 2018, 19, 918–931. [Google Scholar] [CrossRef]
- de Duve, C. Lysosomes Revisited. Eur. J. Biochem. 1983, 137, 391–397. [Google Scholar] [CrossRef]
- Serrano-Puebla, A.; Boya, P. Lysosomal Membrane Permeabilization as a Cell Death Mechanism in Cancer Cells. Biochem. Soc. Trans. 2018, 46, 207–215. [Google Scholar] [CrossRef]
- Tang, W.; Nakamura, Y.; Tsujimoto, M.; Sato, M.; Wang, X.; Kurozumi, K.; Nakahara, M.; Nakao, K.; Nakamura, M.; Mori, I.; et al. Heparanase: A Key Enzyme in Invasion and Metastasis of Gastric Carcinoma. Mod. Pathol. 2002, 15, 593–598. [Google Scholar] [CrossRef]
- Khan, M.; Carmona, S.; Sukhumalchandra, P.; Roszik, J.; Philips, A.; Perakis, A.A.; Kerros, C.; Zhang, M.; Qiao, N.; John, L.S.S.; et al. Cathepsin G Is Expressed by Acute Lymphoblastic Leukemia and Is a Potential Immunotherapeutic Target. Front. Immunol. 2017, 8, 1975. [Google Scholar] [CrossRef]
- Kirkegaard, T.; Roth, A.G.; Petersen, N.H.T.; Mahalka, A.K.; Olsen, O.D.; Moilanen, I.; Zylicz, A.; Knudsen, J.; Sandhoff, K.; Arenz, C.; et al. Hsp70 Stabilizes Lysosomes and Reverts Niemann-Pick Disease-Associated Lysosomal Pathology. Nature 2010, 463, 549–553. [Google Scholar] [CrossRef]
- Chapuy, B.; Koch, R.; Radunski, U.; Corsham, S.; Cheong, N.; Inagaki, N.; Ban, N.; Wenzel, D.; Reinhardt, D.; Zapf, A.; et al. Intracellular ABC Transporter A3 Confers Multidrug Resistance in Leukemia Cells by Lysosomal Drug Sequestration. Leukemia 2008, 22, 1576–1586. [Google Scholar] [CrossRef]
- Rafiq, S.; McKenna, S.L.; Muller, S.; Tschan, M.P.; Humbert, M. Lysosomes in Acute Myeloid Leukemia: Potential Therapeutic Targets? Leukemia 2021, 35, 2759–2770. [Google Scholar] [CrossRef]
- Samudio, I.; Harmancey, R.; Fiegl, M.; Kantarjian, H.; Konopleva, M.; Korchin, B.; Kaluarachchi, K.; Bornmann, W.; Duvvuri, S.; Taegtmeyer, H.; et al. Pharmacologic Inhibition of Fatty Acid Oxidation Sensitizes Human Leukemia Cells to Apoptosis Induction. J. Clin. Investig. 2010, 120, 142–156. [Google Scholar] [CrossRef]
- Jain, V.; Bose, S.; Arya, A.K.; Arif, T. Lysosomes in Stem Cell Quiescence: A Potential Therapeutic Target in Acute Myeloid Leukemia. Cancers 2022, 14, 1618. [Google Scholar] [CrossRef]
- Yu, S.-W.; Andrabi, S.A.; Wang, H.; Kim, N.S.; Poirier, G.G.; Dawson, T.M.; Dawson, V.L. Apoptosis-Inducing Factor Mediates Poly(ADP-Ribose) (PAR) Polymer-Induced Cell Death. Proc. Natl. Acad. Sci. USA 2006, 103, 18314–18319. [Google Scholar] [CrossRef]
- Sodhi, R.K.; Singh, N.; Jaggi, A.S. Poly(ADP-Ribose) Polymerase-1 (PARP-1) and Its Therapeutic Implications. Vasc. Pharmacol. 2010, 53, 77–87. [Google Scholar] [CrossRef]
- Verdone, L.; La Fortezza, M.; Ciccarone, F.; Caiafa, P.; Zampieri, M.; Caserta, M. Poly(ADP-Ribosyl)Ation Affects Histone Acetylation and Transcription. PLoS ONE 2015, 10, e0144287. [Google Scholar] [CrossRef]
- Bárány, T.; Simon, A.; Szabó, G.; Benkő, R.; Mezei, Z.; Molnár, L.; Becker, D.; Merkely, B.; Zima, E.; Horváth, E.M. Oxidative Stress-Related Parthanatos of Circulating Mononuclear Leukocytes in Heart Failure. Oxid. Med. Cell Longev. 2017, 2017, 1249614. [Google Scholar] [CrossRef]
- Li, Q.; Jiao, Y.; Yu, Y.; Wang, G.; Yu, Y. Hydrogen-rich Medium Alleviates High Glucose-induced Oxidative Stress and Parthanatos in Rat Schwann Cells in Vitro. Mol. Med. Rep. 2019, 19, 338–344. [Google Scholar] [CrossRef]
- Huang, P.; Chen, G.; Jin, W.; Mao, K.; Wan, H.; He, Y. Molecular Mechanisms of Parthanatos and Its Role in Diverse Diseases. Int. J. Mol. Sci. 2022, 23, 7292. [Google Scholar] [CrossRef] [PubMed]
- Messikommer, A.; Maru, B.; Seipel, K.; Valk, P.J.M.; Theocharides, A.P.A.; Pabst, T.; McKeague, M.; Luedtke, N.W. Cancer Prognosis According to Parthanatos Features. bioRxiv 2021, 24, 445484. [Google Scholar]
- Montalban-Bravo, G.; Class, C.A.; Ganan-Gomez, I.; Kanagal-Shamanna, R.; Sasaki, K.; Richard-Carpentier, G.; Naqvi, K.; Wei, Y.; Yang, H.; Soltysiak, K.A.; et al. Transcriptomic Analysis Implicates Necroptosis in Disease Progression and Prognosis in Myelodysplastic Syndromes. Leukemia 2020, 34, 872–881. [Google Scholar] [CrossRef] [PubMed]
- Sallman, D.A.; Cluzeau, T.; Basiorka, A.A.; List, A. Unraveling the Pathogenesis of MDS: The NLRP3 Inflammasome and Pyroptosis Drive the MDS Phenotype. Front. Oncol. 2016, 6, 151. [Google Scholar] [CrossRef] [PubMed]
