Study International Multicentric Pancreatic Left Resections (SIMPLR): Does Surgical Approach Matter?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Recruitment
2.2. Surgical Technique
2.3. Definitions
2.4. Endpoints
2.5. Statistical Analysis
3. Results
3.1. Participant and Descriptive Data
3.2. Comparison between Open (ODP) and Laparoscopic (LDP) Groups
3.3. Comparison between Open (ODP) and Robotic Group (RDP)
3.4. Comparison between Laparoscopic (LDP) and Robotic (RDP) Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cuschieri, A. Laparoscopic surgery of the pancreas. J. R. Coll. Surg. Edinb. 1994, 39, 178–184. [Google Scholar]
- Melvin, W.S.; Needleman, B.J.; Krause, K.R.; Ellison, E.C. Robotic resection of pancreatic neuroendocrine tumor. J. Laparoendosc. Adv. Surg. Tech. A 2003, 13, 33–36. [Google Scholar] [CrossRef]
- Abu Hilal, M.; Takhar, A.S. Laparoscopic left pancreatectomy: Current concepts. Pancreatology 2013, 13, 443–448. [Google Scholar] [CrossRef]
- Asbun, H.J.; Moekotte, A.L.; Vissers, F.L.; Kunzler, F.; Cipriani, F.; Alseidi, A.; D’Angelica, M.I.; Balduzzi, A.; Bassi, C.; Bjornsson, B.; et al. The Miami International Evidence-based Guidelines on Minimally Invasive Pancreas Resection. Ann. Surg. 2020, 271, 1–14. [Google Scholar] [CrossRef]
- van Ramshorst, T.M.E.; van Hilst, J.; Bannone, E.; Pulvirenti, A.; Asbun, H.J.; Boggi, U.; Busch, O.R.; Dokmak, S.; Edwin, B.; Hogg, M.; et al. International survey on opinions and use of robot-assisted and laparoscopic minimally invasive pancreatic surgery: 5-year follow up. HPB 2023, 26, 63–72. [Google Scholar] [CrossRef]
- Bjornsson, B.; Larsson, A.L.; Hjalmarsson, C.; Gasslander, T.; Sandstrom, P. Comparison of the duration of hospital stay after laparoscopic or open distal pancreatectomy: Randomized controlled trial. Br. J. Surg. 2020, 107, 1281–1288. [Google Scholar] [CrossRef]
- de Rooij, T.; van Hilst, J.; van Santvoort, H.; Boerma, D.; van den Boezem, P.; Daams, F.; van Dam, R.; Dejong, C.; van Duyn, E.; Dijkgraaf, M.; et al. Minimally Invasive Versus Open Distal Pancreatectomy (LEOPARD): A Multicenter Patient-blinded Randomized Controlled Trial. Ann. Surg. 2019, 269, 2–9. [Google Scholar] [CrossRef]
- Korrel, M.; Jones, L.R.; van Hilst, J.; Balzano, G.; Bjornsson, B.; Boggi, U.; Bratlie, S.O.; Busch, O.R.; Butturini, G.; Capretti, G.; et al. Minimally invasive versus open distal pancreatectomy for resectable pancreatic cancer (DIPLOMA): An international randomised non-inferiority trial. Lancet Reg. Health Eur. 2023, 31, 100673. [Google Scholar] [CrossRef]
- Chen, J.W.; van Ramshorst, T.M.E.; Lof, S.; Al-Sarireh, B.; Bjornsson, B.; Boggi, U.; Burdio, F.; Butturini, G.; Casadei, R.; Coratti, A.; et al. Robot-Assisted Versus Laparoscopic Distal Pancreatectomy in Patients with Resectable Pancreatic Cancer: An International, Retrospective, Cohort Study. Ann. Surg. Oncol. 2023, 30, 3023–3032. [Google Scholar] [CrossRef]
