Innovative Combinations, Cellular Therapies and Bispecific Antibodies for Chronic Lymphocytic Leukemia: A Narrative Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Fixed-Duration Double Therapies in Treatment-Naive Patients
3. Fixed-Duration Double Therapies in Relapsed–Refractory Patients
4. Triplet Combinations
5. CAR T Cells
6. Bispecific Antibodies
7. Discussion
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shanafelt, T.D.; Wang, X.V.; Hanson, C.A.; Paietta, E.M.; O’Brien, S.; Barrientos, J.; Jelinek, D.F.; Braggio, E.; Leis, J.F.; Zhang, C.C.; et al. Long-term outcomes for ibrutinib–rituximab and chemoimmunotherapy in CLL: Updated results of the E1912 trial. Blood 2022, 140, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Tam, C.S.; Brown, J.R.; Kahl, B.S.; Ghia, P.; Giannopoulos, K.; Jurczak, W.; Šimkovič, M.; Shadman, M.; Österborg, A.; Laurenti, L.; et al. Zanubrutinib versus bendamustine and rituximab in untreated chronic lymphocytic leukaemia and small lymphocytic lymphoma (SEQUOIA): A randomised, controlled, phase 3 trial. Lancet Oncol. 2022, 23, 1031–1043. [Google Scholar] [CrossRef] [PubMed]
- Visentin, A.; Mauro, F.R.; Catania, G.; Fresa, A.; Vitale, C.; Sanna, A.; Mattiello, V.; Cibien, F.; Sportoletti, P.; Gentile, M.; et al. Obinutuzumab plus chlorambucil versus ibrutinib in previously untreated chronic lymphocytic leukemia patients without TP53 disruptions: A real-life CLL campus study. Front. Oncol. 2022, 12, 1033413. [Google Scholar] [CrossRef] [PubMed]
- Sharman, J.P.; Egyed, M.; Jurczak, W.; Skarbnik, A.; Pagel, J.M.; Flinn, I.W.; Kamdar, M.; Munir, T.; Walewska, R.; Corbett, G.; et al. Efficacy and safety in a 4-year follow-up of the ELEVATE-TN study comparing acalabrutinib with or without obinutuzumab versus obinutuzumab plus chlorambucil in treatment-naïve chronic lymphocytic leukemia. Leukemia 2022, 36, 1171–1175. [Google Scholar] [CrossRef] [PubMed]
- Visentin, A.; Facco, M.; Frezzato, F.; Castelli, M.; Trimarco, V.; Martini, V.; Gattazzo, C.; Severin, F.; Chiodin, G.; Martines, A.; et al. Integrated CLL Scoring System, a New and Simple Index to Predict Time to Treatment and Overall Survival in Patients With Chronic Lymphocytic Leukemia. Clin. Lymphoma Myeloma Leuk. 2015, 15, 612–620.e615. [Google Scholar] [CrossRef] [PubMed]
- Visentin, A.; Imbergamo, S.; Scomazzon, E.; Pravato, S.; Frezzato, F.; Bonaldi, L.; Pizzi, M.; Vio, S.; Gregianin, M.; Burei, M.; et al. BCR kinase inhibitors, idelalisib and ibrutinib, are active and effective in Richter syndrome. Br. J. Haematol. 2018, 185, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Munir, T.; Brown, J.R.; O’Brien, S.; Barrientos, J.C.; Barr, P.M.; Reddy, N.M.; Coutre, S.; Tam, C.S.; Mulligan, S.P.; Jaeger, U.; et al. Final analysis from RESONATE: Up to six years of follow-up on ibrutinib in patients with previously treated chronic lymphocytic leukemia or small lymphocytic lymphoma. Am. J. Hematol. 2019, 94, 1353–1363. [Google Scholar] [CrossRef] [PubMed]
- Barr, P.M.; Owen, C.; Robak, T.; Tedeschi, A.; Bairey, O.; Burger, J.A.; Hillmen, P.; Coutre, S.E.; Dearden, C.; Grosicki, S.; et al. Up to 8-year follow-up from RESONATE-2: First-line ibrutinib treatment for patients with chronic lymphocytic leukemia. Blood Adv. 2022, 6, 3440–3450. [Google Scholar] [CrossRef] [PubMed]
- Wierda, W.G.; Brown, J.; Abramson, J.S.; Awan, F.; Bilgrami, S.F.; Bociek, G.; Brander, D.; Chanan-Khan, A.A.; Coutre, S.E.; Davis, R.S.; et al. NCCN Guidelines® Insights: Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma, Version 3.2022. J. Natl. Compr. Cancer Netw. 2022, 20, 622–634. [Google Scholar] [CrossRef] [PubMed]
- Martini, V.; Gattazzo, C.; Frezzato, F.; Trimarco, V.; Pizzi, M.; Chiodin, G.; Severin, F.; Scomazzon, E.; Guzzardo, V.; Saraggi, D.; et al. Cortactin, a Lyn substrate, is a checkpoint molecule at the intersection of BCR and CXCR4 signalling pathway in chronic lymphocytic leukaemia cells. Br. J. Haematol. 2017, 178, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Visentin, A.; Frezzato, F.; Severin, F.; Imbergamo, S.; Pravato, S.; Romano Gargarella, L.; Manni, S.; Pizzo, S.; Ruggieri, E.; Facco, M.; et al. Lights and Shade of Next-Generation Pi3k Inhibitors in Chronic Lymphocytic Leukemia. OncoTargets Ther. 2020, 13, 9679–9688. [Google Scholar] [CrossRef] [PubMed]
