Role of SGLT2 Inhibitors, DPP-4 Inhibitors, and Metformin in Pancreatic Cancer Prevention
Abstract
:Simple Summary
Abstract
1. Introduction
2. GLP-1 Receptor Agonists
2.1. Background
2.2. Immunomodulation
2.3. Pancreatic Cancer
2.4. Thyroid Cancer
2.5. Safety Profile
3. DPP-4 Inhibitors
3.1. Background
3.2. Immunomodulation
3.3. Tumorigenesis
3.4. Pancreatic Cancer
3.5. Thyroid Cancer
3.6. Safety Profile
4. SGLT2 Inhibitors
4.1. Background
4.2. SGLT2 Inhibitors and Pancreatic Cancer
4.3. Safety and Efficacy of SGLT2 Inhibitors Prevention
5. Metformin
5.1. Background
5.2. Metformin and Pancreatic Cancer Prevention
5.3. Safety and Efficacy of Metformin
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
SGLT2 | Sodium-glucose cotransporter-2 |
SGLT1 | Sodium-glucose cotransporter-1 |
GLP-1 RA | Glucagon-like peptide-1 receptor agonists |
DPP-4 | Dipeptidyl peptidase 4 |
GIP | Glucose-dependent insulinotropic polypeptide |
GLP-1 | Glucagon-like peptide 1 |
GLOBOCAN | Global Cancer Observatory |
PDAC | Pancreatic ductal adenocarcinoma |
FOLFIRINOX | 5-Flurouracil, folinic acid, irinotecan, and oxaliplatin |
IL | Interleukin |
TNF α | Tumor Necrosis Factor α |
STAT3 | Signal transducer and activator of transcription 3 |
ERK2 | Extracellular signal-regulated kinase 2 |
PI3K/AKT | Phosphoinositide 3-kinase/Protein kinase B |
mTOR | Mammalian target of rapamycin |
NF-kB | Nuclear factor kappa-B |
FDA | Food and Drug Administration |
ADA | Adenosine Deaminase |
SEER | Surveillance Epidemiology and Endpoint Research SGLT1 |
CRP | C-reactive protein |
MCP-1 | Monocyte Chemoattractant Protein-1 |
SMD | Standardized mean difference |
ROS | Reactive Oxygen Species |
NADPH | Nicotinamide adenine dinucleotide phosphate |
AMPK | AMP-activated protein kinase |
ATP | Adenosine triphosphate |
DM type 2 | Diabetes mellitus type 2 |
References
- SEER Cancer Stat Facts: Pancreatic Cancer. National Cancer Institute. Secondary SEER Cancer Stat Facts: Pancreatic Cancer. Available online: https://seer.cancer.gov/statfacts/html/pancreas.html (accessed on 21 December 2023).
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Philip, P.A.; Bahary, N.; Mahipal, A.; Kasi, A.; Rocha Lima, C.M.S.P.; Alistar, A.T.; Oberstein, P.E.; Golan, T.; Sahai, V.; Metges, J.P.; et al. Phase 3, Multicenter, Randomized Study of CPI-613 with Modified FOLFIRINOX (mFFX) versus FOLFIRINOX (FFX) as First-Line Therapy for Patients with Metastatic Adenocarcinoma of the Pancreas (AVENGER500). J. Clin. Oncol. 2022, 40, 4023. [Google Scholar] [CrossRef]
- Alistar, A.; Morris, B.B.; Desnoyer, R.; Klepin, H.D.; Hosseinzadeh, K.; Clark, C.; Cameron, A.; Leyendecker, J.; D’Agostino, R.; Topaloglu, U.; et al. Safety and Tolerability of the First-in-Class Agent CPI-613 in Combination with Modified FOLFIRINOX in Patients with Metastatic Pancreatic Cancer: A Single-Centre, Open-Label, Dose-Escalation, Phase 1 Trial. Lancet Oncol. 2017, 18, 770–778. [Google Scholar] [CrossRef] [PubMed]
- Park, W.; Chawla, A.; O’Reilly, E.M. Pancreatic Cancer. JAMA 2021, 326, 851. [Google Scholar] [CrossRef]
- Conroy, T.; Desseigne, F.; Ychou, M.; Bouché, O.; Guimbaud, R.; Bécouarn, Y.; Adenis, A.; Raoul, J.-L.; Gourgou-Bourgade, S.; de la Fouchardière, C.; et al. FOLFIRINOX versus Gemcitabine for Metastatic Pancreatic Cancer. N. Engl. J. Med. 2011, 364, 1817–1825. [Google Scholar] [CrossRef] [PubMed]
- Wood, L.D.; Canto, M.I.; Jaffee, E.M.; Simeone, D.M. Pancreatic Cancer: Pathogenesis, Screening, Diagnosis, and Treatment. Gastroenterology 2022, 16, 386–402.e1. [Google Scholar] [CrossRef] [PubMed]
- Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting Cancer Incidence and Deaths to 2030: The Unexpected Burden of Thyroid, Liver, and Pancreas Cancers in the United States. Cancer Res. 2014, 74, 2913–2921. [Google Scholar] [CrossRef] [PubMed]
- Mannucci, E. Insulin Therapy and Cancer in Type 2 Diabetes. ISRN Endocrinol. 2012, 2012, 240634. [Google Scholar] [CrossRef]
- Joung, K.H.; Jeong, J.-W.; Ku, B.J. The Association between Type 2 Diabetes Mellitus and Women Cancer: The Epidemiological Evidences and Putative Mechanisms. BioMed Res. Int. 2015, 2015, 920618. [Google Scholar] [CrossRef]