- Feng, Q.; Jiang, C.; Feng, X.; Du, Y.; Liao, W.; Jin, H.; Liao, M.; Zeng, Y.; Huang, J. Robotic Versus Laparoscopic Distal Pancreatectomy for Pancreatic Ductal Adenocarcinoma: A Systematic Review and Meta-Analysis. Front. Oncol. 2021, 11, 752236. [Google Scholar] [CrossRef]
- Lof, S.; van der Heijde, N.; Abuawwad, M.; Al-Sarireh, B.; Boggi, U.; Butturini, G.; Capretti, G.; Coratti, A.; Casadei, R.; D’Hondt, M.; et al. Robotic versus laparoscopic distal pancreatectomy: Multicentre analysis. Br. J. Surg. 2021, 108, 188–195. [Google Scholar] [CrossRef]
- van Ramshorst, T.M.E.; van Bodegraven, E.A.; Zampedri, P.; Kasai, M.; Besselink, M.G.; Abu Hilal, M. Robot-assisted versus laparoscopic distal pancreatectomy: A systematic review and meta-analysis including patient subgroups. Surg. Endosc. 2023, 37, 4131–4143. [Google Scholar] [CrossRef]
- Zhou, J.Y.; Xin, C.; Mou, Y.P.; Xu, X.W.; Zhang, M.Z.; Zhou, Y.C.; Lu, C.; Chen, R.G. Robotic versus Laparoscopic Distal Pancreatectomy: A Meta-Analysis of Short-Term Outcomes. PLoS ONE 2016, 11, e0151189. [Google Scholar] [CrossRef]
- Di Martino, M.; Caruso, R.; D’Ovidio, A.; Nunez-Alfonsel, J.; Burdio Pinilla, F.; Quijano Collazo, Y.; Vicente, E.; Ielpo, B. Robotic versus laparoscopic distal pancreatectomies: A systematic review and meta-analysis on costs and perioperative outcome. Int. J. Med. Robot. 2021, 17, e2295. [Google Scholar] [CrossRef]
- Gavriilidis, P.; Lim, C.; Menahem, B.; Lahat, E.; Salloum, C.; Azoulay, D. Robotic versus laparoscopic distal pancreatectomy—The first meta-analysis. HPB 2016, 18, 567–574. [Google Scholar] [CrossRef]
- Guerrini, G.P.; Lauretta, A.; Belluco, C.; Olivieri, M.; Forlin, M.; Basso, S.; Breda, B.; Bertola, G.; Di Benedetto, F. Robotic versus laparoscopic distal pancreatectomy: An up-to-date meta-analysis. BMC Surg. 2017, 17, 105. [Google Scholar] [CrossRef]
- Hu, Y.H.; Qin, Y.F.; Yu, D.D.; Li, X.; Zhao, Y.M.; Kong, D.J.; Jin, W.; Wang, H. Meta-analysis of short-term outcomes comparing robot-assisted and laparoscopic distal pancreatectomy. J. Comp. Eff. Res. 2020, 9, 201–218. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhang, H.; Chen, L.; Liu, T.; Dai, M. Robotic versus laparoscopic distal pancreatectomy on perioperative outcomes: A systematic review and meta-analysis. Updates Surg. 2023, 75, 7–21. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yao, J.; Zhang, J.; Wang, Y.; Shu, G.; Lou, C.; Zhi, D. A Comparison of Robotic Versus Laparoscopic Distal Pancreatectomy for Benign or Malignant Lesions: A Meta-Analysis. J. Laparoendosc. Adv. Surg. Tech. A 2023, 33, 1146–1153. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Y.; Cheng, Y.; Wang, B.; Zhao, S.; Chen, L. Comparison of 3 Minimally Invasive Methods Versus Open Distal Pancreatectomy: A Systematic Review and Network Meta-Analysis. Surg. Laparosc. Endosc. Percutan. Tech. 2020, 31, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Mavrovounis, G.; Diamantis, A.; Perivoliotis, K.; Symeonidis, D.; Volakakis, G.; Tepetes, K. Laparoscopic versus Robotic Peripheral Pancreatectomy: A Systematic Review and Meta-analysis. J. BUON 2020, 25, 2456–2475. [Google Scholar]
