Revolutionizing Treatment: Breakthrough Approaches for BCG-Unresponsive Non-Muscle-Invasive Bladder Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Intravesical BCG Therapy
3. Radical Cystectomy
4. New Treatment Options
5. Intravesical Therapies
5.1. N-803
5.2. Nadofaragene Firadenovec
6. Intravenous Therapies
6.1. Cabazitaxel, Gemcitabine and Cisplatin
6.2. Pembrolizumab
7. Intravesical Delivery Systems
8. Radiation Therapy
9. Discussion
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Centers for Disease Control and Prevention. Male Urologic Cancers; USCS Data Brief, no 21; Centers for Disease Control and Prevention, US Department of Health and Human Services: Atlanta, GA, USA, 2020. [Google Scholar]
- Cook, M.B.; Dawsey, S.M.; Freedman, N.D.; Inskip, P.D.; Wichner, S.M.; Quraishi, S.M.; Devesa, S.S.; McGlynn, K.A. Sex disparities in cancer incidence by period and age. Cancer Epidemiol. Biomark. Prev. 2009, 18, 1174–1182. [Google Scholar] [CrossRef]
- Kaseb, H.; Aeddula, N.R. Bladder Cancer. [Updated 2022 October 24]. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK536923/ (accessed on 2 February 2024).
- van Straten, C.G.J.I.; Bruins, M.H.; Dijkstra, S.; Cornel, E.B.; Kortleve, M.D.H.; de Vocht, T.F.; Kiemeney, L.A.L.M.; van der Heijden, A.G. The accuracy of cystoscopy in predicting muscle invasion in newly diagnosed bladder cancer patients. World J. Urol. 2023, 41, 1829–1835. [Google Scholar] [CrossRef] [PubMed]
- Tokuyama, N.; Saito, A.; Muraoka, R.; Matsubara, S.; Hashimoto, T.; Satake, N.; Matsubayashi, J.; Nagao, T.; Mirza, A.H.; Graf, H.P.; et al. Prediction of non-muscle invasive bladder cancer recurrence using machine learning of quantitative nuclear features. Mod. Pathol. 2022, 35, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Lobo, N.; Brooks, N.A.; Zlotta, A.R.; Cirillo, J.D.; Boorjian, S.; Black, P.C.; Meeks, J.J.; Bivalacqua, T.J.; Gontero, P.; Steinberg, G.D.; et al. 100 years of Bacillus Calmette–Guérin immunotherapy: From cattle to COVID-19. Nat. Rev. Urol. 2021, 18, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Morales, A.; Eidinger, D.; Bruce, A.W. Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J. Urol. 1976, 116, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Sylvester, R.J.; Brausi, M.A.; Kirkels, W.J.; Hoeltl, W.; Da Silva, F.C.; Powell, P.H.; Prescott, S.; Kirkali, Z.; van de Beek, C.; Gorlia, T.; et al. Long-Term Efficacy Results of EORTC Genito-Urinary Group Randomized Phase 3 Study 30911 Comparing Intravesical Instillations of Epirubicin, Bacillus Calmette-Guérin, and Bacillus Calmette-Guérin plus Isoniazid in Patients with Intermediate- and High-Risk Stage Ta T1 Urothelial Carcinoma of the Bladder. Eur. Urol. 2010, 57, 766–773. [Google Scholar] [CrossRef] [PubMed]
- Thiel, T.; Ryk, C.; Renström-Koskela, L.; Steineck, G.; Schumacher, M.C.; Wiklund, N.P.; de Verdier, P.J. Intravesical BCG treatment causes a long-lasting reduction of recurrence and progression in patients with high-risk non-muscle-invasive bladder cancer. World J. Urol. 2019, 37, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Musat, M.G.; Kwon, C.S.; Masters, E.; Sikirica, S.; Pijush, D.B.; Forsythe, A. Treatment Outcomes of High-Risk Non-Muscle Invasive Bladder Cancer (HR-NMIBC) in Real-World Evidence (RWE) Studies: Systematic Literature Review (SLR). Clin. Outcomes Res. 2022, 14, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Donat, S.M.; North, A.; Dalbagni, G.; Herr, H.W. Efficacy of office fulguration for recurrent low grade papillary bladder tumors less than 0.5 cm. J. Urol. 2004, 171 Pt 1, 636–639. [Google Scholar] [CrossRef]