- Gebhardt, C.; Németh, J.; Angel, P.; Hess, J. S100A8 and S100A9 in Inflammation and Cancer. Biochem. Pharmacol. 2006, 72, 1622–1631. [Google Scholar] [CrossRef] [PubMed]
- Ren, K.; Mei, Y.; Liu, Y.; Han, X.; Li, E.; Bi, H.; Ji, P. Gasdermin D Mediates Inflammation-Driven Pathogenesis of the Myelodysplastic Syndromes. Blood 2021, 138, 2587. [Google Scholar] [CrossRef]
- Gattermann, N. Iron Overload in Myelodysplastic Syndromes (MDS). Int. J. Hematol. 2018, 107, 55–63. [Google Scholar] [CrossRef]
- List, A.F. Iron Overload in Myelodysplastic Syndromes: Diagnosis and Management. Cancer Control. 2010, 17 (Suppl. S1), 2–8. [Google Scholar] [CrossRef]
- Lv, Q.; Niu, H.; Yue, L.; Liu, J.; Yang, L.; Liu, C.; Jiang, H.; Dong, S.; Shao, Z.; Xing, L.; et al. Abnormal Ferroptosis in Myelodysplastic Syndrome. Front. Oncol. 2020, 10, 1656. [Google Scholar] [CrossRef]
- Brings, C.; Fröbel, J.; Cadeddu, P.; Germing, U.; Haas, R.; Gattermann, N. Impaired Formation of Neutrophil Extracellular Traps in Patients with MDS. Blood Adv. 2022, 6, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Hutzschenreuter, F.; Monsef, I.; Kreuzer, K.-A.; Engert, A.; Skoetz, N. Granulocyte and Granulocyte-Macrophage Colony Stimulating Factors for Newly Diagnosed Patients with Myelodysplastic Syndromes. Cochrane Database Syst. Rev. 2016, 2, CD009310. [Google Scholar] [CrossRef] [PubMed]
- Downing, J.R. Targeted Therapy in Leukemia. Mod. Pathol. 2008, 21, S2–S7. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Xie, Y.; Cao, L.; Yang, L.; Yang, M.; Lotze, M.T.; Zeh, H.J.; Kang, R.; Tang, D. The Ferroptosis Inducer Erastin Enhances Sensitivity of Acute Myeloid Leukemia Cells to Chemotherapeutic Agents. Mol. Cell Oncol. 2015, 2, e1054549. [Google Scholar] [CrossRef] [PubMed]
- Brumatti, G.; Ma, C.; Lalaoui, N.; Nguyen, N.-Y.; Navarro, M.; Tanzer, M.C.; Richmond, J.; Ghisi, M.; Salmon, J.M.; Silke, N.; et al. The Caspase-8 Inhibitor Emricasan Combines with the SMAC Mimetic Birinapant to Induce Necroptosis and Treat Acute Myeloid Leukemia. Sci. Transl. Med. 2016, 8, 339ra69. [Google Scholar] [CrossRef]
- Steinhart, L.; Belz, K.; Fulda, S. Smac Mimetic and Demethylating Agents Synergistically Trigger Cell Death in Acute Myeloid Leukemia Cells and Overcome Apoptosis Resistance by Inducing Necroptosis. Cell Death Dis. 2013, 4, e802. [Google Scholar] [CrossRef] [PubMed]
- Chromik, J.; Safferthal, C.; Serve, H.; Fulda, S. Smac Mimetic Primes Apoptosis-Resistant Acute Myeloid Leukaemia Cells for Cytarabine-Induced Cell Death by Triggering Necroptosis. Cancer Lett. 2014, 344, 101–109. [Google Scholar] [CrossRef]
- Steinwascher, S.; Nugues, A.-L.; Schoeneberger, H.; Fulda, S. Identification of a Novel Synergistic Induction of Cell Death by Smac Mimetic and HDAC Inhibitors in Acute Myeloid Leukemia Cells. Cancer Lett. 2015, 366, 32–43. [Google Scholar] [CrossRef]
- Alharbi, R.A.; Pandha, H.S.; Simpson, G.R.; Pettengell, R.; Poterlowicz, K.; Thompson, A.; Harrington, K.; El-Tanani, M.; Morgan, R. Inhibition of HOX/PBX Dimer Formation Leads to Necroptosis in Acute Myeloid Leukemia Cells. Oncotarget 2017, 8, 89566–89579. [Google Scholar] [CrossRef]
- Horita, H.; Frankel, A.E.; Thorburn, A. Acute Myeloid Leukemia-Targeted Toxin Activates Both Apoptotic and Necroptotic Death Mechanisms. PLoS ONE 2008, 3, e3909. [Google Scholar] [CrossRef]
- Li, Y.; Valeriote, F.; Chen, B. Regulation of Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) Receptors in a GM-CSF-Dependent Human Myeloid Leukemia Cell Line (AML-193) by Interleukin-6. Exp. Hematol. 1996, 24, 94–100. [Google Scholar]
- Gerges, S.; Rohde, K.; Fulda, S. Cotreatment with Smac Mimetics and Demethylating Agents Induces Both Apoptotic and Necroptotic Cell Death Pathways in Acute Lymphoblastic Leukemia Cells. Cancer Lett. 2016, 375, 127–132. [Google Scholar] [CrossRef]
- Laukens, B.; Jennewein, C.; Schenk, B.; Vanlangenakker, N.; Schier, A.; Cristofanon, S.; Zobel, K.; Deshayes, K.; Vucic, D.; Jeremias, I.; et al. Smac Mimetic Bypasses Apoptosis Resistance in FADD- or Caspase-8-Deficient Cells by Priming for Tumor Necrosis Factor α-Induced Necroptosis. Neoplasia 2011, 13, 971–979. [Google Scholar] [CrossRef]
- Schenk, B.; Fulda, S. Reactive Oxygen Species Regulate Smac Mimetic/TNFα-Induced Necroptotic Signaling and Cell Death. Oncogene 2015, 34, 5796–5806. [Google Scholar] [CrossRef]