- Rompianesi, G.; Montalti, R.; Ambrosio, L.; Troisi, R.I. Robotic versus Laparoscopic Surgery for Spleen-Preserving Distal Pancreatectomies: Systematic Review and Meta-Analysis. J. Pers. Med. 2021, 11, 552. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.; Lee, J.H.; Park, S.Y.; Park, Y.; Lee, W.; Song, K.B.; Hwang, D.W.; Kim, S.C. A comparison of robotic versus laparoscopic distal pancreatectomy: Propensity score matching analysis. Int. J. Med. Robot. 2022, 18, e2347. [Google Scholar] [CrossRef]
- Shin, D.; Kwon, J.; Lee, J.H.; Park, S.Y.; Park, Y.; Lee, W.; Song, K.B.; Hwang, D.W.; Kim, S.C. Robotic versus laparoscopic distal pancreatectomy for pancreatic ductal adenocarcinoma: A propensity score-matched analysis. Hepatobiliary Pancreat. Dis. Int. 2023, 22, 154–159. [Google Scholar] [CrossRef] [PubMed]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.C.; Vandenbroucke, J.P.; Initiative, S. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. Int. J. Surg. 2014, 12, 1495–1499. [Google Scholar] [CrossRef] [PubMed]
- Abu Hilal, M.; van Ramshorst, T.M.E.; Boggi, U.; Dokmak, S.; Edwin, B.; Keck, T.; Khatkov, I.; Ahmad, J.; Al Saati, H.; Alseidi, A.; et al. The Brescia Internationally Validated European Guidelines on Minimally Invasive Pancreatic Surgery (EGUMIPS). Ann. Surg. 2023, 279, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Clavien, P.A.; Barkun, J.; de Oliveira, M.L.; Vauthey, J.N.; Dindo, D.; Schulick, R.D.; de Santibanes, E.; Pekolj, J.; Slankamenac, K.; Bassi, C.; et al. The Clavien-Dindo classification of surgical complications: Five-year experience. Ann. Surg. 2009, 250, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Bassi, C.; Marchegiani, G.; Dervenis, C.; Sarr, M.; Abu Hilal, M.; Adham, M.; Allen, P.; Andersson, R.; Asbun, H.J.; Besselink, M.G.; et al. The 2016 update of the International Study Group (ISGPS) definition and grading of postoperative pancreatic fistula: 11 Years After. Surgery 2017, 161, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Mackay, T.M.; Smits, F.J.; Roos, D.; Bonsing, B.A.; Bosscha, K.; Busch, O.R.; Creemers, G.J.; van Dam, R.M.; van Eijck, C.H.J.; Gerhards, M.F.; et al. The risk of not receiving adjuvant chemotherapy after resection of pancreatic ductal adenocarcinoma: A nationwide analysis. HPB 2020, 22, 233–240. [Google Scholar] [CrossRef]
- Merkow, R.P.; Bilimoria, K.Y.; Tomlinson, J.S.; Paruch, J.L.; Fleming, J.B.; Talamonti, M.S.; Ko, C.Y.; Bentrem, D.J. Postoperative complications reduce adjuvant chemotherapy use in resectable pancreatic cancer. Ann. Surg. 2014, 260, 372–377. [Google Scholar] [CrossRef]
- Espin Alvarez, F.; Garcia-Domingo, M.I.; Cremades Perez, M.; Pardo Aranda, F.; Vidal Pineiro, L.; Herrero Fonollosa, E.; Navines Lopez, J.; Zarate Pinedo, A.; Camps-Lasa, J.; Cugat Andorra, E. Laparoscopic and robotic distal pancreatectomy: The choice and the future. Cir. Esp. (Engl. Ed.) 2023, 101, 765–771. [Google Scholar] [CrossRef]