- Grimm, M.O.; van der Heijden, A.G.; Colombel, M.; Muilwijk, T.; Martínez-Piñeiro, L.; Babjuk, M.M.; Türkeri, L.N.; Palou, J.; Patel, A.; Bjartell, A.S.; et al. Treatment of High-grade Non-muscle-invasive Bladder Carcinoma by Standard Number and Dose of BCG Instillations Versus Reduced Number and Standard Dose of BCG Instillations: Results of the European Association of Urology Research Foundation Randomised Phase III Clinical Trial “NIMBUS”. Eur. Urol. 2020, 78, 690–698. [Google Scholar] [CrossRef]
- Kamat, A.M.; Flaig, T.W.; Grossman, H.B.; Konety, B.; Lamm, D.; O’donnell, M.A.; Uchio, E.; Efstathiou, J.A.; Taylor, J.A., III. Consensus statement on best practice management regarding the use of intravesical immunotherapy with BCG for bladder cancer. Nat. Rev. Urol. 2015, 12, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Gual Frau, J.; Palou, J.; Rodríguez, O.; Parada, R.; Breda, A.; Villavicencio, H. Failure of Bacillus Calmette-Guérin therapy in non-muscle-invasive bladder cancer: Definition and treatment options. Arch. Esp. Urol. 2016, 69, 423–433. [Google Scholar]
- Zlotta, A.R.; Fleshner, N.E.; Jewett, M.A. The management of BCG failure in non-muscle-invasive bladder cancer: An update. Can. Urol. Assoc. J. 2009, 3 (Suppl. S4), S199–S205. [Google Scholar] [CrossRef]
- Vartolomei, M.D.; Porav-Hodade, D.; Ferro, M.; Mathieu, R.; Abufaraj, M.; Foerster, B.; Kimura, S.; Shariat, S.F. Prognostic role of pretreatment neutrophil-to-lymphocyte ratio (NLR) in patients with non-muscle-invasive bladder cancer (NMIBC): A systematic review and meta-analysis. Urol. Oncol. 2018, 36, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Yoo, S.; Choo, M.S.; Cho, M.C.; Son, H.; Jeong, H. Prognostic Role of Preoperative Neutrophil-To-Lymphocyte Ratio (NLR) and Recurrence at First Evaluation after Bacillus Calmette–Guérin (BCG) Induction in Non-Muscle-Invasive Bladder Cancer. Diagnostics 2023, 13, 3114. [Google Scholar] [CrossRef] [PubMed]
- Li, D.X.; Wang, X.M.; Tang, Y.; Yang, Y.B.; Feng, D.C.; Li, A.; Zhang, F.C.; Bai, Y.J.; Han, P. Prognostic value of preoperative neutrophil-to-lymphocyte ratio in histological variants of non-muscle-invasive bladder cancer. Investig. Clin. Urol. 2021, 62, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Ziani, I.; Ibrahimi, A.; Zaoui, Y.; Sayegh, H.E.; Abouqal, R.; Nouini, Y.; Bouziane, A. Role of preoperative neutrophil to lymphocyte ratio in prediction of recurrence, progression, and BCG failure in non-muscle invasive bladder cancer: A retrospective study. Pan Afr. Med. J. 2023, 44, 145. [Google Scholar] [CrossRef] [PubMed]
- Cambier, C.J.; Takaki, K.K.; Larson, R.P.; Hernandez, R.E.; Tobin, D.M.; Urdahl, K.B.; Cosma, C.L.; Ramakrishnan, L. Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids. Nature 2014, 505, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Kresowik, T.P.; Griffith, T.S. Bacillus Calmette-Guerin immunotherapy for urothelial carcinoma of the bladder. Immunotherapy 2009, 1, 281–288. [Google Scholar] [CrossRef]