- Pagano, M.A.; Tibaldi, E.; Molino, P.; Frezzato, F.; Trimarco, V.; Facco, M.; Zagotto, G.; Ribaudo, G.; Leanza, L.; Peruzzo, R.; et al. Mitochondrial apoptosis is induced by Alkoxy phenyl-1-propanone derivatives through PP2A-mediated dephosphorylation of Bad and Foxo3A in CLL. Leukemia 2018, 33, 1148–1160. [Google Scholar] [CrossRef] [PubMed]
- Woyach, J.A.; Furman, R.R.; Liu, T.-M.; Ozer, H.G.; Zapatka, M.; Ruppert, A.S.; Xue, L.; Li, D.H.-H.; Steggerda, S.M.; Versele, M.; et al. Resistance Mechanisms for the Bruton’s Tyrosine Kinase Inhibitor Ibrutinib. N. Engl. J. Med. 2014, 370, 2286–2294. [Google Scholar] [CrossRef] [PubMed]
- Seymour, J.F.; Cheah, C.Y.; Parrondo, R.; Thompson, M.C.; Stevens, D.A.; Lasica, M.; Wang, M.L.; Kumar, A.; Trotman, J.; Alwan, M.; et al. First Results from a Phase 1, First-in-Human Study of the Bruton’s Tyrosine Kinase (BTK) Degrader Bgb-16673 in Patients (Pts) with Relapsed or Refractory (R/R) B-Cell Malignancies (BGB-16673-101). Blood 2023, 142, 4401. [Google Scholar] [CrossRef]
- Aronson, J.H.; Skanland, S.S.; Roeker, L.E.; Thompson, M.C.; Mato, A.R. Approach to a patient with “double refractory” chronic lymphocytic leukemia: “Double, double toil and trouble” (Shakespeare). Am. J. Hematol. 2022, 97 (Suppl. 2), S19–S25. [Google Scholar] [CrossRef]
- Lew, T.E.; Lin, V.S.; Cliff, E.R.; Blombery, P.; Thompson, E.R.; Handunnetti, S.M.; Westerman, D.A.; Kuss, B.J.; Tam, C.S.; Huang, D.C.S.; et al. Outcomes of patients with CLL sequentially resistant to both BCL2 and BTK inhibition. Blood Adv. 2021, 5, 4054–4058. [Google Scholar] [CrossRef] [PubMed]
- Mauro, F.R.; Starza, I.D.; Messina, M.; Reda, G.; Trentin, L.; Coscia, M.; Sportoletti, P.; Orsucci, L.; Arena, V.; Casaluci, G.M.; et al. High rate of durable responses with undetectable minimal residual disease with front-line venetoclax and rituximab in young, fit patients with chronic lymphocytic leukemia and an adverse biological profile: Results of the GIMEMA phase II LLC1518—VERITAS study. Haematologica 2023, 108, 2091–2100. [Google Scholar] [CrossRef] [PubMed]
- Mauro, F.R.; Della Starza, I.; Messina, M.; Reda, G.; Trentin, L.; Coscia, M.; Sportoletti, P.; Orsucci, L.; Arena, V.; Gaidano, G.; et al. 36-Month Follow-up Results of the Gimema ‘Veritas’ Trial of Front-Line Venetoclax and Rituximab (VenR) in Young and Fit Patients with Chronic Lymphocytic Leukemia and an Adverse Biologic Profile. Blood 2023, 142, 1905. [Google Scholar] [CrossRef]
- Eichhorst, B.; Niemann, C.U.; Kater, A.P.; Fürstenau, M.; von Tresckow, J.; Zhang, C.; Robrecht, S.; Gregor, M.; Juliusson, G.; Thornton, P.; et al. First-Line Venetoclax Combinations in Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2023, 388, 1739–1754. [Google Scholar] [CrossRef] [PubMed]
- Fürstenau, M.; Thus, Y.J.; Robrecht, S.; Mellink, C.H.M.; van der Kevie-Kersemaekers, A.-M.; Dubois, J.; von Tresckow, J.; Patz, M.; Gregor, M.; Thornton, P.; et al. High karyotypic complexity is an independent prognostic factor in patients with CLL treated with venetoclax combinations. Blood 2023, 142, 446–459. [Google Scholar] [CrossRef]
- Kersting, S.; Dubois, J.; Nasserinejad, K.; Dobber, J.A.; Mellink, C.; van der Kevie-Kersemaekers, A.-M.F.; Evers, L.M.; de Boer, F.; Koene, H.R.; Schreurs, J.; et al. Venetoclax consolidation after fixed-duration venetoclax plus obinutuzumab for previously untreated chronic lymphocytic leukaemia (HOVON 139/GiVe): Primary endpoint analysis of a multicentre, open-label, randomised, parallel-group, phase 2 trial. Lancet Haematol. 2022, 9, e190–e199. [Google Scholar] [CrossRef] [PubMed]
- Tam, C.S.; Allan, J.N.; Siddiqi, T.; Kipps, T.J.; Jacobs, R.; Opat, S.; Barr, P.M.; Tedeschi, A.; Trentin, L.; Bannerji, R.; et al. Fixed-duration ibrutinib plus venetoclax for first-line treatment of CLL: Primary analysis of the CAPTIVATE FD cohort. Blood 2022, 139, 3278–3289. [Google Scholar] [CrossRef] [PubMed]