- Souche, R.; Herrero, A.; Bourel, G.; Chauvat, J.; Pirlet, I.; Guillon, F.; Nocca, D.; Borie, F.; Mercier, G.; Fabre, J.M. Robotic versus laparoscopic distal pancreatectomy: A French prospective single-center experience and cost-effectiveness analysis. Surg. Endosc. 2018, 32, 3562–3569. [Google Scholar] [CrossRef]
- van Hilst, J.; de Rooij, T.; Klompmaker, S.; Rawashdeh, M.; Aleotti, F.; Al-Sarireh, B.; Alseidi, A.; Ateeb, Z.; Balzano, G.; Berrevoet, F.; et al. Minimally Invasive versus Open Distal Pancreatectomy for Ductal Adenocarcinoma (DIPLOMA): A Pan-European Propensity Score Matched Study. Ann. Surg. 2019, 269, 10–17. [Google Scholar] [CrossRef]
- Callery, M.P.; Pratt, W.B.; Kent, T.S.; Chaikof, E.L.; Vollmer, C.M., Jr. A prospectively validated clinical risk score accurately predicts pancreatic fistula after pancreatoduodenectomy. J. Am. Coll. Surg. 2013, 216, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Perri, G.; Marchegiani, G.; Reich, F.; Casetti, L.; Fontana, M.; Esposito, A.; Ruzzenente, A.; Salvia, R.; Bassi, C. Intraoperative Blood Loss Estimation in Hepato-pancreato-biliary Surgery-Relevant, Not Reported, Not Standardized: Results From a Systematic Review and a Worldwide Snapshot Survey. Ann. Surg. 2023, 277, e849–e855. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Liu, Q.; Zhao, Z.M.; Tan, X.L.; Gao, Y.X.; Zhao, G.D. Robotic versus laparoscopic distal pancreatectomy: A propensity score-matched study. J. Surg. Oncol. 2017, 116, 461–469. [Google Scholar] [CrossRef]
- Abu Hilal, M.; Hamdan, M.; Di Fabio, F.; Pearce, N.W.; Johnson, C.D. Laparoscopic versus open distal pancreatectomy: A clinical and cost-effectiveness study. Surg. Endosc. 2012, 26, 1670–1674. [Google Scholar] [CrossRef]
- Limongelli, P.; Belli, A.; Russo, G.; Cioffi, L.; D’Agostino, A.; Fantini, C.; Belli, G. Laparoscopic and open surgical treatment of left-sided pancreatic lesions: Clinical outcomes and cost-effectiveness analysis. Surg. Endosc. 2012, 26, 1830–1836. [Google Scholar] [CrossRef]
- Chopra, A.; Nassour, I.; Zureikat, A.; Paniccia, A. Perioperative and oncologic outcomes of open, laparoscopic, and robotic distal pancreatectomy for pancreatic adenocarcinoma. Updates Surg. 2021, 73, 947–953. [Google Scholar] [CrossRef]
- Chen, H.; Shen, Z.; Ying, X.; Weng, Y.; Jiang, Y.; Chen, H.; Xu, Z.; Deng, X.; Xie, J.; Shen, B. Robotic distal pancreatectomy reduces pancreatic fistula in patients without visceral obesity as compared to open distal pancreatectomy: A propensity score matching retrospective cohort study. Int. J. Surg. 2021, 90, 105960. [Google Scholar] [CrossRef] [PubMed]
- Ausania, F.; Landi, F.; Martinie, J.B.; Vrochides, D.; Walsh, M.; Hossain, S.M.; White, S.; Prabakaran, V.; Melstrom, L.G.; Fong, Y.; et al. Robotic versus laparoscopic distal pancreatectomy in obese patients. Surg. Endosc. 2023, 37, 8384–8393. [Google Scholar] [CrossRef] [PubMed]