- Ibrahim, O.M.; Pandey, R.K.; Chatta, G.; Kalinski, P. Role of tumor microenvironment in the efficacy of BCG therapy. Trends Res. 2020, 3. [Google Scholar] [CrossRef]
- Lombardo, K.A.; Obradovic, A.; Singh, A.K.; Liu, J.L.; Joice, G.; Kates, M.; Bishai, W.; McConkey, D.; Chaux, A.; Eich, M.L.; et al. BCG invokes superior STING-mediated innate immune response over radiotherapy in a carcinogen murine model of urothelial cancer. J. Pathol. 2022, 256, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Oddens, J.; Brausi, M.; Sylvester, R.; Bono, A.; van de Beek, C.; van Andel, G.; Gontero, P.; Hoeltl, W.; Turkeri, L.; Marreaud, S.; et al. Final results of an EORTC-GU cancers group randomized study of maintenance bacillus Calmette-Guérin in intermediate- and high-risk Ta, T1 papillary carcinoma of the urinary bladder: One-third dose versus full dose and 1 year versus 3 years of maintenance. Eur. Urol. 2013, 63, 462–472. [Google Scholar] [CrossRef] [PubMed]
- Brausi, M.; Oddens, J.; Sylvester, R.; Bono, A.; van de Beek, C.; van Andel, G.; Gontero, P.; Turkeri, L.; Marreaud, S.; Collette, S.; et al. Side effects of Bacillus Calmette-Guérin (BCG) in the treatment of intermediate- and high-risk Ta, T1 papillary carcinoma of the bladder: Results of the EORTC genito-urinary cancers group randomised phase 3 study comparing one-third dose with full dose and 1 year with 3 years of maintenance BCG. Eur. Urol. 2014, 65, 69–76. [Google Scholar] [CrossRef]
- Avan der Meijden, A.P.; Sylvester, R.J.; Oosterlinck, W.; Hoeltl, W.; Bono, A.V. Maintenance Bacillus Calmette-Guerin for Ta T1 Bladder Tumors Is Not Associated with Increased Toxicity: Results from a European Organisation for Research and Treatment of Cancer Genito-Urinary Group Phase III Trial. Eur. Urol. 2003, 44, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Liedberg, F.; Xylinas, E.; Gontero, P. Quinolone Prophylaxis in Conjunction with Bacillus Calmette-Guérin Instillations for Bladder Cancer: Time To Reconsider the Evidence and Open the Quinolone Box? Eur. Urol. Focus 2023. [Google Scholar] [CrossRef] [PubMed]
- Sylvester, R.J.; Rodríguez, O.; Hernández, V.; Turturica, D.; Bauerová, L.; Bruins, H.M.; Bründl, J.; van der Kwast, T.H.; Brisuda, A.; Rubio-Briones, J.; et al. European Association of Urology (EAU) Prognostic Factor Risk Groups for Non-muscle-invasive Bladder Cancer (NMIBC) Incorporating the WHO 2004/2016 and WHO 1973 Classification Systems for Grade: An Update from the EAU NMIBC Guidelines Panel. Eur. Urol. 2021, 79, 480. [Google Scholar] [CrossRef]
- Flitcroft, M.; Kothari, A.; Shah, N.; Knoll, K.; Johnson, S. Facility level variation in pathologic upstaging of bladder cancer after radical cystectomy. J. Urol. 2023, 209, e828. [Google Scholar] [CrossRef]
- Katsimperis, S.; Tzelves, L.; Tandogdu, Z.; Ta, A.; Geraghty, R.; Bellos, T.; Manolitsis, I.; Pyrgidis, N.; Schulz, G.B.; Sridhar, A.; et al. Complications After Radical Cystectomy: A Systematic Review and Meta-analysis of Randomized Controlled Trials with a Meta-regression Analysis. Eur. Urol. Focus 2023, 9, 920–929. [Google Scholar] [CrossRef] [PubMed]
- Djaladat, H.; Katebian, B.; Bazargani, S.T.; Miranda, G.; Cai, J.; Schuckman, A.K.; Daneshmand, S. 90-Day complication rate in patients undergoing radical cystectomy with enhanced recovery protocol: A prospective cohort study. World J. Urol. 2017, 35, 907–911. [Google Scholar] [CrossRef]