- Hausmann, S.; Kong, B.; Michalski, C.; Erkan, M.; Friess, H. The Role of Inflammation in Pancreatic Cancer. In Inflammation and Cancer; Aggarwal, B.B., Sung, B., Gupta, S.C., Eds.; Springer: Basel, Switzerland, 2014; pp. 129–151. [Google Scholar]
- Shafiei-Irannejad, V.; Samadi, N.; Salehi, R.; Yousefi, B.; Zarghami, N. New Insights into Antidiabetic Drugs: Possible Applications in Cancer Treatment. Chem. Biol. Drug Des. 2017, 90, 1056–1066. [Google Scholar] [CrossRef]
- Aljofan, M.; Riethmacher, D. Anticancer Activity of Metformin: A Systematic Review of the Literature. Future Sci. OA 2019, 5, FSO410. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Sun, G.; Li, M.; Chen, H.; Zhang, Z.; Qian, X.; Li, P.; Xu, L.; Huang, W.; Wang, X. Glibenclamide Targets Sulfonylurea Receptor 1 to Inhibit p70S6K Activity and Upregulate KLF4 Expression to Suppress Non-Small Cell Lung Carcinoma. Mol. Cancer Ther. 2019, 18, 2085–2096. [Google Scholar] [CrossRef] [PubMed]
- Corigliano, D.M.; Syed, R.; Messineo, S.; Lupia, A.; Patel, R.; Reddy, C.V.R.; Dubey, P.K.; Colica, C.; Amato, R.; De Sarro, G.; et al. Indole and 2,4-Thiazolidinedione Conjugates as Potential Anticancer Modulators. PeerJ 2018, 6, e5386. [Google Scholar] [CrossRef] [PubMed]
- Almagthali, A.G.; Alkhaldi, E.H.; Alzahrani, A.S.; Alghamdi, A.K.; Alghamdi, W.Y.; Kabel, A.M. Dipeptidyl Peptidase-4 Inhibitors: Anti-Diabetic Drugs with Potential Effects on Cancer. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 36–39. [Google Scholar] [CrossRef] [PubMed]
- Koehler, J.A.; Kain, T.; Drucker, D.J. Glucagon-Like Peptide-1 Receptor Activation Inhibits Growth and Augments Apoptosis in Murine CT26 Colon Cancer Cells. Endocrinology 2011, 152, 3362–3372. [Google Scholar] [CrossRef] [PubMed]
- Caderni, G.; Femia, A.P.; Giannini, A.; Favuzza, A.; Luceri, C.; Salvadori, M.; Dolara, P. Identification of mucin-depleted foci in the unsectioned colon of azoxymethane-treated rats: Correlation with carcinogenesis. Cancer Res. 2003, 63, 2388–2392. [Google Scholar] [PubMed]
- Gier, B.; Butler, P.C.; Lai, C.K.; Kirakossian, D.; DeNicola, M.M.; Yeh, M.W. Glucagon Like Peptide-1 Receptor Expression in the Human Thyroid Gland. J. Clin. Endocrinol. Metab. 2012, 97, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Wenjing, H.; Shao, Y.; Yu, Y.; Huang, W.; Feng, G.; Li, J. Exendin-4 Enhances the Sensitivity of Prostate Cancer to Enzalutamide by Targeting Akt Activation. Prostate 2020, 80, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Mao, D.; Cao, H.; Shi, M.; Wang, C.C.; Kwong, J.; Li, J.J.X.; Hou, Y.; Ming, X.; Lee, H.M.; Tian, X.Y.; et al. Increased Co-Expression of PSMA2 and GLP-1 Receptor in Cervical Cancer Models in Type 2 Diabetes Attenuated by Exendin-4: A Translational Case-Control Study. EBioMedicine 2021, 65, 103242. [Google Scholar] [CrossRef]
- Zhao, H.; Jiang, X.; Hu, L.; Yang, L.; Deng, L.; Wang, Y.; Ren, Z. Activation of GLP-1 Receptor Enhances the Chemosensitivity of Pancreatic Cancer Cells. J. Mol. Endocrinol. 2020, 64, 103–113. [Google Scholar] [CrossRef]
- He, W.; Yu, S.; Wang, L.; He, M.; Cao, X.; Li, Y.; Xiao, H. Exendin-4 Inhibits Growth and Augments Apoptosis of Ovarian Cancer Cells. Mol. Cell. Endocrinol. 2016, 436, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Dutka, M.; Bobiński, R.; Ulman-Włodarz, I.; Hajduga, M.; Bujok, J.; Pająk, C.; Ćwiertnia, M. Sodium Glucose Cotransporter 2 Inhibitors: Mechanisms of Action in Heart Failure. Heart Fail. Rev. 2020, 26, 603–622. [Google Scholar] [CrossRef] [PubMed]
- Dutka, M.; Bobiński, R.; Francuz, T.; Garczorz, W.; Zimmer, K.; Ilczak, T.; Ćwiertnia, M.; Hajduga, M.B. SGLT-2 Inhibitors in Cancer Treatment—Mechanisms of Action and Emerging New Perspectives. Cancers 2022, 14, 5811. [Google Scholar] [CrossRef] [PubMed]