- Gumbs, A.A.; Croner, R.; Abu-Hilal, M.; Bannone, E.; Ishizawa, T.; Spolverato, G.; Frigerio, I.; Siriwardena, A.; Messaoudi, N. Surgomics and the Artificial intelligence, Radiomics, Genomics, Oncopathomics and Surgomics (AiRGOS) Project. Art. Int. Surg. 2023, 3, 180–185. [Google Scholar] [CrossRef]
- Gumbs, A.A.; Alexander, F.; Karcz, K.; Chouillard, E.; Croner, R.; Coles-Black, J.; de Simone, B.; Gagner, M.; Gayet, B.; Grasso, V.; et al. White paper: Definitions of artificial intelligence and autonomous actions in clinical surgery. Art. Int. Surg. 2022, 2, 93–100. [Google Scholar] [CrossRef]
- Capelli, G.; Verdi, D.; Frigerio, I.; Rashidian, N.; Ficorilli, A.; Grasso, S.V.; Majidi, D.; Gumbs, A.A.; Spolverato, G. Artificial Intelligence Surgery Editorial Board Study Group on Ethics. White paper: Ethics and trustworthiness of artificial intelligence in clinical surgery. Art. Int. Surg. 2023, 3, 111–122. [Google Scholar] [CrossRef]
- Taher, H.; Grasso, V.; Tawfik, S.; Gumbs, A. The challenges of deep learning in artificial intelligence and autonomous actions in surgery: A literature review. Art. Int. Surg. 2022, 2, 144–158. [Google Scholar] [CrossRef]
- Boutros, C.; Singh, V.; Ocuin, L.; Marks, J.M.; Hashimoto, D.A. Artificial intelligence in hepatopancreaticobiliary surgery—Promises and perils. Art. Int. Surg. 2022, 2, 213–223. [Google Scholar] [CrossRef]
- Wagner, M.; Schulze, A.; Haselbeck-Köbler, M.; Probst, P.; Brandenburg, J.M.; Kalkum, E.; Majlesara, A.; Ramouz, A.; Klotz, R.; Nickel, F.; et al. Artificial intelligence for decision support in surgical oncology—A systematic review. Art. Int. Surg. 2022, 2, 159–172. [Google Scholar] [CrossRef]
ODP (n = 34) | LDP (n = 192) | RDP (n = 32) | p-Value | Overall (n = 258) | |
---|---|---|---|---|---|
Gender | |||||
Female | 16 (47.1%) | 114 (59.4%) | 23 (71.9%) | 0.055 | 153 (59.3%) |
Male | 18 (52.9%) | 77 (40.1%) | 9 (28.1%) | 105 (40.7%) | |
Age (years) | |||||
Mean (SD) | 62.9 (9.55) | 62.3 (14.3) | 61.3 (17.2) | 0.145 | 62 (14.0) |
BMI (kg/m2) | |||||
Mean (SD) | 30.3 (4.56) | 27.8 (4.20) | 25.7 (5.48) | <0.001 | 27.9 (4.84) |
ASA Score | |||||
1 | 0 (0%) | 29 (15.1%) | 2 (6.3%) | <0.001 | 32 (12.4%) |
2 | 20 (58.8%) | 120 (62.5%) | 17 (53.1%) | 157 (60.8%) | |
3 | 13 (38.2%) | 41 (21.4%) | 13 (40.6%) | 67 (26%) | |
4 | 1 (2.9%) | 1 (0.5%) | 0 (0%) | 2 (0.8%) | |
Prior Abdominal Surgery | |||||
No | 19 (55.9%) | 153 (79.7%) | 21 (65.6%) | <0.001 | 193 (74.8%) |
Yes | 15 (44.1%) | 35 (18.2%) | 11 (34.4%) | 65 (25.2%) | |
Neoadjuvant Chemotherapy | |||||
No | 31 (91.2%) | 183 (95.3%) | 32 (100%) | 0.004 | 253 (98.1%) |
Yes | 3 (8.8%) | 2 (1.0%) | 0 (0%) | 5 (1.9%) | |
Type of Lesion | |||||
Benign | 13 (38.2%) | 88 (45.8%) | 15 (46.9%) | 0.837 | 118 (45%) |
Malignant | 21 (61.8%) | 103 (53.6%) | 16 (50.0%) | 140 (55%) | |
Diameter of resected tumor (mm) | |||||
Mean (SD) | 51.6 (33.1) | 35.2 (20.3) | 31.9 (25.7) | <0.001 | 39.6 (22.7) |
Before Matching | After Matching | |||||
---|---|---|---|---|---|---|
ODP (n = 31) | LDP (n = 162) | p Value | ODP (n = 31) | LDP (n = 31) | p Value | |