- Dybowski, B.; Ossoliński, K.; Ossolińska, A.; Peller, M.; Bres-Niewada, E.; Radziszewski, P. Impact of stage and comorbidities on five-year survival after radical cystectomy in Poland: Single centre experience. Cent. Eur. J. Urol. 2015, 68, 278–283. [Google Scholar] [CrossRef]
- Ploussard, G.; Shariat, S.F.; Dragomir, A.; Kluth, L.A.; Xylinas, E.; Masson-Lecomte, A.; Rieken, M.; Rink, M.; Matsumoto, K.; Kikuchi, E.; et al. Conditional Survival After Radical Cystectomy for Bladder Cancer: Evidence for a Patient Changing Risk Profile over Time. Eur. Urol. 2014, 66, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Crettenand, F.; M’Baya, O.; Grilo, N.; Valerio, M.; Dartiguenave, F.; Cerantola, Y.; Roth, B.; Rouvé, J.D.; Blanc, C.; Lucca, I. ERAS® protocol improves survival after radical cystectomy: A single-center cohort study. Medicine 2022, 101, e30258. [Google Scholar] [CrossRef] [PubMed]
- Bahlburg, H.; Hellmann, T.; Tully, K.; Butea-Bocu, M.C.; Reike, M.; Roghmann, F.; Noldus, J.; Müller, G. Psychosocial distress and quality of life in patients after radical cystectomy—One year follow-up in 842 German patients. J. Cancer Surviv. 2023. [Google Scholar] [CrossRef]
- Chen, W.; Liu, N.; Yuan, Y.; Zhu, M.; Hu, X.; Hu, W.; Wang, S.; Wang, C.; Huang, B.; Xing, D. ALT-803 in the treatment of non-muscle-invasive bladder cancer: Preclinical and clinical evidence and translational potential. Front. Immunol. 2022, 13, 1040669. [Google Scholar] [CrossRef] [PubMed]
- Chamie, K.; Chang, S.S.; Gonzalgo, M.; Kramolowsky, E.V.; Sexton, W.J.; Bhar, P.; Reddy, S.K.; Soon-Shiong, P. Final clinical results of pivotal trial of IL-15RαFc superagonist N-803 with BCG in BCG-unresponsive CIS and papillary nonmuscle-invasive bladder cancer (NMIBC). J. Clin. Oncol. 2022, 40, 4508. [Google Scholar] [CrossRef]
- Rhode, P.R.; Egan, J.O.; Xu, W.; Hong, H.; Webb, G.M.; Chen, X.; Liu, B.; Zhu, X.; Wen, J.; You, L.; et al. Comparison of the Superagonist Complex, ALT-803, to IL15 as Cancer Immunotherapeutics in Animal Models. Cancer Immunol. Res. 2016, 4, 49–60. [Google Scholar] [CrossRef]
- Navai, N.; Benedict, W.F.; Zhang, G.; Abraham, A.; Ainslie, N.; Shah, J.B.; Grossman, H.B.; Kamat, A.M.; Dinney, C.P. Phase 1b Trial to Evaluate Tissue Response to a Second Dose of Intravesical Recombinant Adenoviral Interferon α2b Formulated in Syn3 for Failures of Bacillus Calmette-Guerin (BCG) Therapy in Nonmuscle Invasive Bladder Cancer. Ann. Surg. Oncol. 2016, 23, 4110–4114. [Google Scholar] [CrossRef]
- Boorjian, S.A.; Alemozaffar, M.; Konety, B.R.; Shore, N.D.; Gomella, L.G.; Kamat, A.M.; Bivalacqua, T.J.; Montgomery, J.S.; Lerner, S.P.; Busby, J.E.; et al. Intravesical nadofaragene firadenovec gene therapy for BCG-unresponsive non-muscle-invasive bladder cancer: A single-arm, open-label, repeat-dose clinical trial. Lancet Oncol. 2021, 22, 107–117. [Google Scholar] [CrossRef]
- Shore, N.D.; Boorjian, S.A.; Canter, D.J.; Ogan, K.; Karsh, L.I.; Downs, T.M.; Gomella, L.G.; Kamat, A.M.; Lotan, Y.; Svatek, R.S.; et al. Intravesical rAd-IFNα/Syn3 for Patients with High-Grade, Bacillus Calmette-Guerin-Refractory or Relapsed Non-Muscle-Invasive Bladder Cancer: A Phase II Randomized Study. J. Clin. Oncol. 2017, 35, 3410–3416, Erratum in J. Clin. Oncol. 2019, 37, 2187. [Google Scholar] [CrossRef]