- Abd El Aziz, M.; Cahyadi, O.; Meier, J.J.; Schmidt, W.E.; Nauck, M.A. Incretin-Based Glucose-Lowering Medications and the Risk of Acute Pancreatitis and Malignancies: A Meta-Analysis Based on Cardiovascular Outcomes Trials. Diabetes Obes. Metab. 2020, 22, 4. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Yang, S.; Zhou, Z. GLP-1 Receptor Agonists and Risk of Cancer in Type 2 Diabetes: An Updated Meta-Analysis of Randomized Controlled Trials. Endocrine 2019, 66, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Silverii, G.A.; Monami, M.; Gallo, M.; Ragni, A.; Prattichizzo, F.; Renzelli, V.; Ceriello, A.; Mannucci, E. Glucagon-like Peptide-1 Receptor Agonists and Risk of Thyroid Cancer: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Diabetes Obes. Metab. 2023, 26, 891–900. [Google Scholar] [CrossRef] [PubMed]
- Pinto, L.C.; Rados, D.V.; Barkan, S.S.; Leitão, C.B.; Gross, J.L. Dipeptidyl Peptidase-4 Inhibitors, Pancreatic Cancer and Acute Pancreatitis: A Meta-Analysis with Trial Sequential Analysis. Sci. Rep. 2018, 8, 782. [Google Scholar] [CrossRef] [PubMed]
- Engel, S.S.; Round, E.; Golm, G.T.; Kaufman, K.D.; Goldstein, B.J. Safety and Tolerability of Sitagliptin in Type 2 Diabetes: Pooled Analysis of 25 Clinical Studies. Diabetes Ther. 2013, 4, 119–145. [Google Scholar] [CrossRef] [PubMed]
- Gokhale, M.; Buse, J.B.; Gray, C.L.; Pate, V.; Marquis, M.A.; Stürmer, T. Dipeptidyl-peptidase-4 Inhibitors and Pancreatic Cancer: A Cohort Study. Diabetes Obes. Metab. 2014, 16, 1247–1256. [Google Scholar] [CrossRef]
- Tanaka, Y.; Yokoyama, S.; Nakagawa, C.; Uno, T.; Hosomi, K. Association between Sodium-Glucose Cotransporter 2 Inhibitors and Pancreatic Cancer in the Japanese Working-Age Population. Int. J. Clin. Pharmacol. Ther. 2023, 61, 492–502. [Google Scholar] [CrossRef]
- Scafoglio, C.; Hirayama, B.A.; Kepe, V.; Liu, J.; Ghezzi, C.; Satyamurthy, N.; Moatamed, N.A.; Huang, J.; Koepsell, H.; Barrio, J.R.; et al. Functional Expression of Sodium-Glucose Transporters in Cancer. Proc. Natl. Acad. Sci. USA 2015, 112, E4111–E4119. [Google Scholar] [CrossRef]
- Li, X.; Li, T.; Liu, Z.; Gou, S.; Wang, C. The Effect of Metformin on Survival of Patients with Pancreatic Cancer: A Meta-Analysis. Sci. Rep. 2017, 7, 5825. [Google Scholar] [CrossRef] [PubMed]
- Holst, J.J. The Physiology of Glucagon-like Peptide 1. Physiol. Rev. 2007, 87, 1409–1439. [Google Scholar] [CrossRef]
- Sapra, A.; Bhandari, P. Diabetes. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK551501/ (accessed on 17 December 2023).
- Linnebjerg, H.; Park, S.; Kothare, P.A.; Trautmann, M.E.; Mace, K.; Fineman, M.; Wilding, I.; Nauck, M.; Horowitz, M. Effect of Exenatide on Gastric Emptying and Relationship to Postprandial Glycemia in Type 2 Diabetes. Regul. Pept. 2008, 151, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Nakatani, Y.; Maeda, M.; Matsumura, M.; Shimizu, R.; Banba, N.; Aso, Y.; Yasu, T.; Harasawa, H. Effect of GLP-1 Receptor Agonist on Gastrointestinal Tract Motility and Residue Rates as Evaluated by Capsule Endoscopy. Diabetes Metab. 2017, 43, 430–437. [Google Scholar] [CrossRef]
- Koliaki, C.; Doupis, J. Incretin-Based Therapy: A Powerful and Promising Weapon in the Treatment of Type 2 Diabetes Mellitus. Diabetes Ther. 2011, 2, 101–121. [Google Scholar] [CrossRef]
- Vilsboll, T.; Christensen, M.; Junker, A.E.; Knop, F.K.; Gluud, L.L. Effects of Glucagon-like Peptide-1 Receptor Agonists on Weight Loss: Systematic Review and Meta-Analyses of Randomised Controlled Trials. BMJ 2012, 344, d7771. [Google Scholar] [CrossRef]
- Andreadis, P.; Karagiannis, T.; Malandris, K.; Avgerinos, I.; Liakos, A.; Manolopoulos, A.; Bekiari, E.; Matthews, D.R.; Tsapas, A. Semaglutide for Type 2 Diabetes Mellitus: A Systematic Review and Meta-analysis. Diabetes Obes. Metab. 2018, 20, 2255–2263. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, D.; Fujiwara, Y.; Komohara, Y.; Mizuta, H.; Takeya, M. Glucagon-like Peptide-1 (GLP-1) Induces M2 Polarization of Human Macrophages via STAT3 Activation. Biochem. Biophys. Res. Commun. 2012, 425, 304–308. [Google Scholar] [CrossRef]
- Mills, C.D.; Ley, K. M1 and M2 Macrophages: The Chicken and the Egg of Immunity. J. Innate Immun. 2014, 6, 716–726. [Google Scholar] [CrossRef]
- Vinué, Á.; Navarro, J.; Herrero-Cervera, A.; García-Cubas, M.; Andrés-Blasco, I.; Martínez-Hervás, S.; Real, J.T.; Ascaso, J.F.; González-Navarro, H. The GLP-1 Analogue Lixisenatide Decreases Atherosclerosis in Insulin-Resistant Mice by Modulating Macrophage Phenotype. Diabetologia 2017, 60, 1801–1812. [Google Scholar] [CrossRef] [PubMed]