- Wierda, W.G.; Allan, J.N.; Siddiqi, T.; Kipps, T.J.; Opat, S.; Tedeschi, A.; Badoux, X.C.; Kuss, B.J.; Jackson, S.; Moreno, C.; et al. Ibrutinib Plus Venetoclax for First-Line Treatment of Chronic Lymphocytic Leukemia: Primary Analysis Results From the Minimal Residual Disease Cohort of the Randomized Phase II CAPTIVATE Study. J. Clin. Oncol. 2021, 39, 3853–3865. [Google Scholar] [CrossRef] [PubMed]
- Allan, J.N.; Flinn, I.W.; Siddiqi, T.; Ghia, P.; Tam, C.S.; Kipps, T.J.; Barr, P.M.; Elinder Camburn, A.; Tedeschi, A.; Badoux, X.C.; et al. Outcomes in Patients with High-Risk Features after Fixed-Duration Ibrutinib plus Venetoclax: Phase II CAPTIVATE Study in First-Line Chronic Lymphocytic Leukemia. Clin. Cancer Res. 2023, 29, 2593–2601. [Google Scholar] [CrossRef] [PubMed]
- Ghia, P.; Wierda, W.G.; Barr, P.M.; Kipps, T.J.; Siddiqi, T.; Allan, J.N.; Hunter, Z.; Zhou, C.; Szoke, A.; Dean, J.P.; et al. Relapse after First-Line Fixed Duration Ibrutinib + Venetoclax: High Response Rates to Ibrutinib Retreatment and Absence of BTK Mutations in Patients with Chronic Lymphocytic Leukemia (CLL)/Small Lymphocytic Lymphoma (SLL) with up to 5 Years of Follow-up in the Phase 2 Captivate Study. Blood 2023, 142, 633. [Google Scholar] [CrossRef]
- Munir, T.; Cairns, D.A.; Bloor, A.; Allsup, D.; Cwynarski, K.; Pettitt, A.; Paneesha, S.; Fox, C.P.; Eyre, T.A.; Forconi, F.; et al. Chronic Lymphocytic Leukemia Therapy Guided by Measurable Residual Disease. N. Engl. J. Med. 2023, 390, 326–337. [Google Scholar] [CrossRef] [PubMed]
- Hillmen, P.; Pitchford, A.; Bloor, A.; Broom, A.; Young, M.; Kennedy, B.; Walewska, R.; Furtado, M.; Preston, G.; Neilson, J.R.; et al. Ibrutinib and rituximab versus fludarabine, cyclophosphamide, and rituximab for patients with previously untreated chronic lymphocytic leukaemia (FLAIR): Interim analysis of a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2023, 24, 535–552. [Google Scholar] [CrossRef] [PubMed]
- Tam, C.S.; Anderson, M.A.; Lasica, M.; Verner, E.; Opat, S.S.; Ma, S.; Weinkove, R.; Cordoba, R.; Soumerai, J.; Ghia, P.; et al. Combination Treatment with Sonrotoclax (BGB-11417), a Second-Generation BCL2 Inhibitor, and Zanubrutinib, a Bruton Tyrosine Kinase (BTK) Inhibitor, Is Well Tolerated and Achieves Deep Responses in Patients with Treatment-Naïve Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma (TN-CLL/SLL): Data from an Ongoing Phase 1/2 Study. Blood 2023, 142, 327. [Google Scholar] [CrossRef]
- Tedeschi, A.; Ferrant, E.; Flinn, I.W.; Tam, C.S.; Ghia, P.; Robak, T.; Brown, J.R.; Ramakrishnan, V.; Tian, T.; Kuwahara, S.B.; et al. Zanubrutinib in Combination with Venetoclax for Patients with Treatment-Naïve (TN) Chronic Lymphocytic Leukemia (CLL) or Small Lymphocytic Lymphoma (SLL) with del(17p): Early Results from Arm D of the SEQUOIA (BGB-3111-304) Trial. Blood 2021, 138, 67. [Google Scholar] [CrossRef]
- Niemann, C.U.; Munir, T.; Moreno, C.; Owen, C.; Follows, G.A.; Benjamini, O.; Janssens, A.; Levin, M.-D.; Robak, T.; Simkovic, M.; et al. Fixed-duration ibrutinib–venetoclax versus chlorambucil–obinutuzumab in previously untreated chronic lymphocytic leukaemia (GLOW): 4-year follow-up from a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2023, 24, 1423–1433. [Google Scholar] [CrossRef]
- Jain, N.; Keating, M.; Thompson, P.; Ferrajoli, A.; Burger, J.A.; Borthakur, G.; Takahashi, K.; Estrov, Z.; Sasaki, K.; Fowler, N.; et al. Ibrutinib Plus Venetoclax for First-line Treatment of Chronic Lymphocytic Leukemia. JAMA Oncol. 2021, 7, 3853. [Google Scholar] [CrossRef] [PubMed]
- Al-Sawaf, O.; Zhang, C.; Jin, H.Y.; Robrecht, S.; Choi, Y.; Balasubramanian, S.; Kotak, A.; Chang, Y.M.; Fink, A.M.; Tausch, E.; et al. Author Correction: Transcriptomic profiles and 5-year results from the randomized CLL14 study of venetoclax plus obinutuzumab versus chlorambucil plus obinutuzumab in chronic lymphocytic leukemia. Nat. Commun. 2023, 14, 6724. [Google Scholar] [CrossRef] [PubMed]
- Kater, A.P.; Levin, M.-D.; Dubois, J.; Kersting, S.; Enggaard, L.; Veldhuis, G.J.; Mous, R.; Mellink, C.H.M.; van der Kevie-Kersemaekers, A.-M.F.; Dobber, J.A.; et al. Minimal residual disease-guided stop and start of venetoclax plus ibrutinib for patients with relapsed or refractory chronic lymphocytic leukaemia (HOVON141/VISION): Primary analysis of an open-label, randomised, phase 2 trial. Lancet Oncol. 2022, 23, 818–828. [Google Scholar] [CrossRef] [PubMed]