- Mitra, A.P.; Narayan, V.M.; Mokkapati, S.; Miest, T.; Boorjian, S.A.; Alemozaffar, M.; Konety, B.R.; Shore, N.D.; Gomella, L.G.; Kamat, A.M.; et al. Antiadenovirus Antibodies Predict Response Durability to Nadofaragene Firadenovec Therapy in BCG-unresponsive Non-muscle-invasive Bladder Cancer: Secondary Analysis of a Phase 3 Clinical Trial. Eur. Urol. 2022, 81, 223–228. [Google Scholar] [CrossRef]
- Green, J.L.; Osterhout, R.E.; Klova, A.L.; Merkwirth, C.; McDonnell, S.R.P.; Zavareh, R.B.; Fuchs, B.C.; Kamal, A.; Jakobsen, J.S. Molecular characterization of type I IFN-induced cytotoxicity in bladder cancer cells reveals biomarkers of resistance. Mol. Ther. Oncolytics 2021, 23, 547–559. [Google Scholar] [CrossRef] [PubMed]
- Shuckman, A.K.; Lotan, Y.; Boorjian, S.A.; Cilwa, K.E.; Dinney, C.P.N. Efficacy of intravesical nadofaragene firadenovec for patients with carcinoma in situ (CIS), BCG-unresponsive non-muscle invasive bladder cancer (NMIBC): Longer-term follow-up from the phase III trial [abstract no. MP16-01]. J. Urol. 2021, 206 (Suppl. S3), E296. [Google Scholar] [CrossRef]
- Lotan, Y.; Schuckman, A.K.; Boorjian, S.A.; Cilwa, K.E.; Dinney, C.P.N. Phase III trial of intravesical nadofaragene firadenovec in patients with high-grade, BCG-unresponsive, non-muscle invasive bladder cancer: Two year follow-up in the TA/T1 cohort [abstract no. MP16-02]. J. Urol. 2021, 206 (Suppl. S3), E296. [Google Scholar]
- Abidi, A. Cabazitaxel: A novel taxane for metastatic castration-resistant prostate cancer-current implications and future prospects. J. Pharmacol. Pharmacother. 2013, 4, 230–237. [Google Scholar] [CrossRef] [PubMed]
- von der Maase, H.; Hansen, S.W.; Roberts, J.T.; Dogliotti, L.; Oliver, T.; Moore, M.J.; Bodrogi, I.; Albers, P.; Knuth, A.; Lippert, C.M.; et al. Gemcitabine and Cisplatin Versus Methotrexate, Vinblastine, Doxorubicin, and Cisplatin in Advanced or Metastatic Bladder Cancer: Results of a Large, Randomized, Multinational, Multicenter, Phase III Study. J. Clin. Oncol. 2000, 18, 3068–3077. [Google Scholar] [CrossRef] [PubMed]
- DeCastro, G.J.; Sui, W.; Pak, J.S.; Lee, S.M.; Holder, D.; Kates, M.M.; Virk, R.K.; Drake, C.G.; Anderson, C.B.; James, B.; et al. A Phase I Trial of Intravesical Cabazitaxel, Gemcitabine and Cisplatin for the Treatment of Nonmuscle Invasive bacillus Calmette-Guérin Unresponsive or Recurrent/Relapsing Urothelial Carcinoma of the Bladder. J. Urol. 2020, 204, 247–253. [Google Scholar] [CrossRef] [PubMed]
- DeCastro, G.J.; Anderson, C.B.; Abate-Shen, C.; Gray, J.; Ingram, J.; Stein, M.N.; McKiernan, J.M. Phase 2 trial of intravesical cabazitaxel, gemcitabine, and cisplatin (CGC) for the treatment of non-muscle invasive BCG unresponsive urothelial carcinoma of the bladder. J. Clin. Oncol. 2023, 41, TPS4616. [Google Scholar] [CrossRef]
- McElree, I.M.; Steinberg, R.L.; Martin, A.C.; Richards, J.; Mott, S.L.; Gellhaus, P.T.; Nepple, K.G.; O’Donnell, M.A.; Packiam, V.T. Sequential Intravesical Gemcitabine and Docetaxel for bacillus Calmette-Guérin-Naïve High-Risk Nonmuscle-Invasive Bladder Cancer. J. Urol. 2022, 208, 589–599. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Chen, Y.; Li, X.; Long, S.; Shi, Y.; Yu, Y.; Wu, W.; Han, L.; Wang, S. The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers. Front. Immunol. 2022, 13, 964442. [Google Scholar] [CrossRef]