- Boutilier, A.J.; Elsawa, S.F. Macrophage Polarization States in the Tumor Microenvironment. Int. J. Mol. Sci. 2021, 22, 6995. [Google Scholar] [CrossRef]
- Perfetti, R.; Zhou, J.; Doyle, M.E.; Egan, J.M. Glucagon-like Peptide-1 Induces Cell Proliferation and Pancreatic-Duodenum Homeobox-1 Expression and Increases Endocrine Cell Mass in the Pancreas of Old, Glucose-Intolerant Rats. Endocrinology 2000, 141, 4600–4605. [Google Scholar] [CrossRef]
- Gier, B.; Matveyenko, A.V.; Kirakossian, D.; Dawson, D.; Dry, S.M.; Butler, P.C. Chronic GLP-1 Receptor Activation by Exendin-4 Induces Expansion of Pancreatic Duct Glands in Rats and Accelerates Formation of Dysplastic Lesions and Chronic Pancreatitis in the KrasG12DMouse Model. Diabetes 2012, 61, 1250–1262. [Google Scholar] [CrossRef]
- Butler, A.E.; Campbell-Thompson, M.; Gurlo, T.; Dawson, D.W.; Atkinson, M.; Butler, P.C. Marked Expansion of Exocrine and Endocrine Pancreas with Incretin Therapy in Humans with Increased Exocrine Pancreas Dysplasia and the Potential for Glucagon-Producing Neuroendocrine Tumors. Diabetes 2013, 62, 2595–2604. [Google Scholar] [CrossRef] [PubMed]
- Elashoff, M.; Matveyenko, A.V.; Gier, B.; Elashoff, R.; Butler, P.C. Pancreatitis, Pancreatic, and Thyroid Cancer with Glucagon-like Peptide-1–Based Therapies. Gastroenterology 2011, 141, 150–156. [Google Scholar] [CrossRef]
- Yang, Z.; Lv, Y.; Yu, M.; Mei, M.; Xiang, L.; Zhao, S.; Li, R. GLP-1 Receptor Agonist-Associated Tumor Adverse Events: A Real-World Study from 2004 to 2021 Based on FAERS. Front. Pharmacol. 2022, 13, 925377. [Google Scholar] [CrossRef] [PubMed]
- Whitcomb, D.C.; Pogue-Geile, K.L. Pancreatitis as a Risk for Pancreatic Cancer. Gastroenterol. Clin. N. Am. 2002, 31, 663–678. [Google Scholar] [CrossRef] [PubMed]
- Aroda, V.R.; Ratner, R. The Safety and Tolerability of GLP-1 Receptor Agonists in the Treatment of Type 2 Diabetes: A Review. Diabetes/Metab. Res. Rev. 2011, 27, 528–542. [Google Scholar] [CrossRef]
- Javed, H.; Sai, G.; Kashyap, R.; Vekaria, P.H. Liraglutide-Induced Pancreatitis: A Case Report and Literature Review. Cureus 2023, 15, 4. [Google Scholar] [CrossRef]
- Monami, M.; Nreu, B.; Scatena, A.; Cresci, B.; Andreozzi, F.; Sesti, G.; Mannucci, E. Safety Issues with Glucagon-like Peptide-1 Receptor Agonists (Pancreatitis, Pancreatic Cancer and Cholelithiasis): Data from Randomized Controlled Trials. Diabetes Obes. Metab. 2017, 19, 1233–1241. [Google Scholar] [CrossRef] [PubMed]
- Pinto, L.C.; Falcetta, M.R.; Rados, D.V.; Leitão, C.B.; Gross, J.L. Glucagon-like Peptide-1 Receptor Agonists and Pancreatic Cancer: A Meta-Analysis with Trial Sequential Analysis. Sci. Rep. 2019, 9, 1. [Google Scholar] [CrossRef]
- Bulchandani, D.; Nachnani, J.S.; Herndon, B.; Molteni, A.; Pathan, M.H.; Quinn, T.; Hamdan, H.A.; Alba, L.M.; Graves, L. Effect of Exendin (Exenatide)—GLP 1 Receptor Agonist on the Thyroid and Parathyroid Gland in a Rat Model. Eur. J. Pharmacol. 2012, 691, 292–296. [Google Scholar] [CrossRef]
- Bjerre Knudsen, L.; Madsen, L.W.; Andersen, S.; Almholt, K.; de Boer, A.S.; Drucker, D.J.; Gotfredsen, C.; Egerod, F.L.; Hegelund, A.C.; Jacobsen, H.; et al. Glucagon-Like Peptide-1 Receptor Agonists Activate Rodent Thyroid C-Cells Causing Calcitonin Release and C-Cell Proliferation. Endocrinology 2010, 151, 1473–1486. [Google Scholar] [CrossRef]
- Nagendra, L.; BG, H.; Sharma, M.; Dutta, D. Semaglutide and Cancer: A Systematic Review and Meta-Analysis. Diabetes Metab. Syndr. Clin. Res. Rev. 2023, 17, 102834. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Song, R.; Cheng, R.; Liu, C.; Guo, R.; Tang, W.; Zhang, J.; Zhao, Q.; Li, X.; Liu, J. Use of GLP-1 Receptor Agonists and Occurrence of Thyroid Disorders: A Meta-Analysis of Randomized Controlled Trials. Front. Endocrinol. 2022, 13, 927859. [Google Scholar] [CrossRef] [PubMed]
- Glucagon-Like Peptide 1-Based Therapies for the Treatment of Type 2 Diabetes Mellitus. Available online: https://sso.uptodate.com/contents/glucagon-like-peptide-1-based-therapies-for-the-treatment-of-type-2-diabetes-mellitus (accessed on 8 March 2024).