Gender | ||||||
Female | 14 (45.2%) | 95 (58.6%) | 0.234 | 14 (45.2%) | 16 (51.6%) | 0.799 |
Male | 17 (54.8%) | 67 (41.4%) | 17 (54.8%) | 15(48.4%) | ||
Age (years) | ||||||
Mean (SD) | 63.3 (9.34) | 61.7 (14.7) | 0.417 | 63.3 (9.34) | 62.5 (13.4) | 0.578 |
BMI (kg/m2) | ||||||
Mean (SD) | 30.3 (4.71) | 28.1 (4.18) | 0.020 | 30.3 (4.71) | 30 (4.70) | 0.894 |
ASA Score | ||||||
1 | 0 (0%) | 23 (14.2%) | 0.068 | 0 (0%) | 0 (0%) | |
2 | 19 (61.3%) | 102 (63%) | 19 (61.3%) | 18 (58.1%) | 0.978 | |
3 | 12 (38.7%) | 36 (22.2%) | 12 (38.7%) | 13 (41.9%) | ||
4 | 0 (0%) | 1 (0.6%) | 0 (0%) | 0 (0%) | ||
Prior Abdominal Surgery | ||||||
No | 18 (58.1%) | 132 (81.5%) | 0.008 | 18 (58.1%) | 20 (64.5%) | 0.794 |
Yes | 13 (41.9%) | 30 (18.5%) | 13 (41.9%) | 11 (35.5%) | ||
Neoadjuvant Chemotherapy | ||||||
No | 28 (90.3%) | 160 (98.8%) | 0.034 | 28 (90.3%) | 30 (96.8%) | 0.605 |
Yes | 3 (9.7%) | 2 (1.2%) | 3 (9.7%) | 1 (3.2%) | ||
Type of lesion | ||||||
Benign | 10 (32.3%) | 72 (44.4%) | 0.289 | 10 (32.3%) | 5 (16.1%) | 0.236 |
Malignant | 21 (67.7%) | 90 (55.6%) | 21 (67.7%) | 26 (83.9%) | ||
Diameter of resected tumor (mm) | ||||||
Mean (SD) | 51.6 (33.1) | 35.8 (19.9) | 0.014 | 51.6 (33.1) | 44.9 (23.6) | 0.535 |
number LNN Retrieved | ||||||
Mean (SD) | 15.6 (12.8) | 10.6 (7.61) | 0.062 | 15.6 (12.8) | 13.0 (6.57) | 0.804 MW |
number Pathologic.LNN | ||||||
Mean (SD) | 1.34 (2.21) | 0.94 (1.32) | 0.364 | 1.34 (2.21) | 1.14 (1.10) | 0.479 MW |
Intraoperative blood transfusion | ||||||
No | 25 (80.6%) | 152 (93.8%) | 0.361 | 25 (80.6%) | 28 (90.3%) | 0.936 |
Yes | 3 (9.7%) | 7 (4.3%) | 3 (9.7%) | 2 (6.5%) | ||
Postoperative ICU stay (days) | ||||||
Mean (SD) | 2.63 (2.98) | 0.26 (1.18) | <0.001 | 2.63 (2.98) | 0.13 (0.72) | <0.001 MW |
POPF & | 0.085 | 0.279 | ||||
None | 21 (67.7%) | 86 (53.1%) | ns | 21 (67.7%) | 18 (58.1%) | Ns |
Biochemical leak | 4 (12.9%) | 53 (32.7%) | ns | 4 (12.9%) | 9 (29%) | Ns |
Grade B/C | 6 (19.4%) | 23 (14.2%) | ns | 6 (19.4%) | 4 (12.7%) | Ns |
Resection margin | ||||||
R0 | 25 (83.3%) | 141 (87%) | 0.799 | 25 (83.3%) | 24 (77.4%) | 0.796 |
R1 | 5 (16.7%) | 21 (13%) | 5 (16.7%) | 7 (22.6%) | ||
Operative time (minute) | ||||||
Mean (SD) | 273 (80.1) | 210 (73.1) | <0.001 | 273 (80.1) | 216 (83.9) | 0.003 |
Estimated blood loss (mL) | ||||||
Mean (SD) | 620 (451) | 282 (355) | <0.001 | 620 (451) | 320 (344) | <0.001 |
Postoperative hospital stay (days) | ||||||
Mean (SD) | 16.9 (12.4) | 6.38 (5.01) | <0.001 | 16.9 (12.4) | 6.81 (6.32) | <0.001 MW |
Postoperative Clavien-Dindo morbidity ≥ grade 3 | ||||||
No | 27 (87.1%) | 139 (85.8%) | 1 | 27 (87.1%) | 26 (83.9%) | 0.983 |
Yes | 4 (12.9%) | 23 (14.2%) | 4 (12.9%) | 5 (16.1%) | ||
30-day mortality | ||||||
No | 29 (93.5%) | 160 (58.8%) | 0.960 # | 29 (93.5%) | 30 (96.8%) | 0.996 |
Yes | 1 (3.2%) | 2 (1.2%) | 1 (3.2%) | 1 (3.2%) | ||
90-day mortality | ||||||
No | 16 (51.6%) | 160 (98.2%) | 0.985 # | 16 (51.6%) | 30 (96.8%) | 0.985 # |