- Kater, A.; Dubois, J.; Brieghel, C.; Kersting, S.; Enggaard, L.; Veldhuis, G.; Mous, R.; Mellink, C.; Dobber, J.; Poulsen, C.; et al. S148: Time-Limited Venetoclax and Ibrutinib for Patients with Relapsed/Refractory Cll Who Have Undetectable Mrd—4-Year Follow up from the Randomized Phase Ii Vision/Ho141 Trial. HemaSphere 2023, 7, e471416f. [Google Scholar] [CrossRef]
- Hillmen, P.; Rawstron, A.C.; Brock, K.; Muñoz-Vicente, S.; Yates, F.J.; Bishop, R.; Boucher, R.; MacDonald, D.; Fegan, C.; McCaig, A.; et al. Ibrutinib Plus Venetoclax in Relapsed/Refractory Chronic Lymphocytic Leukemia: The CLARITY Study. J. Clin. Oncol. 2019, 37, 2722–2729. [Google Scholar] [CrossRef] [PubMed]
- Scarfò, L.; Heltai, S.; Albi, E.; Scarano, E.; Schiattone, L.; Farina, L.; Moia, R.; Deodato, M.; Ferrario, A.; Motta, M.; et al. Minimal residual disease–driven treatment intensification with sequential addition of ibrutinib to venetoclax in R/R CLL. Blood 2022, 140, 2348–2357. [Google Scholar] [CrossRef]
- Davids, M.S.; Fischer, K.; Robrecht, S.; Zhang, C.; Ahn, I.E.; Porro Lurà, M.; Sinai, W.; Chyla, B.; Sail, K.; Pesko, J.; et al. ReVenG: A Phase 2 Study of Venetoclax Plus Obinutuzumab Retreatment in Patients with Relapsed Chronic Lymphocytic Leukemia. Blood 2021, 138, 2634. [Google Scholar] [CrossRef]
- Rogers, K.A.; Huang, Y.; Ruppert, A.S.; Abruzzo, L.V.; Andersen, B.L.; Awan, F.T.; Bhat, S.A.; Dean, A.; Lucas, M.; Banks, C.; et al. Phase II Study of Combination Obinutuzumab, Ibrutinib, and Venetoclax in Treatment-Naïve and Relapsed or Refractory Chronic Lymphocytic Leukemia. J. Clin. Oncol. 2020, 38, 3626–3637. [Google Scholar] [CrossRef]
- Huber, H.; Tausch, E.; Schneider, C.; Edenhofer, S.; von Tresckow, J.; Robrecht, S.; Giza, A.; Zhang, C.; Fürstenau, M.; Dreger, P.; et al. Final analysis of the CLL2-GIVe trial: Obinutuzumab, ibrutinib, and venetoclax for untreated CLL with del(17p)/TP53mut. Blood 2023, 142, 961–972. [Google Scholar] [CrossRef] [PubMed]
- Davids, M.S.; Lampson, B.L.; Tyekucheva, S.; Wang, Z.; Lowney, J.C.; Pazienza, S.; Montegaard, J.; Patterson, V.; Weinstock, M.; Crombie, J.L.; et al. Acalabrutinib, venetoclax, and obinutuzumab as frontline treatment for chronic lymphocytic leukaemia: A single-arm, open-label, phase 2 study. Lancet Oncol. 2021, 22, 1391–1402. [Google Scholar] [CrossRef]
- Ryan, C.E.; Lampson, B.L.; Tyekucheva, S.; Hackett, L.R.; Ren, Y.; Shupe, S.J.; Fernandes, S.M.; Crombie, J.L.; Ng, S.; Kim, A.I.; et al. Updated Results from a Multicenter, Phase 2 Study of Acalabrutinib, Venetoclax, Obinutuzumab (AVO) in a Population of Previously Untreated Patients with CLL Enriched for High-Risk Disease. Blood 2022, 140, 837–838. [Google Scholar] [CrossRef]
- Soumerai, J.D.; Mato, A.R.; Dogan, A.; Seshan, V.E.; Joffe, E.; Flaherty, K.; Carter, J.; Hochberg, E.; Barnes, J.A.; Hamilton, A.M.; et al. Zanubrutinib, obinutuzumab, and venetoclax with minimal residual disease-driven discontinuation in previously untreated patients with chronic lymphocytic leukaemia or small lymphocytic lymphoma: A multicentre, single-arm, phase 2 trial. Lancet Haematol. 2021, 8, e879–e890. [Google Scholar] [CrossRef]
- Soumerai, J.D.; Dogan, A.; Seshan, V.; Flaherty, K.; Carter, J.; Hochberg, E.; Barnes, J.A.; Abramson, J.S.; Hamilton, A.M.; Noy, A.; et al. Long-Term Follow-up of Multicenter Phase Ii Trial of Zanubrutinib, Obinutuzumab, and Venetoclax (Boven) in Previously Untreated Patients with Cll/Sll. Hematol. Oncol. 2023, 41, 233–235. [Google Scholar] [CrossRef]
- Cramer, P.; Fürstenau, M.; Robrecht, S.; Giza, A.; Zhang, C.; Fink, A.-M.; Fischer, K.; Langerbeins, P.; Al-Sawaf, O.; Tausch, E.; et al. Obinutuzumab, acalabrutinib, and venetoclax, after an optional debulking with bendamustine in relapsed or refractory chronic lymphocytic leukaemia (CLL2-BAAG): A multicentre, open-label, phase 2 trial. Lancet Haematol. 2022, 9, e745–e755. [Google Scholar] [CrossRef] [PubMed]