- Rohde, K.; Kleinesudeik, L.; Roesler, S.; Löwe, O.; Heidler, J.; Schröder, K.; Wittig, I.; Dröse, S.; Fulda, S. A Bak-Dependent Mitochondrial Amplification Step Contributes to Smac Mimetic/Glucocorticoid-Induced Necroptosis. Cell Death Differ. 2017, 24, 83–97. [Google Scholar] [CrossRef]
- Park, J.; Cho, J.; Song, E.J. Ubiquitin-Proteasome System (UPS) as a Target for Anticancer Treatment. Arch. Pharm. Res. 2020, 43, 1144–1161. [Google Scholar] [CrossRef]
- Moriwaki, K.; Chan, F.K.-M. Regulation of RIPK3- and RHIM-Dependent Necroptosis by the Proteasome. J. Biol. Chem. 2016, 291, 5948–5959. [Google Scholar] [CrossRef]
- Philipp, S.; Sosna, J.; Plenge, J.; Kalthoff, H.; Adam, D. Homoharringtonine, a Clinically Approved Anti-Leukemia Drug, Sensitizes Tumor Cells for TRAIL-Induced Necroptosis. Cell Commun. Signal. 2015, 13, 25. [Google Scholar] [CrossRef]
- Costa, F.B.; Cortez, A.P.; de Ávila, R.I.; de Carvalho, F.S.; Andrade, W.M.; da Cruz, A.F.; Reis, K.B.; Menegatti, R.; Lião, L.M.; Romeiro, L.A.S.; et al. The Novel Piperazine-Containing Compound LQFM018: Necroptosis Cell Death Mechanisms, Dopamine D4 Receptor Binding and Toxicological Assessment. Biomed. Pharmacother. 2018, 102, 481–493. [Google Scholar] [CrossRef]
- Wu, W.; Zhu, H.; Fu, Y.; Shen, W.; Miao, K.; Hong, M.; Xu, W.; Fan, L.; Young, K.H.; Liu, P.; et al. High LEF1 Expression Predicts Adverse Prognosis in Chronic Lymphocytic Leukemia and May Be Targeted by Ethacrynic Acid. Oncotarget 2016, 7, 21631–21643. [Google Scholar] [CrossRef]
- Xu, Z.; Sun, Y.; Wei, Z.; Jiang, J.; Xu, J.; Liu, P. Suppression of CXCL-1 Could Restore Necroptotic Pathway in Chronic Lymphocytic Leukemia. Onco Targets Ther. 2020, 13, 6917–6925. [Google Scholar] [CrossRef]
- Dai, Y.; Huang, J.; Kuang, P.; Hu, Y.; Zeng, Q.; Zhang, W.; Li, H.; Wang, F.; Guo, T.; Zhang, D.; et al. Dasatinib and Interferon Alpha Synergistically Induce Pyroptosis-like Cell Death in Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia. Am. J. Cancer Res. 2022, 12, 2817–2832. [Google Scholar] [PubMed]
- Zhang, B.; Chu, S.; Agarwal, P.; Campbell, V.L.; Hopcroft, L.; Jørgensen, H.G.; Lin, A.; Gaal, K.; Holyoake, T.L.; Bhatia, R. Inhibition of Interleukin-1 Signaling Enhances Elimination of Tyrosine Kinase Inhibitor-Treated CML Stem Cells. Blood 2016, 128, 2671–2682. [Google Scholar] [CrossRef]
- Johnson, D.C.; Taabazuing, C.Y.; Okondo, M.C.; Chui, A.J.; Rao, S.D.; Brown, F.C.; Reed, C.; Peguero, E.; de Stanchina, E.; Kentsis, A.; et al. DPP8/DPP9 Inhibitor-Induced Pyroptosis for Treatment of Acute Myeloid Leukemia. Nat. Med. 2018, 24, 1151–1156. [Google Scholar] [CrossRef]
- Zhou, Y.; Kong, Y.; Jiang, M.; Kuang, L.; Wan, J.; Liu, S.; Zhang, Q.; Yu, K.; Li, N.; Le, A.; et al. Curcumin Activates NLRC4, AIM2, and IFI16 Inflammasomes and Induces Pyroptosis by up-Regulated ISG3 Transcript Factor in Acute Myeloid Leukemia Cell Lines. Cancer Biol. Ther. 2022, 23, 328–335. [Google Scholar] [CrossRef]
- Leu, W.-J.; Chang, H.-S.; Chen, I.-S.; Guh, J.-H.; Chan, S.-H. Antileukemic Natural Product Induced Both Apoptotic and Pyroptotic Programmed Cell Death and Differentiation Effect. Int. J. Mol. Sci. 2021, 22, 11239. [Google Scholar] [CrossRef]
- Yu, Z.; Guo, J.; Hu, M.; Gao, Y.; Huang, L. Icaritin Exacerbates Mitophagy and Synergizes with Doxorubicin to Induce Immunogenic Cell Death in Hepatocellular Carcinoma. ACS Nano 2020, 14, 4816–4828. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Yang, M.; Zhang, J.; Yin, Y.; Fan, X.; Zhang, Y.; Qin, S.; Zhang, H.; Yu, F. Immunogenic Cell Death Induction by Ionizing Radiation. Front. Immunol. 2021, 12, 705361. [Google Scholar] [CrossRef]
- Lecciso, M.; Ocadlikova, D.; Sangaletti, S.; Trabanelli, S.; De Marchi, E.; Orioli, E.; Pegoraro, A.; Portararo, P.; Jandus, C.; Bontadini, A.; et al. ATP Release from Chemotherapy-Treated Dying Leukemia Cells Elicits an Immune Suppressive Effect by Increasing Regulatory T Cells and Tolerogenic Dendritic Cells. Front. Immunol. 2017, 8, 1918. [Google Scholar] [CrossRef] [PubMed]
- Ocadlikova, D.; Iannarone, C.; Redavid, A.R.; Cavo, M.; Curti, A. A Screening of Antineoplastic Drugs for Acute Myeloid Leukemia Reveals Contrasting Immunogenic Effects of Etoposide and Fludarabine. Int. J. Mol. Sci. 2020, 21, 6802. [Google Scholar] [CrossRef]