- Bedke, J.; Black, P.C.; Szabados, B.; Guerrero-Ramos, F.; Shariat, S.F.; Xylinas, E.; Brinkmann, J.; Blake-Haskins, J.A.; Cesari, R.; Redorta, J.P. Optimizing outcomes for high-risk, non-muscle-invasive bladder cancer: The evolving role of PD-(L)1 inhibition. Urol. Oncol. Semin. Orig. Investig. 2023, 41, 461–475. [Google Scholar] [CrossRef]
- Taoka, R.; Kobayashi, T.; Hidaka, Y.; Abe, H.; Ito, K.; Kojima, T.; Kato, M.; Kanda, S.; Hatakeyama, S.; Matsui, Y.; et al. Impact of prior intravesical bacillus Calmette-Guerin therapy on the effectiveness of pembrolizumab for patients with metastatic urothelial carcinoma. Urol. Oncol. Semin. Orig. Investig. 2022, 40, 107.e1–107.e9. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Yang, X.; Liu, Y.; Liu, Y.; Li, Y.; Sun, L.; Yang, X.; Niu, H. Bacillus Calmette-Guérin and anti-PD-L1 combination therapy boosts immune response against bladder cancer. OncoTargets Ther. 2018, 11, 2891–2899. [Google Scholar] [CrossRef] [PubMed]
- Hamid, O.; Robert, C.; Daud, A.; Hodi, F.S.; Hwu, W.J.; Kefford, R.; Wolchok, J.D.; Hersey, P.; Joseph, R.; Weber, J.S. Five-year survival outcomes for patients with advanced melanoma treated with pembrolizumab in KEYNOTE-001. Ann. Oncol. 2019, 30, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Garon, E.B.; Rizvi, N.A.; Hui, R.; Leighl, N.; Balmanoukian, A.S.; Eder, J.P.; Patnaik, A.; Aggarwal, C.; Gubens, M.; Horn, L.; et al. KEYNOTE-001 Investigators. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 2015, 372, 2018–2028. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.Y.; Salem, J.E.; Cohen, J.V.; Chandra, S.; Menzer, C.; Ye, F.; Zhao, S.; Das, S.; Beckermann, K.E.; Ha, L.; et al. Fatal Toxic Effects Associated wth Immune Checkpoint Inhibitors: A Systematic Review and Meta-analysis. JAMA Oncol. 2018, 4, 1721–1728, Erratum in JAMA Oncol. 2018, 4, 1792. [Google Scholar] [CrossRef] [PubMed]
- Balar, A.V.; Kamat, A.M.; Kulkarni, G.S.; Uchio, E.M.; Boormans, J.L.; Roumiguié, M.; Krieger, L.E.M.; Singer, E.A.; Bajorin, D.F.; Grivas, P.; et al. Pembrolizumab monotherapy for the treatment of high-risk non-muscle-invasive bladder cancer unresponsive to BCG (KEYNOTE-057): An open-label, single-arm, multicentre, phase 2 study. Lancet Oncol. 2021, 22, 919–930, Erratum in Lancet Oncol. 2021, 22, e347. [Google Scholar] [CrossRef] [PubMed]
- Deininger, S.; Törzsök, P.; Mitterberger, M.; Pallauf, M.; Oswald, D.; Deininger, C.; Lusuardi, L. From Interferon to Checkpoint Inhibition Therapy—A Systematic Review of New Immune-Modulating Agents in Bacillus Calmette–Guérin (BCG) Refractory Non-Muscle-Invasive Bladder Cancer (NMIBC). Cancers 2022, 14, 694. [Google Scholar] [CrossRef] [PubMed]
- Kamat, A.M.; Shore, N.; Hahn, N.; Alanee, S.; Nishiyama, H.; Shariat, S.; Nam, K.; Kapadia, E.; Frenkl, T.; Steinberg, G. KEYNOTE-676: Phase III study of BCG and pembrolizumab for persistent/recurrent high-risk NMIBC. Future Oncol. 2020, 16, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://clinicaltrials.gov/study/NCT03711032?cond=Non-muscle%20Invasive%20Bladder%20Cancer&term=keynote-676&rank=1 (accessed on 2 February 2024).