- Turtle, C.J.; Hay, K.A.; Hanafi, L.-A.; Li, D.; Cherian, S.; Chen, X.; Wood, B.; Lozanski, A.; Byrd, J.C.; Heimfeld, S.; et al. Durable Molecular Remissions in Chronic Lymphocytic Leukemia Treated With CD19-Specific Chimeric Antigen Receptor–Modified T Cells After Failure of Ibrutinib. J. Clin. Oncol. 2017, 35, 3010–3020. [Google Scholar] [CrossRef]
- Porter, D.L.; Levine, B.L.; Kalos, M.; Bagg, A.; June, C.H. Chimeric Antigen Receptor–Modified T Cells in Chronic Lymphoid Leukemia. N. Engl. J. Med. 2011, 365, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Kochenderfer, J.N.; Dudley, M.E.; Kassim, S.H.; Somerville, R.P.T.; Carpenter, R.O.; Stetler-Stevenson, M.; Yang, J.C.; Phan, G.Q.; Hughes, M.S.; Sherry, R.M.; et al. Chemotherapy-Refractory Diffuse Large B-Cell Lymphoma and Indolent B-Cell Malignancies Can Be Effectively Treated With Autologous T Cells Expressing an Anti-CD19 Chimeric Antigen Receptor. J. Clin. Oncol. 2015, 33, 540–549. [Google Scholar] [CrossRef] [PubMed]
- Davids, M.S.; Kenderian, S.S.; Flinn, I.W.; Hill, B.T.; Maris, M.; Ghia, P.; Byrne, M.; Bartlett, N.L.; Pagel, J.M.; Zheng, Y.; et al. ZUMA-8: A Phase 1 Study of KTE-X19, an Anti-CD19 Chimeric Antigen Receptor (CAR) T-Cell Therapy, in Patients With Relapsed/Refractory Chronic Lymphocytic Leukemia. Blood 2022, 140, 7454–7456. [Google Scholar] [CrossRef]
- Melenhorst, J.J.; Chen, G.M.; Wang, M.; Porter, D.L.; Chen, C.; Collins, M.A.; Gao, P.; Bandyopadhyay, S.; Sun, H.; Zhao, Z.; et al. Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature 2022, 602, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Vitale, C.; Griggio, V.; Perutelli, F.; Coscia, M. CAR-modified Cellular Therapies in Chronic Lymphocytic Leukemia: Is the Uphill Road Getting Less Steep? HemaSphere 2023, 7, e988. [Google Scholar] [CrossRef] [PubMed]
- Espie, D.; Donnadieu, E. New insights into CAR T cell-mediated killing of tumor cells. Front. Immunol. 2022, 13, 1016208. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, T.; Maloney, D.G.; Kenderian, S.S.; Brander, D.M.; Dorritie, K.; Soumerai, J.; Riedell, P.A.; Shah, N.N.; Nath, R.; Fakhri, B.; et al. Lisocabtagene maraleucel in chronic lymphocytic leukaemia and small lymphocytic lymphoma (TRANSCEND CLL 004): A multicentre, open-label, single-arm, phase 1–2 study. Lancet 2023, 402, 641–654. [Google Scholar] [CrossRef]
- Siddiqi, T.; Maloney, D.G.; Kenderian, S.S.; Brander, D.M.; Dorritie, K.; Soumerai, J.; Riedell, P.A.; Shah, N.N.; Nath, R.; Fakhri, B.; et al. Lisocabtagene Maraleucel (liso-cel) in R/R CLL/SLL: 24-Month Median Follow-up of TRANSCEND CLL 004. Blood 2023, 142, 330. [Google Scholar] [CrossRef]
- Mihályová, J.; Hradská, K.; Jelínek, T.; Motais, B.; Celichowski, P.; Hájek, R. Promising Immunotherapeutic Modalities for B-Cell Lymphoproliferative Disorders. Int. J. Mol. Sci. 2021, 22, 11470. [Google Scholar] [CrossRef] [PubMed]
- Wong, R.; Pepper, C.; Brennan, P.; Nagorsen, D.; Man, S.; Fegan, C. Blinatumomab induces autologous T-cell killing of chronic lymphocytic leukemia cells. Haematologica 2013, 98, 1930–1938. [Google Scholar] [CrossRef]
- Thompson, P.A.; Jiang, X.; Banerjee, P.; Basar, R.; Garg, N.; Chen, K.; Kaplan, M.; Nandivada, V.; Cortes, A.K.N.; Ferrajoli, A.; et al. A phase two study of high dose blinatumomab in Richter’s syndrome. Leukemia 2022, 36, 2228–2232. [Google Scholar] [CrossRef] [PubMed]
- Budde, L.E.; Assouline, S.; Sehn, L.H.; Schuster, S.J.; Yoon, S.-S.; Yoon, D.H.; Matasar, M.J.; Bosch, F.; Kim, W.S.; Nastoupil, L.J.; et al. Single-Agent Mosunetuzumab Shows Durable Complete Responses in Patients With Relapsed or Refractory B-Cell Lymphomas: Phase I Dose-Escalation Study. J. Clin. Oncol. 2022, 40, 481–491. [Google Scholar] [CrossRef]
- Cheah, C.Y.; Assouline, S.; Baker, R.; Bartlett, N.L.; El-Sharkawi, D.; Giri, P.; Ku, M.; Schuster, S.J.; Matasar, M.; Radford, J.; et al. Mosunetuzumab Monotherapy Demonstrates Activity and a Manageable Safety Profile in Patients with Relapsed or Refractory Richter’s Transformation. Blood 2023, 142, 614. [Google Scholar] [CrossRef]