- Trujillo, J. Safety and Tolerability of Once-Weekly GLP-1 Receptor Agonists in Type 2 Diabetes. J. Clin. Pharm. Ther. 2020, 45, 43–60. [Google Scholar] [CrossRef] [PubMed]
- Collins, L.; Costello, R.A. Glucagon-like Peptide-1 Receptor Agonists. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://pubmed.ncbi.nlm.nih.gov/31855395/ (accessed on 8 March 2024).
- Shi, Q.; Nong, K.; Vandvik, P.O.; Guyatt, G.H.; Schnell, O.; Rydén, L.; Marx, N.; Brosius, F.C.; Mustafa, R.A.; Agarwal, A.; et al. Benefits and Harms of Drug Treatment for Type 2 Diabetes: Systematic Review and Network Meta-Analysis of Randomised Controlled Trials. BMJ 2023, 381, e074068. [Google Scholar] [CrossRef] [PubMed]
- Thornberry, N.A.; Gallwitz, B. Mechanism of Action of Inhibitors of Dipeptidyl-Peptidase-4 (DPP-4). Best Pract. Res. Clin. Endocrinol. Metab. 2009, 23, 479–486. [Google Scholar] [CrossRef]
- Gault, V.A.; O’Harte, F.P.M.; Flatt, P.R. Glucose-Dependent Insulinotropic Polypeptide (GIP): Anti-Diabetic and Anti-Obesity Potential? Neuropeptides 2003, 37, 253–263. [Google Scholar] [CrossRef]
- Zhong, J.; Rao, X.; Rajagopalan, S. An Emerging Role of Dipeptidyl Peptidase 4 (DPP4) beyond Glucose Control: Potential Implications in Cardiovascular Disease. Atherosclerosis 2013, 226, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Deacon, C.F. Physiology and Pharmacology of DPP-4 in Glucose Homeostasis and the Treatment of Type 2 Diabetes. Front. Endocrinol. 2019, 10, 80. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.; Xu, Q.; Yu, X.; Pan, R.; Chen, Y. Dipeptidyl Peptidase 4 Inhibitors and Their Potential Immune Modulatory Functions. Pharmacol. Ther. 2020, 209, 107503. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, R.; Martinez-Navío, J.M.; Lejeune, M.; Climent, N.; Oliva, H.; Gatell, J.M.; Gallart, T.; Mallol, J.; Lluís, C.; Franco, R. CD26, Adenosine Deaminase, and Adenosine Receptors Mediate Costimulatory Signals in the Immunological Synapse. Proc. Natl. Acad. Sci. USA 2005, 102, 9583–9588. [Google Scholar] [CrossRef] [PubMed]
- Bühling, F.; Junker, U.; Reinhold, D.; Neubert, K.; Jäger, L.; Ansorge, S. Functional Role of CD26 on Human B Lymphocytes. Immunol. Lett. 1995, 45, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Bühling, F.; Kunz, D.; Reinhold, D.; Ulmer, A.J.; Ernst, M.; Flad, H.D.; Ansorge, S. Expression and Functional Role of Dipeptidyl Peptidase IV (CD26) on Human Natural Killer Cells. Nat. Immun. 1994, 13, 270–279. [Google Scholar] [PubMed]
- Kagal, U.; Angadi, N.; Matule, S. Effect of Dipeptidyl Peptidase 4 Inhibitors on Acute and Subacute Models of Inflammation in Male Wistar Rats: An Experimental Study. Int. J. Appl. Basic Med. Res. 2017, 7, 26. [Google Scholar] [CrossRef]
- Mezawa, Y.; Daigo, Y.; Takano, A.; Miyagi, Y.; Yokose, T.; Yamashita, T.; Morimoto, C.; Hino, O.; Orimo, A. CD26 Expression Is Attenuated by TGF-β and SDF-1 Autocrine Signaling on Stromal Myofibroblasts in Human Breast Cancers. Cancer Med. 2019, 8, 3936–3948. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Takagaki, Y.; Yoshitomi, Y.; Ikeda, T.; Li, J.; Kitada, M.; Kumagai, A.; Kawakita, E.; Shi, S.; Kanasaki, K.; et al. Inhibition of Dipeptidyl Peptidase-4 Accelerates Epithelial–Mesenchymal Transition and Breast Cancer Metastasis via the CXCL12/CXCR4/MTOR Axis. Cancer Res. 2019, 79, 735–746. [Google Scholar] [CrossRef]
- Ng, L.; Foo, D.C.C.; Wong, C.K.H.; Man, A.T.K.; Lo, O.S.H.; Law, W.L. Repurposing DPP-4 Inhibitors for Colorectal Cancer: A Retrospective and Single Center Study. Cancers 2021, 13, 3588. [Google Scholar] [CrossRef]
- Chou, C.-L.; Juan, S.-H.; Li, C.-H.; Chen, H.-H.; Kao, C.-C.; Chen, L.-Y.; Chien, L.-N.; Fang, T.-C. Association between DPP-4 Inhibitors and Events of Colorectal and Liver Cancers in Patients with Diabetes Receiving Second-Line Agents: A Nested Case-Control Study. Front. Oncol. 2022, 12, 840142. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Mei, X.-P.; Su, P.-F.; Jin, G.-Z.; Zhou, H.-K. A Poor Prognosis in Human Hepatocellular Carcinoma Is Associated with Low Expression of DPP4. Braz. J. Med. Biol. Res. 2020, 53, e9114. [Google Scholar] [CrossRef] [PubMed]