- Aurelius, J.; Möllgård, L.; Kiffin, R.; Ewald Sander, F.; Nilsson, S.; Thorén, F.B.; Hellstrand, K.; Martner, A. Anthracycline-Based Consolidation May Determine Outcome of Post-Consolidation Immunotherapy in AML. Leuk. Lymphoma 2019, 60, 2771–2778. [Google Scholar] [CrossRef] [PubMed]
- Mans, S.; Banz, Y.; Mueller, B.U.; Pabst, T. The Angiogenesis Inhibitor Vasostatin Is Regulated by Neutrophil Elastase-Dependent Cleavage of Calreticulin in AML Patients. Blood 2012, 120, 2690–2699. [Google Scholar] [CrossRef] [PubMed]
- Fredly, H.; Ersvær, E.; Gjertsen, B.-T.; Bruserud, O. Immunogenic Apoptosis in Human Acute Myeloid Leukemia (AML): Primary Human AML Cells Expose Calreticulin and Release Heat Shock Protein (HSP) 70 and HSP90 during Apoptosis. Oncol. Rep. 2011, 25, 1549–1556. [Google Scholar] [CrossRef]
- San José-Enériz, E.; Agirre, X.; Rabal, O.; Vilas-Zornoza, A.; Sanchez-Arias, J.A.; Miranda, E.; Ugarte, A.; Roa, S.; Paiva, B.; Estella-Hermoso de Mendoza, A.; et al. Discovery of First-in-Class Reversible Dual Small Molecule Inhibitors against G9a and DNMTs in Hematological Malignancies. Nat. Commun. 2017, 8, 15424. [Google Scholar] [CrossRef] [PubMed]
- Uscanga-Palomeque, A.C.; Calvillo-Rodríguez, K.M.; Gómez-Morales, L.; Lardé, E.; Denèfle, T.; Caballero-Hernández, D.; Merle-Béral, H.; Susin, S.A.; Karoyan, P.; Martínez-Torres, A.C.; et al. CD47 Agonist Peptide PKHB1 Induces Immunogenic Cell Death in T-Cell Acute Lymphoblastic Leukemia Cells. Cancer Sci. 2019, 110, 256–268. [Google Scholar] [CrossRef]
- Sato, M.; Kusumi, R.; Hamashima, S.; Kobayashi, S.; Sasaki, S.; Komiyama, Y.; Izumikawa, T.; Conrad, M.; Bannai, S.; Sato, H. The Ferroptosis Inducer Erastin Irreversibly Inhibits System Xc- and Synergizes with Cisplatin to Increase Cisplatin’s Cytotoxicity in Cancer Cells. Sci. Rep. 2018, 8, 968. [Google Scholar] [CrossRef]
- Chen, X.; Yu, C.; Kang, R.; Tang, D. Iron Metabolism in Ferroptosis. Front. Cell Dev. Biol. 2020, 8, 590226. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Yu, X.; Ding, H.; Han, J.; Feng, J. Effects of Intracellular Iron Overload on Cell Death and Identification of Potent Cell Death Inhibitors. Biochem. Biophys. Res. Commun. 2018, 503, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, Y.; Zhang, R.; Wang, F.; Wang, T.; Jiao, Y. The Role of Erastin in Ferroptosis and Its Prospects in Cancer Therapy. Onco Targets Ther. 2020, 13, 5429–5441. [Google Scholar] [CrossRef]
- Birsen, R.; Larrue, C.; Decroocq, J.; Johnson, N.; Guiraud, N.; Gotanegre, M.; Cantero-Aguilar, L.; Grignano, E.; Huynh, T.; Fontenay, M.; et al. APR-246 Induces Early Cell Death by Ferroptosis in Acute Myeloid Leukemia. Haematologica 2022, 107, 403–416. [Google Scholar] [CrossRef]
- Zheng, Z.; Wu, W.; Lin, Z.; Liu, S.; Chen, Q.; Jiang, X.; Xue, Y.; Lin, D. Identification of Seven Novel Ferroptosis-Related Long Non-Coding RNA Signatures as a Diagnostic Biomarker for Acute Myeloid Leukemia. BMC Med. Genom. 2021, 14, 236. [Google Scholar] [CrossRef]
- Dong, L.-H.; Huang, J.-J.; Zu, P.; Liu, J.; Gao, X.; Du, J.-W.; Li, Y.-F. CircKDM4C Upregulates P53 by Sponging Hsa-Let-7b-5p to Induce Ferroptosis in Acute Myeloid Leukemia. Environ. Toxicol. 2021, 36, 1288–1302. [Google Scholar] [CrossRef]
- Zhou, Y.; Shen, Y.; Chen, C.; Sui, X.; Yang, J.; Wang, L.; Zhou, J. The Crosstalk between Autophagy and Ferroptosis: What Can We Learn to Target Drug Resistance in Cancer? Cancer Biol. Med. 2019, 16, 630–646. [Google Scholar] [CrossRef]
- Du, J.; Wang, T.; Li, Y.; Zhou, Y.; Wang, X.; Yu, X.; Ren, X.; An, Y.; Wu, Y.; Sun, W.; et al. DHA Inhibits Proliferation and Induces Ferroptosis of Leukemia Cells through Autophagy Dependent Degradation of Ferritin. Free Radic. Biol. Med. 2019, 131, 356–369. [Google Scholar] [CrossRef]
- Zhu, H.-Y.; Huang, Z.-X.; Chen, G.-Q.; Sheng, F.; Zheng, Y.-S. Typhaneoside Prevents Acute Myeloid Leukemia (AML) through Suppressing Proliferation and Inducing Ferroptosis Associated with Autophagy. Biochem. Biophys. Res. Commun. 2019, 516, 1265–1271. [Google Scholar] [CrossRef]