Yes | 0 (0%) | 2 (1.2%) | 0 (0%) | 1 (3.2%) |
Before Matching | After Matching | |||||
---|---|---|---|---|---|---|
ODP (n = 31) | RDP (n = 28) | p Value | ODP (n = 28) | RDP (n = 28) | p Value | |
Gender | ||||||
Female | 14 (45.2%) | 21 (75%) | 0.038 | 14 (50%) | 21 (75.0%) | 0.098 |
Male | 17 (54.8%) | 7 (25.0%) | 14 (50%) | 7 (25.0%) | ||
Age (years) | ||||||
Mean (SD) | 63.3 (9.34) | 60.8 (18.1) | 0.504 | 62.9 (9.62) | 60.8 (18.1) | 0.857 |
BMI (kg/m2) | ||||||
Mean (SD) | 30.3 (4.71) | 25.7 (5.41) | 0.001 | 29.8 (4.72) | 26.7 (5.65) | 0.072 |
ASA Score | ||||||
1 | 0 (0%) | 2 (7.1%) | 0.299 | 0 (0%) | 2 (7.1%) | 0.311 |
2 | 19 (61.3%) | 14 (50.0%) | 17 (60.7%) | 14 (50.0%) | ||
3 | 12 (38.7%) | 12 (42.9%) | 11 (39.3%) | 12 (42.9%) | ||
4 | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | ||
Prior Abdominal Surgery | ||||||
No | 18 (58.1%) | 19 (67.9%) | 0.612 | 18 (64.3%) | 19 (67.9%) | 0.987 |
Yes | 13 (41.9%) | 9 (32.1%) | 10 (35.7%) | 9 (32.1%) | ||
Neoadjuvant Chemotherapy | ||||||
No | 28 (90.3%) | 28 (100%) | 0.241 | 28 (100%) | 28 (100%) | 1 |
Yes | 3 (9.7%) | 0 (0%) | 0 (0%) | 0 (0%) | ||
Type of lesion | ||||||
Benign | 10 (32.3%) | 14 (50.0%) | 0.263 | 10 (35.7%) | 14 (50.0%) | 0.418 |
Malignant | 21 (67.7%) | 14 (50.0%) | 18 (64.3%) | 14 (50.0%) | ||
Diameter of resected tumor (mm) | ||||||
Mean (SD) | 51.6 (33.1) | 31.9 (25.7) | 0.001 | 49.7 (32.9) | 31.9 (25.7) | 0.003 |
number LNN Retrieved | ||||||
Mean (SD) | 15.6 (12.8) | 24.9 (15.0) | 0.013 | 15.2 (13.5) | 24.9 (15.0) | 0.011 MW |
number Pathologic.LNN | ||||||
Mean (SD) | 1.34 (2.21) | 1.83 (2.71) | 0.528 | 1.50 (2.28) | 1.83 (2.71) | 0.763 MW |
Intraoperative blood transfusion | ||||||
No | 25 (80.6%) | 28 (100%) | 0.244 | 22 (78.6%) | 28 (100%) | 0.196 |
Yes | 3 (9.7%) | 0 (0%) | 3 (10.7%) | 0 (0%) | ||
Postoperative ICU stay (days) | ||||||
Mean (SD) | 2.63 (2.98) | 1.64 (2.41) | 0.154 | 2.70 (3.02) | 1.64 (2.41) | 0.144 MW |
POPF & | 0.029 | 0.026 | ||||
None | 21 (67.7%) | 26 (92.9%) | ns | 19 (67.9%) | 26 (92.9%) | ns |
Biochemical leak | 4 (12.9%) | 2 (7.1%) | ns | 3 (10.7%) | 2 (7.1%) | ns |
Grade B/C | 6 (19.4%) | 0 (0%) | 0.08 | 6 (21.4%) | 0 (0%) | 0.057 |
Resection margin | ||||||
R0 | 25 (83.3%) | 26 (92.9%) | 0.420 | 22 (78.6%) | 26 (92.9%) | 0.713 £ |
R1 | 5 (16.7%) | 2 (7.1%) | 5 (17.9%) | 2 (7.1%) | ||
Operative time (min) | ||||||
Mean (SD) | 273 (80.1) | 340 (84.7) | 0.011 | 265 (78.4) | 340 (84.7) | 0.091 £ |
Estimated blood loss (mL) | ||||||
Mean (SD) | 620 (451) | 262 (284) | <0.001 | 603 (471) | 262 (284) | 0.126 MW £ |
Postoperative hospital stay (days) | ||||||
Mean (SD) | 16.9 (12.4) | 11.8 (5.36) | 0.057 | 17.5 (13.1) | 11.8 (5.36) | 0.001 MW £ |
Postoperative Clavien-Dindo morbidity ≥ grade 3 | ||||||
No | 27 (87.1%) | 18 (64.3%) | 0.062 | 24 (85.7%) | 18 (64.3%) | 0.384 £ |
Yes | 4 (12.9%) | 10 (35.7%) | 4 (14.3%) | 10 (35.7%) | ||
30-day mortality | ||||||
No | 29 (93.5%) | 27 (96.4%) | 0.998 | 27 (96.4%) | 27 (96.4%) | 0.997 £ |
Yes | 1 (3.2%) | 1 (3.6%) | 1 (3.6%) | 1 (3.6%) | ||