- Sohji, N.; Yamauchi, A.; Kawaguchi, T.; Kaku, K.; Goto, M.; Sasaki, K.; Hara, Y.; Tomiyama, Y.; Kuribayashi, F.; Torimura, T.; et al. Dipeptidyl Peptidase 4 Inhibitors Reduce Hepatocellular Carcinoma by Activating Lymphocyte Chemotaxis in Mice. Cell. Mol. Gastroenterol. Hepatol. 2019, 7, 115–134. [Google Scholar] [CrossRef]
- Bishnoi, R.; Hong, Y.-R.; Shah, C.; Ali, A.; Skelton, W.P., IV; Huo, J.; Dang, N.H.; Dang, L.H. Dipeptidyl Peptidase 4 Inhibitors as Novel Agents in Improving Survival in Diabetic Patients with Colorectal Cancer and Lung Cancer: A Surveillance Epidemiology and Endpoint Research Medicare Study. Cancer Med. 2019, 8, 3918–3927. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Fuentes, A.; Skelton Iv, W.; Wang, Y.; McGorray, S.; Shah, C.; Bishnoi, R.; Dang, L.; Dang, N. A Multi-Center Retrospective Analysis of the Effect of DPP4 Inhibitors on Progression-Free Survival in Advanced Airway and Colorectal Cancers. Mol. Clin. Oncol. 2019, 10, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Zhu, N.; Li, S. The Emerging Role of Dipeptidyl-Peptidase-4 as a Therapeutic Target in Lung Disease. Expert Opin. Ther. Targets 2020, 24, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Matveyenko, A.V.; Dry, S.; Cox, H.I.; Moshtaghian, A.; Gurlo, T.; Galasso, R.; Butler, A.E.; Butler, P.C. Beneficial Endocrine but Adverse Exocrine Effects of Sitagliptin in the Human Islet Amyloid Polypeptide Transgenic Rat Model of Type 2 Diabetes. Diabetes 2009, 58, 1604–1615. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.P.; Pratley, R.E. GLP-1 Analogs and DPP-4 Inhibitors in Type 2 Diabetes Therapy: Review of Head-to-Head Clinical Trials. Front. Endocrinol. 2020, 11, 520041. [Google Scholar] [CrossRef]
- Cheng, S.-Y.; Wu, A.T.H.; Batiha, G.E.-S.; Ho, C.-L.; Lee, J.-C.; Lukman, H.Y.; Alorabi, M.; AlRasheedi, A.N.; Chen, J.-H. Identification of DPP4/CTNNB1/MET as a Theranostic Signature of Thyroid Cancer and Evaluation of the Therapeutic Potential of Sitagliptin. Biology 2022, 11, 324. [Google Scholar] [CrossRef]
- He, Q.; Cao, H.; Zhao, Y.; Chen, P.; Wang, N.; Li, W.; Cui, R.; Hou, P.; Zhang, X.; Ji, M. Dipeptidyl Peptidase-4 Stabilizes Integrin A4β1 Complex to Promote Thyroid Cancer Cell Metastasis by Activating Transforming Growth Factor-Beta Signaling Pathway. Thyroid 2022, 32, 1411–1422. [Google Scholar] [CrossRef]
- Lee, J.-J.; Wang, T.-Y.; Liu, C.-L.; Chien, M.-N.; Chen, M.-J.; Hsu, Y.-C.; Leung, C.-H.; Cheng, S.-P. Dipeptidyl Peptidase IV as a Prognostic Marker and Therapeutic Target in Papillary Thyroid Carcinoma. J. Clin. Endocrinol. Metab. 2017, 102, 2930–2940. [Google Scholar] [CrossRef] [PubMed]
- Bea, S.; Son, H.; Bae, J.H.; Cho, S.W.; Shin, J.; Cho, Y.M. Risk of Thyroid Cancer Associated with Glucagon-like Peptide-1 Receptor Agonists and Dipeptidyl Peptidase-4 Inhibitors in Patients with Type 2 Diabetes: A Population-based Cohort Study. Diabetes Obes. Metab. 2023, 26, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Chen, J.; Yuan, Y.; Zou, Z.; Lai, X.; Rahmani, D.M.; Wang, F.; Xi, Y.; Huang, Q.; Bu, S. Dipeptidyl Peptidase-4 Inhibitors and Cancer Risk in Patients with Type 2 Diabetes: A Meta-Analysis of Randomized Clinical Trials. Sci. Rep. 2017, 7, 8273. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Hopper, I.; Skiba, M.; Krum, H. Dipeptidyl Peptidase-4 Inhibitors and Cardiovascular Outcomes: Meta-Analysis of Randomized Clinical Trials with 55,141 Participants. Cardiovasc. Ther. 2014, 32, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, L.; Deng, K.; Xu, C.; Busse, J.W.; Vandvik, P.O.; Li, S.; Guyatt, G.H.; Sun, X. Incretin Based Treatments and Mortality in Patients with Type 2 Diabetes: Systematic Review and Meta-Analysis. BMJ 2017, 357, j2499. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, J.; Perkovic, V.; Johansen, O.E.; Cooper, M.E.; Kahn, S.E.; Marx, N.; Alexander, J.H.; Pencina, M.; Toto, R.D.; Wanner, C.; et al. Effect of Linagliptin vs Placebo on Major Cardiovascular Events in Adults with Type 2 Diabetes and High Cardiovascular and Renal Risk. JAMA 2019, 321, 69. [Google Scholar] [CrossRef] [PubMed]