- Du, Y.; Bao, J.; Zhang, M.-J.; Li, L.-L.; Xu, X.-L.; Chen, H.; Feng, Y.-B.; Peng, X.-Q.; Chen, F.-H. Targeting Ferroptosis Contributes to ATPR-Induced AML Differentiation via ROS-Autophagy-Lysosomal Pathway. Gene 2020, 755, 144889. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Liu, Y.; Miao, Z.; Cheng, S.; Zhu, Y.; Wu, Y.; Fan, X.; Yang, J.; Li, X.; Guo, L. Neratinib Inhibits Proliferation and Promotes Apoptosis of Acute Myeloid Leukemia Cells by Activating Autophagy-Dependent Ferroptosis. Drug Dev. Res. 2022, 83, 1641–1653. [Google Scholar] [CrossRef] [PubMed]
- Dächert, J.; Schoeneberger, H.; Rohde, K.; Fulda, S. RSL3 and Erastin Differentially Regulate Redox Signaling to Promote Smac Mimetic-Induced Cell Death. Oncotarget 2016, 7, 63779–63792. [Google Scholar] [CrossRef] [PubMed]
- Probst, L.; Dächert, J.; Schenk, B.; Fulda, S. Lipoxygenase Inhibitors Protect Acute Lymphoblastic Leukemia Cells from Ferroptotic Cell Death. Biochem. Pharmacol. 2017, 140, 41–52. [Google Scholar] [CrossRef]
- Ishikawa, C.; Senba, M.; Mori, N. Evaluation of Artesunate for the Treatment of Adult T-Cell Leukemia/Lymphoma. Eur. J. Pharmacol. 2020, 872, 172953. [Google Scholar] [CrossRef]
- Chen, L.; Fang, W.; Liu, J.; Qi, X.; Zhao, L.; Wang, Y.; Liu, Y.; Kong, D.; Sun, X.; Li, X.; et al. Poricoic Acid A (PAA) Inhibits T-Cell Acute Lymphoblastic Leukemia through Inducing Autophagic Cell Death and Ferroptosis. Biochem. Biophys. Res. Commun. 2022, 608, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Liu, B.; Wu, D.; Xu, G.; Fan, Y. Autophagy Regulates VDAC3 Ubiquitination by FBXW7 to Promote Erastin-Induced Ferroptosis in Acute Lymphoblastic Leukemia. Front. Cell Dev. Biol. 2021, 9, 740884. [Google Scholar] [CrossRef] [PubMed]
- Liccardo, F.; Iaiza, A.; Śniegocka, M.; Masciarelli, S.; Fazi, F. Circular RNAs Activity in the Leukemic Bone Marrow Microenvironment. Noncoding RNA 2022, 8, 50. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, Y.; Zhang, Y.; Liu, J. Circ_0000745 Promotes Acute Lymphoblastic Leukemia Progression through Mediating miR-494-3p/NET1 Axis. Hematology 2022, 27, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wu, W.; Chen, Q.; Zheng, Z.; Jiang, X.; Xue, Y.; Lin, D. TXNRD1: A Key Regulator Involved in the Ferroptosis of CML Cells Induced by Cysteine Depletion In Vitro. Oxid. Med. Cell Longev. 2021, 2021, 7674565. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Li, D.; Zhang, J.; Zhao, X. Role of Ferroptosis in Promoting Cardiotoxicity Induced by Imatinib Mesylate via Down-Regulating Nrf2 Pathways in Vitro and in Vivo. Toxicol. Appl. Pharmacol. 2022, 435, 115852. [Google Scholar] [CrossRef] [PubMed]
- Kerkelä, R.; Grazette, L.; Yacobi, R.; Iliescu, C.; Patten, R.; Beahm, C.; Walters, B.; Shevtsov, S.; Pesant, S.; Clubb, F.J.; et al. Cardiotoxicity of the Cancer Therapeutic Agent Imatinib Mesylate. Nat. Med. 2006, 12, 908–916. [Google Scholar] [CrossRef]
- Whitton, B.; Okamoto, H.; Packham, G.; Crabb, S.J. Vacuolar ATPase as a Potential Therapeutic Target and Mediator of Treatment Resistance in Cancer. Cancer Med. 2018, 7, 3800–3811. [Google Scholar] [CrossRef]
- Pitt, S.J.; Funnell, T.M.; Sitsapesan, M.; Venturi, E.; Rietdorf, K.; Ruas, M.; Ganesan, A.; Gosain, R.; Churchill, G.C.; Zhu, M.X.; et al. TPC2 Is a Novel NAADP-Sensitive Ca2+ Release Channel, Operating as a Dual Sensor of Luminal pH and Ca2+. J. Biol. Chem. 2010, 285, 35039–35046. [Google Scholar] [CrossRef]
- Liu, Y.; Easton, J.; Shao, Y.; Maciaszek, J.; Wang, Z.; Wilkinson, M.R.; McCastlain, K.; Edmonson, M.; Pounds, S.B.; Shi, L.; et al. The Genomic Landscape of Pediatric and Young Adult T-Lineage Acute Lymphoblastic Leukemia. Nat. Genet. 2017, 49, 1211–1218. [Google Scholar] [CrossRef]
- Geisslinger, F.; Müller, M.; Chao, Y.-K.; Grimm, C.; Vollmar, A.M.; Bartel, K. Targeting TPC2 Sensitizes Acute Lymphoblastic Leukemia Cells to Chemotherapeutics by Impairing Lysosomal Function. Cell Death Dis. 2022, 13, 668. [Google Scholar] [CrossRef] [PubMed]
- Aumann, S.; Shaulov, A.; Haran, A.; Gross Even-Zohar, N.; Vainstein, V.; Nachmias, B. The Emerging Role of Venetoclax-Based Treatments in Acute Lymphoblastic Leukemia. Int. J. Mol. Sci. 2022, 23, 10957. [Google Scholar] [CrossRef] [PubMed]
- Ong, F.; Kim, K.; Konopleva, M.Y. Venetoclax Resistance: Mechanistic Insights and Future Strategies. Cancer Drug Resist. 2022, 5, 380–400. [Google Scholar] [CrossRef]
- Enzenmüller, S.; Sun, Q.; Debatin, K.-M.; Meyer, L.-H. Lysosomal Cell Death and Apoptosis Crosstalk—Synergistic Role in Bcl-2 Inhibitor (ABT-263) Mediated Cell Death in B-Cell Precursor Acute Lymphoblastic Leukemia. Blood 2016, 128, 1584. [Google Scholar] [CrossRef]