- Patel, K.; Riedell, P.A.; Tilly, H.; Ahmed, S.; Michot, J.-M.; Ghesquieres, H.; Schiano de Collela, J.M.; Chanan-Khan, A.; Bouabdallah, K.; Tessoulin, B.; et al. A Phase 1 Study of Plamotamab, an Anti-CD20 x Anti-CD3 Bispecific Antibody, in Patients with Relapsed/Refractory Non-Hodgkin’s Lymphoma: Recommended Dose Safety/Efficacy Update and Escalation Exposure-Response Analysis. Blood 2022, 140, 9470–9472. [Google Scholar] [CrossRef]
- Kater, A.P.; Christensen, J.H.; Bentzen, H.H.; Niemann, C.U.; Hutchings, M.; Chen, J.; Rios, M.; Palenski, T.; Li, T.; Mato, A.R. Subcutaneous Epcoritamab in Patients with Relapsed/Refractory Chronic Lymphocytic Leukemia: Preliminary Results from the Epcore CLL-1 Trial. Blood 2021, 138, 2627. [Google Scholar] [CrossRef]
- XX International workshop on chronic lymphocytic leukemia. Leuk. Lymphoma 2023, 64, S1–S197. [CrossRef]
- Eichhorst, B.; Eradat, H.; Niemann, C.U.; Oki, T.; Kuznetsova, A.; Rios, M.; Valentin, R.; Kater, A.P. Epcoritamab Monotherapy and Combinations in Relapsed or Refractory Chronic Lymphocytic Leukemia or Richter’s Syndrome: New Escalation and Expansion Cohorts in Epcore Cll-1. Hematol. Oncol. 2023, 41, 828–829. [Google Scholar] [CrossRef]
- Carlo-Stella, C.; Hutchings, M.; Offner, F.; Mulvihill, E.; Relf, J.; Byrne, B.; Lundberg, L.; Dickinson, M. Glofitamab Monotherapy Induces Durable Complete Remissions and Has a Manageable Safety Profile in Patients with Richter’s Transformation. Hematol. Oncol. 2023, 41, 63–65. [Google Scholar] [CrossRef]
- Liu, L.; Lam, C.-Y.K.; Long, V.; Widjaja, L.; Yang, Y.; Li, H.; Jin, L.; Burke, S.; Gorlatov, S.; Brown, J.; et al. MGD011, A CD19 x CD3 Dual-Affinity Retargeting Bi-specific Molecule Incorporating Extended Circulating Half-life for the Treatment of B-Cell Malignancies. Clin. Cancer Res. 2017, 23, 1506–1518. [Google Scholar] [CrossRef] [PubMed]
- Mhibik, M.; Gaglione, E.M.; Eik, D.; Herrick, J.; Le, J.; Ahn, I.E.; Chiu, C.; Wielgos-Bonvallet, M.; Hiemstra, I.H.; Breij, E.C.W.; et al. Cytotoxicity of the CD3×CD20 bispecific antibody epcoritamab in CLL is increased by concurrent BTK or BCL-2 targeting. Blood Adv. 2023, 7, 4089–4101. [Google Scholar] [CrossRef] [PubMed]
- Landau, D.A.; Tausch, E.; Taylor-Weiner, A.N.; Stewart, C.; Reiter, J.G.; Bahlo, J.; Kluth, S.; Bozic, I.; Lawrence, M.; Böttcher, S.; et al. Mutations driving CLL and their evolution in progression and relapse. Nature 2015, 526, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Chatzikonstantinou, T.; Scarfò, L.; Karakatsoulis, G.; Minga, E.; Chamou, D.; Iacoboni, G.; Kotaskova, J.; Demosthenous, C.; Smolej, L.; Mulligan, S.; et al. Other malignancies in the history of CLL: An international multicenter study conducted by ERIC, the European Research Initiative on CLL, in HARMONY. eClinicalMedicine 2023, 65, 102307. [Google Scholar] [CrossRef] [PubMed]
- Visentin, A.; Chatzikonstantinou, T.; Scarfò, L.; Kapetanakis, A.; Demosthenous, C.; Karakatsoulis, G.; Minga, E.; Chamou, D.; Allsup, D.; Cabrero, A.A.; et al. The evolving landscape of COVID-19 and post-COVID condition in patients with chronic lymphocytic leukemia: A study by ERIC, the European research initiative on CLL. Am. J. Hematol. 2023, 98, 1856–1868. [Google Scholar] [CrossRef]
- Visentin, A.; Bonaldi, L.; Rigolin, G.M.; Mauro, F.R.; Martines, A.; Frezzato, F.; Imbergamo, S.; Scomazzon, E.; Pravato, S.; Bardi, M.A.; et al. The combination of complex karyotype subtypes and IGHV mutational status identifies new prognostic and predictive groups in chronic lymphocytic leukaemia. Br. J. Cancer 2019, 121, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Agathangelidis, A.; Chatzidimitriou, A.; Gemenetzi, K.; Giudicelli, V.; Karypidou, M.; Plevova, K.; Davis, Z.; Yan, X.-J.; Jeromin, S.; Schneider, C.; et al. Higher-order connections between stereotyped subsets: Implications for improved patient classification in CLL. Blood 2021, 137, 1365–1376. [Google Scholar] [CrossRef] [PubMed]
- Visentin, A.; Mauro, F.R.; Cibien, F.; Vitale, C.; Reda, G.; Fresa, A.; Ciolli, S.; Pietrasanta, D.; Marchetti, M.; Murru, R.; et al. Continuous treatment with Ibrutinib in 100 untreated patients with TP53 disrupted chronic lymphocytic leukemia: A real-life campus CLL study. Am. J. Hematol. 2021, 97, E95–E99. [Google Scholar] [CrossRef] [PubMed]