- Woodcock, V.K.; Chen, J.L.; Purshouse, K.; Butcher, C.; Collins, L.; Haddon, C.; Verrall, G.; Elhussein, L.; Roberts, C.; Tarlton, A. PemBla: A Phase 1 study of intravesical pembrolizumab in recurrent non-muscle-invasive bladder cancer. BJUI Compass 2023, 4, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Meghani, K.; Cooley, L.F.; Choy, B.; Kocherginsky, M.; Swaminathan, S.; Munir, S.S.; Svatek, R.S.; Kuzel, T.; Meeks, J.J. First-in-human Intravesical Delivery of Pembrolizumab Identifies Immune Activation in Bladder Cancer Unresponsive to Bacillus Calmette-Guérin. Eur. Urol. 2022, 82, 602–610. [Google Scholar] [CrossRef]
- Kommalapati, A.; Tella, S.H.; Borad, M.; Javle, M.; Mahipal, A. FGFR Inhibitors in Oncology: Insight on the Management of Toxicities in Clinical Practice. Cancers 2021, 13, 2968. [Google Scholar] [CrossRef]
- Ecke, T.H.; Voβ, P.C.; Schlomm, T.; Rabien, A.; Friedersdorff, F.; Barski, D.; Otto, T.; Waldner, M.; Veltrup, E.; Linden, F.; et al. Prediction of Response to Cisplatin-Based Neoadjuvant Chemotherapy of Muscle-Invasive Bladder Cancer Patients by Molecular Subtyping including KRT and FGFR Target Gene Assessment. Int. J. Mol. Sci. 2022, 23, 7898. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, D.J.; Hsu, R. Treatment approaches for FGFR-altered urothelial carcinoma: Targeted therapies and immunotherapy. Front. Immunol. 2023, 14, 1258388. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, A.; Porta, N.; Hall, E.; Song, Y.P.; Owen, R.; MacKay, R.; West, C.M.L.; Lewis, R.; Hussain, S.A.; James, N.D. BC2001 and BCON investigators. Hypofractionated radiotherapy in locally advanced bladder cancer: An individual patient data meta-analysis of the BC2001 and BCON trials. Lancet Oncol. 2021, 22, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Wang, W.; Chen, S.; Chen, P.; Yang, Y.; Guo, Y.; Zhu, Y.; Chen, F.; Shi, B. Combination of Intravesical Chemotherapy and Bacillus Calmette-Guerin Versus Bacillus Calmette-Guerin Monotherapy in Intermediate- and High-risk Nonmuscle Invasive Bladder Cancer: A Systematic Review and Meta-analysis. Medicine 2016, 95, e2572. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Jin, Y.H.; Weng, H.; Huang, Q.; Zeng, X.T.; Wang, X.H. Combination of Intravesical Bacille Calmette-Guerin and Chemotherapy vs. Bacille Calmette-Guerin Alone in Non-muscle Invasive Bladder Cancer: A Meta-Analysis. Front. Oncol. 2019, 9, 121. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.S.; Prendergast, A.; Ackerman, C.; Yogeswaran, Y.; Cresswell, J.; Mariappan, P.; Phull, J.; Hunter-Campbell, P.; Lazarowicz, H.; Mishra, V.; et al. Adjuvant Intravesical Chemohyperthermia Versus Passive Chemotherapy in Patients with Intermediate-risk Non-muscle-invasive Bladder Cancer (HIVEC-II): A Phase 2, Open-label, Randomised Controlled Trial. Eur. Urol. 2023, 83, 497–504. [Google Scholar] [CrossRef]
- Joshi, M.; Atlas, S.J.; Beinfeld, M.; Chapman, R.H.; Rind, D.M.; Pearson, S.D.; Touchette, D.R. Cost-Effectiveness of Nadofaragene Firadenovec and Pembrolizumab in Bacillus Calmette-Guérin Immunotherapy Unresponsive Non-Muscle Invasive Bladder Cancer. Value Health 2023, 26, 823–832. [Google Scholar] [CrossRef]
Trial | Treatment | Estimated Completion Date | Phase | Route of Administration | Number of Patients | Primary Outcome Measures |