- Dielschneider, R.F.; Eisenstat, H.; Mi, S.; Curtis, J.M.; Xiao, W.; Johnston, J.B.; Gibson, S.B. Lysosomotropic Agents Selectively Target Chronic Lymphocytic Leukemia Cells Due to Altered Sphingolipid Metabolism. Leukemia 2016, 30, 1290–1300. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, A.; Beers, S.A.; Walshe, C.A.; Honeychurch, J.; Alduaij, W.; Cox, K.L.; Potter, K.N.; Murray, S.; Chan, C.H.T.; Klymenko, T.; et al. Monoclonal Antibodies Directed to CD20 and HLA-DR Can Elicit Homotypic Adhesion Followed by Lysosome-Mediated Cell Death in Human Lymphoma and Leukemia Cells. J. Clin. Investig. 2009, 119, 2143–2159. [Google Scholar] [CrossRef]
- Das, S.; Dielschneider, R.; Chanas-LaRue, A.; Johnston, J.B.; Gibson, S.B. Antimalarial Drugs Trigger Lysosome-Mediated Cell Death in Chronic Lymphocytic Leukemia (CLL) Cells. Leuk. Res. 2018, 70, 79–86. [Google Scholar] [CrossRef]
- Sun, L.; Zhao, Y.; Li, X.; Yuan, H.; Cheng, A.; Lou, H. A Lysosomal-Mitochondrial Death Pathway Is Induced by Solamargine in Human K562 Leukemia Cells. Toxicol. In Vitro 2010, 24, 1504–1511. [Google Scholar] [CrossRef]
- Iqbal, N.; Iqbal, N. Imatinib: A Breakthrough of Targeted Therapy in Cancer. Chemother. Res. Pract. 2014, 2014, 357027. [Google Scholar] [CrossRef]
- Chapuy, B.; Panse, M.; Radunski, U.; Koch, R.; Wenzel, D.; Inagaki, N.; Haase, D.; Truemper, L.; Wulf, G.G. ABC Transporter A3 Facilitates Lysosomal Sequestration of Imatinib and Modulates Susceptibility of Chronic Myeloid Leukemia Cell Lines to This Drug. Haematologica 2009, 94, 1528–1536. [Google Scholar] [CrossRef]
- Lam Yi, H.; Than, H.; Sng, C.; Cheong, M.A.; Chuah, C.; Xiang, W. Lysosome Inhibition by Mefloquine Preferentially Enhances the Cytotoxic Effects of Tyrosine Kinase Inhibitors in Blast Phase Chronic Myeloid Leukemia. Transl. Oncol. 2019, 12, 1221–1228. [Google Scholar] [CrossRef] [PubMed]
- Sukhai, M.A.; Prabha, S.; Hurren, R.; Rutledge, A.C.; Lee, A.Y.; Sriskanthadevan, S.; Sun, H.; Wang, X.; Skrtic, M.; Seneviratne, A.; et al. Lysosomal Disruption Preferentially Targets Acute Myeloid Leukemia Cells and Progenitors. J. Clin. Investig. 2013, 123, 315–328. [Google Scholar] [CrossRef] [PubMed]
- Kalalinia, F.; Karimi-Sani, I. Anticancer Properties of Solamargine: A Systematic Review. Phytother. Res. 2017, 31, 858–870. [Google Scholar] [CrossRef] [PubMed]
- Aurelius, J.; Thorén, F.B.; Akhiani, A.A.; Brune, M.; Palmqvist, L.; Hansson, M.; Hellstrand, K.; Martner, A. Monocytic AML Cells Inactivate Antileukemic Lymphocytes: Role of NADPH Oxidase/Gp91(Phox) Expression and the PARP-1/PAR Pathway of Apoptosis. Blood 2012, 119, 5832–5837. [Google Scholar] [CrossRef] [PubMed]
- Aurelius, J.; Martner, A.; Brune, M.; Palmqvist, L.; Hansson, M.; Hellstrand, K.; Thoren, F.B. Remission Maintenance in Acute Myeloid Leukemia: Impact of Functional Histamine H2 Receptors Expressed by Leukemic Cells. Haematologica 2012, 97, 1904–1908. [Google Scholar] [CrossRef] [PubMed]
- Martner, A.; Thorén, F.B.; Aurelius, J.; Söderholm, J.; Brune, M.; Hellstrand, K. Immunotherapy with Histamine Dihydrochloride for the Prevention of Relapse in Acute Myeloid Leukemia. Expert. Rev. Hematol. 2010, 3, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Brune, M.; Castaigne, S.; Catalano, J.; Gehlsen, K.; Ho, A.D.; Hofmann, W.-K.; Hogge, D.E.; Nilsson, B.; Or, R.; Romero, A.I.; et al. Improved Leukemia-Free Survival after Postconsolidation Immunotherapy with Histamine Dihydrochloride and Interleukin-2 in Acute Myeloid Leukemia: Results of a Randomized Phase 3 Trial. Blood 2006, 108, 88–96. [Google Scholar] [CrossRef]
- Akhiani, A.A.; Werlenius, O.; Aurelius, J.; Movitz, C.; Martner, A.; Hellstrand, K.; Thorén, F.B. Role of the ERK Pathway for Oxidant-Induced Parthanatos in Human Lymphocytes. PLoS ONE 2014, 9, e89646. [Google Scholar] [CrossRef]
- Warnes, G. Flow Cytometric Detection of Hyper-Polarized Mitochondria in Regulated and Accidental Cell Death Processes. Apoptosis 2020, 25, 548–557. [Google Scholar] [CrossRef]
- Cloux, A.-J.; Aubry, D.; Heulot, M.; Widmann, C.; ElMokh, O.; Piacente, F.; Cea, M.; Nencioni, A.; Bellotti, A.; Bouzourène, K.; et al. Reactive Oxygen/Nitrogen Species Contribute Substantially to the Antileukemia Effect of APO866, a NAD Lowering Agent. Oncotarget 2019, 10, 6723–6738. [Google Scholar] [CrossRef]