- Brieghel, C.; Aarup, K.; Torp, M.H.; Andersen, M.A.; Yde, C.W.; Tian, X.; Wiestner, A.; Ahn, I.E.; Niemann, C.U. Clinical Outcomes in Patients with Multi-Hit TP53 Chronic Lymphocytic Leukemia Treated with Ibrutinib. Clin. Cancer Res. 2021, 27, 4531–4538. [Google Scholar] [CrossRef] [PubMed]
- Visentin, A.; Mauro, F.R.; Scarfò, L.; Gentile, M.; Farina, L.; Reda, G.; Ferrarini, I.; Proietti, G.; Derenzini, E.; Cibien, F.; et al. Continuous venetoclax in treatment-naive TP53 disrupted patients with chronic lymphocytic leukemia: A chronic lymphocytic leukemia campus study. Am. J. Hematol. 2023, 98, E237–E240. [Google Scholar] [CrossRef]
- Visentin, A.; Facco, M.; Gurrieri, C.; Pagnin, E.; Martini, V.; Imbergamo, S.; Frezzato, F.; Trimarco, V.; Severin, F.; Raggi, F.; et al. Prognostic and Predictive Effect of IGHV Mutational Status and Load in Chronic Lymphocytic Leukemia: Focus on FCR and BR Treatments. Clin. Lymphoma Myeloma Leuk. 2019, 19, 678–685.e674. [Google Scholar] [CrossRef] [PubMed]
- Woyach, J.A.; Ruppert, A.S.; Guinn, D.; Lehman, A.; Blachly, J.S.; Lozanski, A.; Heerema, N.A.; Zhao, W.; Coleman, J.; Jones, D.; et al. BTKC481S-Mediated Resistance to Ibrutinib in Chronic Lymphocytic Leukemia. J. Clin. Oncol. 2017, 35, 1437–1443. [Google Scholar] [CrossRef] [PubMed]
- Blombery, P.; Thompson, E.R.; Lew, T.E.; Tiong, I.S.; Bennett, R.; Cheah, C.Y.; Lewis, K.L.; Handunnetti, S.M.; Tang, C.P.S.; Roberts, A.; et al. Enrichment of BTK Leu528Trp mutations in patients with CLL on zanubrutinib: Potential for pirtobrutinib cross-resistance. Blood Adv. 2022, 6, 5589–5592. [Google Scholar] [CrossRef] [PubMed]
- Naeem, A.; Utro, F.; Wang, Q.; Cha, J.; Vihinen, M.; Martindale, S.; Zhou, Y.; Ren, Y.; Tyekucheva, S.; Kim, A.S.; et al. Pirtobrutinib targets BTK C481S in ibrutinib-resistant CLL but second-site BTK mutations lead to resistance. Blood Adv. 2023, 7, 1929–1943. [Google Scholar] [CrossRef]
- Shah, G.L.; Purdum, A.; Teigland, C.; Schroeder, A.; Mohammadi, I.; Kilgore, K.M. Medicare Patients Receiving Chimeric Antigen Receptor T-Cell Therapy for Non-Hodgkin Lymphoma: A First Real-World Look at Patient Characteristics, Healthcare Utilization and Costs. Blood 2019, 134, 793. [Google Scholar] [CrossRef]
- Mato, A.R.; Woyach, J.A.; Brown, J.R.; Ghia, P.; Patel, K.; Eyre, T.A.; Munir, T.; Lech-Maranda, E.; Lamanna, N.; Tam, C.S.; et al. Pirtobrutinib after a Covalent BTK Inhibitor in Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2023, 389, 33–44. [Google Scholar] [CrossRef] [PubMed]
Line | Study | Treatment | Phase | Comparator | N | Age | TP53 abn | ORR/CR | PFS | OS | uMRD (10−4) | Median FUP (Months) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Frontline Young Patients | VERITAS | Venetoclax, Rituximab | 2 | Single arm | 75 | 54 | 12% | 95%/76% | 3-yy 96% | 3-yy 96% | 69% PB 59% BM | 33 |
HOVON 139 | Venetoclax, Obinutuzumab | 2 | single arm | 231 | 72 | 13% | 94%/31% | 3-yy 85% | 3-yy 94% | 84% PB 79% BM | 35 | |
CAPTIVATE | Ibrutinib, Venetoclax | 2 | MRD arm FD arm | 164 159 | 58 60 | 20% 17% | 97%/46% 96%/55% | 2-yy 96% 2-yy 95% | 2-yy 98% 2-yy 98% | 75% PB 68% BM 77% PB 60% BM | 31 28 | |
CLL13 | Venetoclax, Obinutuzumab | 3 | FCR/BR venetoclax, rituximab | 229 | 61 | 0% | 100%/59% | 3-yy 88% | 3-yy 96% | 86% PB 73% M | 39 | |
FLAIR | ibrutinib, Rituximab Ibrutinib, Venetoclax | 3 | FCR | 386 260 | 63 62 | 1% 0.4% | 91%/21% 84%/71% | 3-yy 90% 3-yy 97% | 3-yy 95% 3-yy 98% | 4% PB 4% BM 71% PB 52% BM | 53 44 | |
BGB-101 | Zanubrutinib, Sonrotoclax | 1/2 | Single arm | 197 | 62 | 26% | 100%/32% | 1-y 100% | 1-y 100% | 78% PB | 10 | |
Frontline Elderly Patients | SEQUOIA D | Zanubrutinib, Venetoclax | 2 | Single arm | 49 | 65 | 100% | 97%/14% | 1-y 95% | 1-y 95% | 14% PB | 12 |
MDACC | Ibrutinib, Venetoclax | 2 | Single arm | 80 | 65 | 23% | 100%/86% | 3-yy 93% | 3-yy 96% | PB n.r. 66% BM | 39 | |
GLOW | Ibrutinib, Venetoclax | 3 | Chlorambucil, Obinutuzumab | 106 | 71 | 7% | 87%/39% | 3.5-yy 75% | 3.5-yy 87% | 81% PB 56% BM | 57 | |
CLL14 | Venetoclax, Obinutuzumab | 3 | Chlorambucil, Obinutuzumab | 216 | 72 | 12% | 85%/50% | 5-yy 63% | 5-yr 87% | 76% PB 57% BM | 65 | |
Relapsed Refractory | VISION | Ibrutinib, Venetoclax then Ibrutinib or stop therapy | 2 | Single arm | 225 | 68 | 24% | 85%/64% | 3-yy 88% | 3-yy 94% | 50% PB 37% BM | 51 |