- McGill, J.B.; Sloan, L.; Newman, J.; Patel, S.; Sauce, C.; von Eynatten, M.; Woerle, H.-J. Long-Term Efficacy and Safety of Linagliptin in Patients with Type 2 Diabetes and Severe Renal Impairment. Diabetes Care 2013, 36, 237–244. [Google Scholar] [CrossRef]
- Singh, S.; Chang, H.-Y.; Richards, T.M.; Weiner, J.P.; Clark, J.M.; Segal, J.B. Glucagonlike Peptide 1–Based Therapies and Risk of Hospitalization for Acute Pancreatitis in Type 2 Diabetes Mellitus. JAMA Intern. Med. 2013, 173, 534. [Google Scholar] [CrossRef]
- Kalra, S. Sodium Glucose Co-Transporter-2 (SGLT2) Inhibitors: A Review of Their Basic and Clinical Pharmacology. Diabetes Ther. 2014, 5, 355–366. [Google Scholar] [CrossRef]
- García-Ropero, Á.; Santos-Gallego, C.G.; Badimon, J.J. The Anti-Inflammatory Effects of SGLT Inhibitors. Aging 2019, 11, 5866–5867. [Google Scholar] [CrossRef]
- Theofilis, P.; Sagris, M.; Oikonomou, E.; Antonopoulos, A.S.; Siasos, G.; Tsioufis, K.; Tousoulis, D. The Impact of SGLT2 Inhibitors on Inflammation: A Systematic Review and Meta-Analysis of Studies in Rodents. Int. Immunopharmacol. 2022, 111, 109080. [Google Scholar] [CrossRef] [PubMed]
- Tsai, K.-F.; Chen, Y.-L.; Chiou, T.T.-Y.; Chu, T.-H.; Li, L.-C.; Ng, H.-Y.; Lee, W.-C.; Lee, C.-T. Emergence of SGLT2 Inhibitors as Powerful Antioxidants in Human Diseases. Antioxidants 2021, 10, 1166. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhu, J.; Yu, S.-J.; Ma, H.-L.; Chen, J.; Ding, X.-F.; Chen, G.; Liang, Y.; Zhang, Q. Sodium-Glucose Co-Transporter-2 (SGLT-2) Inhibition Reduces Glucose Uptake to Induce Breast Cancer Cell Growth Arrest through AMPK/mTOR Pathway. Biomed. Pharmacother. 2020, 132, 110821. [Google Scholar] [CrossRef] [PubMed]
- Long, Q.; Li, L.; Yang, H.; Lu, Y.; Yang, H.; Zhu, Y.; Tang, Y.; Liu, C.; Yuan, J. SGLT2 Inhibitor, Canagliflozin, Ameliorates Cardiac Inflammation in Experimental Autoimmune Myocarditis. Int. Immunopharmacol. 2022, 110, 109024. [Google Scholar] [CrossRef]
- Adekola, K.; Rosen, S.T.; Shanmugam, M. Glucose Transporters in Cancer Metabolism. Curr. Opin. Oncol. 2012, 24, 650–654. [Google Scholar] [CrossRef]
- Xu, D.; Zhou, Y.; Xie, X.; He, L.; Ding, J.; Pang, S.; Shen, B.; Zhou, C. Inhibitory Effects of Canagliflozin on Pancreatic Cancer Are Mediated via the Downregulation of Glucose Transporter-1 and Lactate Dehydrogenase A. Int. J. Oncol. 2020, 57, 1223–1233. [Google Scholar] [CrossRef]
- Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.L.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N. Engl. J. Med. 2019, 380, 2295–2306. [Google Scholar] [CrossRef]
- Pittampalli, S.; Upadyayula, S.; Mekala, H.M.; Lippmann, S. Risks vs Benefits for SGLT2 Inhibitor Medications. Fed. Pract. 2018, 35, 45–48. [Google Scholar] [PubMed]
- Pernicova, I.; Korbonits, M. Metformin—Mode of Action and Clinical Implications for Diabetes and Cancer. Nat. Rev. Endocrinol. 2014, 10, 143–156. [Google Scholar] [CrossRef]
- Memmott, R.M.; Mercado, J.R.; Maier, C.R.; Kawabata, S.; Fox, S.D.; Dennis, P.A. Metformin Prevents Tobacco Carcinogen–Induced Lung Tumorigenesis. Cancer Prev. Res. 2010, 3, 1066–1076. [Google Scholar] [CrossRef]