- Medrano, M.; Contreras-Mostazo, M.G.; Caballero, T.; Bejarano-García, J.A.; Rosado, I.V.; Pérez-Simón, J. Cannabinoids Induce Cell Death in Leukemic Cells through Parthanatos and PARP-Related Metabolic Disruptions. Blood 2021, 138, 4340. [Google Scholar] [CrossRef]
- Dörrie, J.; Gerauer, H.; Wachter, Y.; Zunino, S.J. Resveratrol Induces Extensive Apoptosis by Depolarizing Mitochondrial Membranes and Activating Caspase-9 in Acute Lymphoblastic Leukemia Cells. Cancer Res. 2001, 61, 4731–4739. [Google Scholar]
- Zunino, S.J.; Storms, D.H. Resveratrol-Induced Apoptosis Is Enhanced in Acute Lymphoblastic Leukemia Cells by Modulation of the Mitochondrial Permeability Transition Pore. Cancer Lett. 2006, 240, 123–134. [Google Scholar] [CrossRef]
- Olivas-Aguirre, M.; Torres-López, L.; Valle-Reyes, J.S.; Hernández-Cruz, A.; Pottosin, I.; Dobrovinskaya, O. Cannabidiol Directly Targets Mitochondria and Disturbs Calcium Homeostasis in Acute Lymphoblastic Leukemia. Cell Death Dis. 2019, 10, 779. [Google Scholar] [CrossRef] [PubMed]
- Crompton, M.; Costi, A. A Heart Mitochondrial Ca2(+)-Dependent Pore of Possible Relevance to Re-Perfusion-Induced Injury. Evidence That ADP Facilitates Pore Interconversion between the Closed and Open States. Biochem. J. 1990, 266, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Takeyama, N.; Matsuo, N.; Tanaka, T. Oxidative Damage to Mitochondria Is Mediated by the Ca(2+)-Dependent Inner-Membrane Permeability Transition. Biochem. J. 1993, 294 Pt 3, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Zamaraeva, M.V.; Sabirov, R.Z.; Maeno, E.; Ando-Akatsuka, Y.; Bessonova, S.V.; Okada, Y. Cells Die with Increased Cytosolic ATP during Apoptosis: A Bioluminescence Study with Intracellular Luciferase. Cell Death Differ. 2005, 12, 1390–1397. [Google Scholar] [CrossRef]
- McKallip, R.J.; Jia, W.; Schlomer, J.; Warren, J.W.; Nagarkatti, P.S.; Nagarkatti, M. Cannabidiol-Induced Apoptosis in Human Leukemia Cells: A Novel Role of Cannabidiol in the Regulation of P22phox and Nox4 Expression. Mol. Pharmacol. 2006, 70, 897–908. [Google Scholar] [CrossRef]
RCD | POTENTIAL DRUG TARGETS |
---|---|
Necroptosis | RIPK1, RIPK3, MLKL, TNFR1, JNK, p38, CYLD |
Pyroptosis | NLRP1, NLRC4, AIM2, IFI16, caspase 1, GSDMD, HMGB1 |
ICD | CALR, HSP70, HSP90, HMGB1, P2X7, ATP, PD1 |
Ferroptosis | GPX4, Ferritin, GSH, LOXs, cysteine, NRF-2, JNK, p38, sXc−, Aldh3a2, TXNRD1 |
LDCD | TPC2, CTSB, CD20, ABCA3 |
Parthanatos | ERK1/2, PARP-1, AIF, γH2AX, NAMPT |
MPT-driven necrosis | CBRs |
Disease | Drug | Target | Mechanism of Necroptosis | Ref. |
---|---|---|---|---|
AML | Birinapant + Emricasan | cIAPs, Caspase 8 | TNFR1 signaling, RIPK1/RIPK3/ MLKL dependent | [116] |
BV6 + 5AC or DAC | cIAPs, DNA methylation | RIPK1/RIPK3/ MLKL dependent, autocrine TNFα | [117] | |
BV6 + AraC | cIAPs, DNA synthesis | RIPK1/RIPK3/MLKL dependent, autocrine TNFα | [118] | |
BV6 + MS275 BV6 + SAHA | cIAPs, HDACs | RIPK1/RIPK3/MLKL dependent, autocrine TNFα | [119] | |
BV6 + DAMPs | RIPK1 | Caspase-dependent and independent cell death | [31] | |
HXR9 | HOX/PBX dimers | RIPK1 dependent | [120] | |
DT-GMCSF | Inhibition of protein synthesis | RIPK1 dependent | [121] | |
Erastin | Unknown | RIPK3 dependent; c-JNK and p38 dependent | [115] | |
ALL | BV6 + DEXA | cIAPs, Glucocorticoid receptor | RIPK3/MLKL dependent, BAK activation | [126] |
BV6, LCL161, Birinapant + 5AC or DAC | cIAPs, DNA methylation | RIPK1/RIPK3/ MLKL dependent, autocrine TNFα | [123] | |
MG132, Bortezomib | Proteasome | RIPK3/MLKL dependent | [128] | |
CML | CHX, HHT | Unknown | TRAILR/RIPK1/RIPK3/MLKL | [129] |
LQFM018 | Unknown | TNFR1 and CYLD upregulation | [130] | |
CLL | EA | LEF1 | CYLD activation | [131] |
sodium selenite + TNF-α + z-VAD | CXCL-1 | RIPK1/RIPK3/MLKL dependent | [132] |
Disease | Drug | Target | Mechanism of Pyroptosis | Ref. |
---|---|---|---|---|
AML | Val-BoroPro | DPP8/DPP9 | NLRP1 mediated caspase 1 activation | [135] |
Curcumin | ISG3 | Caspase 1 mediated GSDM-D cleavage | [136] | |
Ardisianone | IAPs, TNFR2 | Caspase 1 mediated GSDM-D cleavage | [137] | |
ALL | DAS + IFN-α Phase IV clinical trial (chiCTR1800015763) | ABL, Src | Caspase 1 mediated GSDM-D cleavage and IL-1β release | [133] |