CLARITY | Ibrutinib, Venetoclax | 2 | Single arm | 54 | 64 | 22% | 89%/51% | 2-yy 98% | 2-yy 100% | 67% PB 44% BM | 21 | |
IMPROVE | Venetoclax, Ibrutinib | 2 | Single arm | 38 | 64 | 29% | 95%/53% | 3-yy 75% | 3-yy 95% | 92% PB 87% BM | 36 |
Study | Treatment | Phase | Comparator | N | Age | TP53 abn | ORR/CR | PFS | OS | uMRD (10−4) | Median FUP (Months) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Frontline | IVO | Ibrutinib, Venetoclax, Obinutuzumab | 2 | Single arm | 25 | 59 | 12% | 84%/32% | 2-yy 96% | 2-yy 96% | PB n.r. 67% BM | 24 |
CLL2-GIVe | Ibrutinib, Venetoclax, Obinutuzumab | 2 | Single arm | 41 | 62 | 100% | 100%/59% | 3-yy 80% | 3-yy 93% | 78% PB 66% BM | 36 | |
CLL13 | Ibrutinib, Venetoclax, Obinutuzumab | 3 | venetoclax rituximab, FCR/BR | 231 | 61 | 0% | 94%/62% | 3-yy 91% | 3-yy 95% | 92% PB 78% BM | 39 | |
AVO | Acalabrutinib, Venetoclax, Obinutuzumab | 2 | Single arm | 68 | 63 | 46% | 98%/48% | 3-yy 93% | 1-y 99% | 86% PB 86% BM | 35 | |
BOVen | Zanubrutinib, Venetoclax, Obinutuzumab | 2 | Single arm | 39 | 62 | 100% | 100%/57% | n.r. | n.r. | 92% PB 84% BM | 14 | |
Relapse | IVO | Ibrutinib, Venetoclax, Obinutuzumab | 2 | Single arm | 25 | 58 | 4% | 88%/24% | 2-yy 8% | 2-y 100% | PB n.r. 50% BM | 24 |
AVO | Acalabrutinib, Venetoclax, Obinutuzumab | 2 | single arm | 45 | 60 | 32% | 100%/18% | 1-y 94% | 1-yy 100% | 76% PB 16% BM | 26 |
Drug | Bispecific Antibody | Phase | Development | CLL Setting | Administration | Administration Route | Treatment Duration |
---|---|---|---|---|---|---|---|
Liso-cel | CD19 CAR T | 1/2 | B-cell malignancies | Relapsed/Refractory | Single agent | Intravenous | single dose |
Axi-cel | CD19 CAR T | 1/2 | B-cell malignancies | Relapsed/Refractory | Single agent | Intravenous | single dose |
Tisa-cel | CD19 CAR T | 1/2 | B-cell malignancies | Relapsed/Refractory | Single agent | Intravenous | single dose |
Brexu-cel | CD19 CAR T | 1/2 | B-cell malignancies | Relapsed/Refractory | Single agent | Intravenous | single dose |
MGD011 | CD20 x CD3 | preclinical activity | B-cell malignancies | Relapsed/Refractory | Single agent | Intravenous | dose dependent |
Plamotamab | CD20 x CD3 | 1 | B-cell malignancies | Relapsed/Refractory Richter Syndrome | Single agent | Intravenous | until progression disease |
GB261 | CD20 x CD3 | 1/2 | B-cell malignancies | Relapsed/Refractory | Single agent | Intravenous | until progression disease |
Epcoritamab | CD20 x CD3 | 1/2 | B-cell malignancies | Relapsed/Refractory Richter Syndrome | Single agent | subcutaneous | until progression or unacceptable toxicity |
Mosunetuzumab | CD20 x CD3 | 1/2 | B-cell malignancies | Relapsed/Refractory | Single agent or with atezolizumab | Intravenous or subcutaneous | until progression or unacceptable toxicity |
Mosunetuzumab | CD20 x CD3 | 1/2 | B-cell malignancies | Richter Syndrome | Single agent | Intravenous | fixed duration |
Glofitamab | CD20 x CD3 | 1/2 | B-cell malignancies | Richter Syndrome | Single agent | Intravenous | fixed duration |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Visentin, A.; Frazzetto, S.; Trentin, L.; Chiarenza, A. Innovative Combinations, Cellular Therapies and Bispecific Antibodies for Chronic Lymphocytic Leukemia: A Narrative Review. Cancers 2024, 16, 1290. https://doi.org/10.3390/cancers16071290
Visentin A, Frazzetto S, Trentin L, Chiarenza A. Innovative Combinations, Cellular Therapies and Bispecific Antibodies for Chronic Lymphocytic Leukemia: A Narrative Review. Cancers. 2024; 16(7):1290. https://doi.org/10.3390/cancers16071290
Chicago/Turabian StyleVisentin, Andrea, Sara Frazzetto, Livio Trentin, and Annalisa Chiarenza. 2024. "Innovative Combinations, Cellular Therapies and Bispecific Antibodies for Chronic Lymphocytic Leukemia: A Narrative Review" Cancers 16, no. 7: 1290. https://doi.org/10.3390/cancers16071290
APA StyleVisentin, A., Frazzetto, S., Trentin, L., & Chiarenza, A. (2024). Innovative Combinations, Cellular Therapies and Bispecific Antibodies for Chronic Lymphocytic Leukemia: A Narrative Review. Cancers, 16(7), 1290. https://doi.org/10.3390/cancers16071290