---|---|---|---|---|---|---|
NCT01687244 | Adstiladrin | 2016 r. * | Phase 2 | Intravesical | 40 | Dose and safety assessment: 75 mL of rAd-IFN Dose 3 × 1011 Vps/mL |
NCT02773849 | Adstiladrin | 2023 r. * | Phase 3 | Intravesical | 157 | Complete response after 3 months: 53.4% |
NCT03167151 | Pembrolizumab | 2019 r. * | Phase 1 + 2 | Intravenous | 6 | Safety assessment: 200 mg iv. Dose |
NCT02808143 | Pembrolizumab + BCG | 2023 r. * | Phase 1 | Intravenous | 9 | Safety assessment: 1/2 mg/kg Pembrolizumab + 50 mg BGC |
NCT04640623 | Cetrelimab | 2027 r. | Phase 2 | Intravesical | 200 | Complete response and disease-free survival: results not posted |
NCT05316155 | Erdafitinib | 2024 r. | Phase 1 | Intravesical | 112 | Safety assessment: Results not posted |
NCT03799835 | Atezolizumab | 2028 r. | Phase 3 | Intravenous | 516 | Recurrence-free survival after 24 months: results not posted |
NCT04134000 | Atezolizumab | 2024 r. | Phase 1 | Intravenous | 40 | Safety assessment of BCG+ atezolizumab: results not posted |
NCT02792192 | Atezolizumab /Atezolizumab + BCG | 2020 r. * | Phase 1/2 | Intravenous | 24 | Complete response after 6 months: 33.3%/41.7% |
NCT03528694 | Durvalumab + BCG | 2025 r. | Phase 3 | Intravenous | 1018 | Disease-free survival: results not posted |
NCT03759496 | Durvalumab | 2022 r. ** | Phase 2 | Intravesical | 39 | Safety assessment: results not posted |
NCT04106115 | Durvalumab | 2029 r. | Phase 1 + 2 | Intravenous | 64 | Safety assessment + disease-free survival: results not posted |
NCT04149574 | Nivolumab | 2024 r. | Phase 3 | Intravenous | 13 | Event-free survival: results not posted |
NCT04165317 | Sasanlimab /sansalimab + BCG | 2026 r. | Phase 3 | Intravenous | 1070 | Event-free survival: results not posted |
Pembrolizumab | Adstiladrin | |
---|---|---|
FDA approval date | 16 October 2020 | 16 December 2022 |
Mechanism | Monoclonal IgG4 anti-PD1 antibody | Viral DNA vectors, encoding Interferon-α2b |
Administration method | Intravenous | Intravesical |
Schedule | Every 3 weeks | Every 12 weeks |
Adverse effects | Grade 1 and 2: ~60% | Grade 1 and 2: 60–70% |
Grade 3: ~15% | Grade 3: 4% | |
Severe: ~10% | Severe: none | |
Complete response | After 3 months: 41% | After 3 months: 53% |
After 12 months: 19% | After 12 months: 24% | |
Cost per year | $187,000 | $240,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaromin, M.; Konecki, T.; Kutwin, P. Revolutionizing Treatment: Breakthrough Approaches for BCG-Unresponsive Non-Muscle-Invasive Bladder Cancer. Cancers 2024, 16, 1366. https://doi.org/10.3390/cancers16071366
Jaromin M, Konecki T, Kutwin P. Revolutionizing Treatment: Breakthrough Approaches for BCG-Unresponsive Non-Muscle-Invasive Bladder Cancer. Cancers. 2024; 16(7):1366. https://doi.org/10.3390/cancers16071366
Chicago/Turabian StyleJaromin, Maciej, Tomasz Konecki, and Piotr Kutwin. 2024. "Revolutionizing Treatment: Breakthrough Approaches for BCG-Unresponsive Non-Muscle-Invasive Bladder Cancer" Cancers 16, no. 7: 1366. https://doi.org/10.3390/cancers16071366
APA StyleJaromin, M., Konecki, T., & Kutwin, P. (2024). Revolutionizing Treatment: Breakthrough Approaches for BCG-Unresponsive Non-Muscle-Invasive Bladder Cancer. Cancers, 16(7), 1366. https://doi.org/10.3390/cancers16071366