Disease | Drug | Target | Mechanism of ICD | Ref. |
---|---|---|---|---|
AML | ETO, DNR | DNA topoisomerase II; DNA/RNA synthesis | CALR and HSPs surface exposure, HMGB1 and ATP release | [141] |
DNR + AraC | DNA/RNA synthesis | Increased expression of IDO1; Tregs-dependent regulation | [140] | |
anthracyclines + HDC/IL-2 Phase IV clinical trial (NCT01347996) | DNA/RNA synthesis | CALR exposure and HSP70 release | [142] | |
Anthracyclines | DNA/RNA synthesis; Topoisomerase II; nuclear and cytoplasmatic sites | CALR exposure and release | [143] | |
ATRA | PML/RARα | CALR exposure | [144] | |
ALL | CM-272 | G9a and DNMTs | Type 1 IFN response and ISGs activation | [145] |
PKBH1 | CD47 | CALR exposure, HSPs and HMGB1 release | [146] |
Disease | Drug | Target | Mechanism of Ferroptosis | Ref. |
---|---|---|---|---|
AML | Erastin | Unknown | GPX4 inhibition and c-JNK/p38 activation | [115] |
DHA, TYP | NDUFS3, SDHB, UQCRFS1 | Ferritin degradation via AMPK/mTOR and ROS production, redox instability | [155,156] | |
ATPR | NRF-2 | NRF-2 downregulation and ROS production, redox instability | [157] | |
ALL | RSL3 + BV6 | GPX4 | Iron-dependent PUFAs peroxidation by LOXs | [159] |
RSL3 | GPX4 | Iron-dependent PUFAs peroxidation by LOXs | [160] | |
ART | DNA/RNA synthesis | Iron-dependent ROS production | [161] | |
PAA | Unknown | GPX4 inhibition, GSH depletion, and ROS production | [162] | |
Erastin + RAPA | Unknown | FBXW7 downregulation, VDAC3 upregulation | [163] | |
CML | Auranofin | TXNRD1 | TXNRD1 downregulation, cysteine depletion, and ROS production | [166] |
MDS | DAC | DNA synthesis | GSH depletion, GPX4 inactivation, and ROS production | [111] |
Disease | Drug | Target | Mechanism of LDCD | Ref. |
---|---|---|---|---|
AML | MQ | Protein synthesis | Oxidative damage, lysosomal permeabilization and CTPs cytosol release | [183] |
ALL | VCR, DXR, TPT + Narigenin/ Tetrandrine | Microtubule polymerization, DNA synthesis, TPC2 | Increase in lysosomal PH, lysosomal permeabilization and CTSB cytosol release | [172] |
ABT-263 + B10 | BCL-2 | Lysosomal permeabilization, loss of mitochondrial membrane potential | [175] | |
CML | SM | Unknown | Lysosomal permeabilization, CTSB release, mitochondrial damage | [179] |
CLL | Siramesine | Sigma receptor | Lipid peroxidation and LMP | [176] |
Tositumomab, L243 | CD20, HLA-DR | Lysosomal membrane permeabilization and CTSB cytosol release | [177] |
Cell Death | Disease | Drug | Target | Molecular Mechanism | Ref. |
---|---|---|---|---|---|
Parthanatos | AML | Ara-C | DNA synthesis | PAR accumulation and AIF nuclear translocation | [104] |
Shikonin | PMK2 | γH2AX phosphorylation and PARP-1 activation | [190] | ||
APO-866 | NAMPT | NAD+ and ATP depletion, AIF nuclear translocation and PARP-1 activation | [191] | ||
WIN-55 | CBRs | AIF nuclear translocation and PARP-1 activation, glycolytic metabolic drop | [192] | ||
MPT-driven necrosis | ALL | CBD | CBRs | Ca2+ overload, MPT formation, oxidative phosphorylation arrest | [195] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Favale, G.; Donnarumma, F.; Capone, V.; Della Torre, L.; Beato, A.; Carannante, D.; Verrilli, G.; Nawaz, A.; Grimaldi, F.; De Simone, M.C.; et al. Deregulation of New Cell Death Mechanisms in Leukemia. Cancers 2024, 16, 1657. https://doi.org/10.3390/cancers16091657
Favale G, Donnarumma F, Capone V, Della Torre L, Beato A, Carannante D, Verrilli G, Nawaz A, Grimaldi F, De Simone MC, et al. Deregulation of New Cell Death Mechanisms in Leukemia. Cancers. 2024; 16(9):1657. https://doi.org/10.3390/cancers16091657
Chicago/Turabian StyleFavale, Gregorio, Federica Donnarumma, Vincenza Capone, Laura Della Torre, Antonio Beato, Daniela Carannante, Giulia Verrilli, Asmat Nawaz, Francesco Grimaldi, Maria Carla De Simone, and et al. 2024. "Deregulation of New Cell Death Mechanisms in Leukemia" Cancers 16, no. 9: 1657. https://doi.org/10.3390/cancers16091657
APA StyleFavale, G., Donnarumma, F., Capone, V., Della Torre, L., Beato, A., Carannante, D., Verrilli, G., Nawaz, A., Grimaldi, F., De Simone, M. C., Del Gaudio, N., Megchelenbrink, W. L., Caraglia, M., Benedetti, R., Altucci, L., & Carafa, V. (2024). Deregulation of New Cell Death Mechanisms in Leukemia. Cancers, 16(9), 1657. https://doi.org/10.3390/cancers16091657