- Pollak, M. The Insulin and Insulin-like Growth Factor Receptor Family in Neoplasia: An Update. Nat. Rev. Cancer 2012, 12, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Fan, H.-D.; Gong, J.-P.; Mao, Q.-S. The Relationship between the Use of Metformin and the Risk of Pancreatic Cancer in Patients with Diabetes: A Systematic Review and Meta-Analysis. BMC Gastroenterol. 2023, 23, 50. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Yeung, S.J.; Hassan, M.M.; Konopleva, M.; Abbruzzese, J.L. Antidiabetic Therapies Affect Risk of Pancreatic Cancer. Gastroenterology 2009, 137, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Li, H.; Tan, X.; Chen, L.; Wang, S. Association of Metformin Use with Cancer Incidence and Mortality: A Meta-Analysis. Cancer Epidemiol. 2013, 37, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, N.; Abbruzzese, J.L.; Yeung, S.-C.J.; Hassan, M.; Li, D. Metformin Use Is Associated with Better Survival of Diabetic Patients with Pancreatic Cancer. Clin. Cancer Res. 2012, 18, 2905–2912. [Google Scholar] [CrossRef] [PubMed]
- Monami, M.; Dicembrini, I.; Mannucci, E. Dipeptidyl Peptidase-4 Inhibitors and Pancreatitis Risk: A Meta-Analysis of Randomized Clinical Trials. Diabetes Obes. Metab. 2013, 16, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Guo, Y. Metformin and Its Benefits for Various Diseases. Front. Endocrinol. 2020, 11, 490991. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Rangel, E.; Inzucchi, S.E. Metformin: Clinical Use in Type 2 Diabetes. Diabetologia 2017, 60, 1586–1593. [Google Scholar] [CrossRef]
Drug Class | Mechanism of Action | Suggested Role in Pancreatic Cancer | Literature |
---|---|---|---|
GLP-1 Receptor Agonists | Activation of GLP-1 receptors. | Pancreatic Cancer could be a potential long-term side effect of GLP-1 RA use. | Meta-analyses by Aziz et al. [26], Cao et al. [27], Monami et al. [28], and Pinto et al. [29] have reported no increased risk so far. |
DPP-4 Inhibitors | Inhibit the enzymatic activity of DPP-4, indirectly prolonging the plasma half-life of GLP-1 and GIP. | Pancreatic cancer could be a potential long-term side effect of DPP-4 inhibitor use. | Meta-analyses by Engel et al. [30], Pinto et al. [29] have reported no increased risk so far. A cohort study by Gokhale et al. [31] reported no elevated risk. |
SGLT2 Inhibitors | Lower glucose levels by blocking glucose reabsorption in the proximal convoluted tubules. | SGLT2 inhibitors may decrease pancreatic cancer growth and reduce risk of pancreatic cancer. | A case–control study by Tanaka et al. [32] found decreased risk of pancreatic cancer in diabetic patients taking SGLT2 Inhibitors. Trials in mice by Scafoglio C et al. [33] showed decreased tumor growth and increased tumor necrosis. |
Metformin | Suppresses gluconeogenesis in the liver via inhibition of mitochondrial electron chain complex. | Metformin use in patients with diabetes may prevent the development of pancreatic cancer. | A case–control study by Li et al. [34] found metformin was associated with a lower risk of pancreatic cancer A retrospective study by Sadeghi et al. reported better survival rates in patients taking metformin. A meta-analysis by Li et al. [34] found significant improvement in survival in the metformin group. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laeeq, T.; Ahmed, M.; Sattar, H.; Zeeshan, M.H.; Ali, M.B. Role of SGLT2 Inhibitors, DPP-4 Inhibitors, and Metformin in Pancreatic Cancer Prevention. Cancers 2024, 16, 1325. https://doi.org/10.3390/cancers16071325
Laeeq T, Ahmed M, Sattar H, Zeeshan MH, Ali MB. Role of SGLT2 Inhibitors, DPP-4 Inhibitors, and Metformin in Pancreatic Cancer Prevention. Cancers. 2024; 16(7):1325. https://doi.org/10.3390/cancers16071325
Chicago/Turabian StyleLaeeq, Tooba, Maheen Ahmed, Hina Sattar, Muhammad Hamayl Zeeshan, and Meher Binte Ali. 2024. "Role of SGLT2 Inhibitors, DPP-4 Inhibitors, and Metformin in Pancreatic Cancer Prevention" Cancers 16, no. 7: 1325. https://doi.org/10.3390/cancers16071325
APA StyleLaeeq, T., Ahmed, M., Sattar, H., Zeeshan, M. H., & Ali, M. B. (2024). Role of SGLT2 Inhibitors, DPP-4 Inhibitors, and Metformin in Pancreatic Cancer Prevention. Cancers, 16(7), 1325. https://doi.org/10.3390/cancers16071325