90-day mortality | ||||||
No | 16 (51.6%) | 27 (96.4%) | 0.975 # | 13 (46.4%) | 27 (96.4%) | 0.510 £ |
Yes | 0 (0%) | 1 (3.6%) | 0 (0%) | 1 (3.6%) |
Before Matching | After Matching | |||||
---|---|---|---|---|---|---|
LDP (n = 162) | RDP (n = 28) | p Value | LDP (n = 28) | RDP (n = 28) | p Value | |
Gender | ||||||
Female | 95 (58.6%) | 21 (75.0%) | 0.153 | 17 (60.7%) | 21 (75.0%) | 0.391 |
Male | 67 (41.4%) | 7 (25.0%) | 11 (39.3%) | 7 (25.0%) | ||
Age (years) | ||||||
Mean (SD) | 61.7 (14.7) | 60.8 (18.1) | 0.939 | 61.3 (14.9) | 60.8 (18.1) | 0.915 |
BMI (kg/m2) | ||||||
Mean (SD) | 28.1 (4.18) | 25.7 (5.41) | 0.004 | 25.1 (3.40) | 25.7 (5.41) | 0.961 |
ASA Score | ||||||
1 | 23 (14.2%) | 2 (7.1%) | 0.124 | 3 (10.7%) | 2 (7.1%) | 0.700 |
2 | 102 (63%) | 14 (50.0%) | ns | 11 (39.3%) | 14 (50.0%) | |
3 | 36 (22.2%) | 12 (42.9%) | ns | 14 (50.0%) | 12 (42.9%) | |
4 | 1 (0.6%) | ns | ||||
Prior Abdominal Surgery | ||||||
No | 132 (81.5%) | 19 (67.9%) | 0.163 | 23 (82.1%) | 19 (67.9%) | 0.355 |
Yes | 30 (18.5%) | 9 (32.1%) | 5 (17.9%) | 9 (32.1%) | ||
Neoadjuvant Chemotherapy | ||||||
No | 168 (98.8%) | 28 (100%) | 0.999 | 28 (100%) | 28 (100%) | 1 |
Yes | 2 (1.2%) | 0 (0%) | 0 (0%) | 0 (0%) | ||
Type of lesion | ||||||
Benign | 72 (44.4%) | 14 (50.0%) | 0.734 | 12(42.9%) | 14 (50.0%) | 0.789 |
Malignant | 90 (55.6%) | 14 (50.0%) | 16 (57.1%) | 14 (50.0%) | ||
Diameter of resected tumor (mm) | ||||||
Mean (SD) | 35.8 (19.9) | 31.9 (25.7) | 0.128 | 31.6 (19.1) | 31.9 (25.7) | 0.902 |
number LNN Retrieved | ||||||
Mean (SD) | 10.6 (7.70) | 24.9 (15.0) | <0.001 | 7.69 (5.51) | 24.9 (15.0) | <0.001 |
number Pathologic.LNN | ||||||
Mean (SD) | 0.94 (1.32) | 1.83 (2.71) | 0.287 | 0.55 (0.82) | 1.8 (2.71) | 0.206 |
Intraoperative blood transfusion | ||||||
No | 152 (93.8%) | 28 (100%) | 0.554 | 28 (100%) | 28 (100%) | 1 |
Yes | 7 (4.3%) | 0 (0%) | 0 (0%) | 0 (0%) | ||
Postoperative ICU stay (days) | ||||||
Mean (SD) | 0.26 (1.18) | 1.64 (2.41) | <0.001 | 0.63 (1.74) | 1.64 (2.41) | <0.001 MW |
POPF & | <0.001 | <0.001 | ||||
None | 86 (53.1%) | 26 (92.9%) | <0.001 | 14 (50.0%) | 26 (92.9%) | <0.001 |
Biochemical leak | 53 (32.7%) | 2 (7.1%) | 0.024 | 9 (32.1%) | 2 (7.1%) | ns |
Grade B/C | 23 (14.2%) | 0 (0%) | ns | 5 (17.9%) | 0 (0%) | 0.014 |
Conversion | 0.007 | 0.156 | ||||
no | 152 (89.4%) | 18 (64.3%) | 24 (85.7%) | 18 (64.3%) | ||
yes | 7 (4.1%) | 5 (17.9%) | 1 (3.6%) | 5 (17.9%) | ||
Resection margin | ||||||
R0 | 141 (87%) | 26 (92.9%) | 0.577 | 27 (96.4%) | 26 (92.9%) | 0.993 |
R1 | 21 (13%) | 2 (7.1%) | 1 (3.6%) | 2 (7.1%) | ||
Operative time (min) | ||||||
Mean (SD) | 210 (73.1) | 340 (84.7) | <0.001 | 210 (66.7) | 340 (84.7) | <0.001 |
Estimated blood loss (mL) | ||||||
Mean (SD) | 282 (355) | 262 (284) | 0.884 | 222 (215) | 262 (284) | 0.817 MW |
Postoperative hospital stay (days) | ||||||
Mean (SD) | 6.38 (5.01) | 11.8 (5.36) | <0.001 | 6.61 (4.17) | 11.8 (5.36) | <0.001 MW |
Postoperative Clavien-Dindo morbidity ≥ grade 3 | ||||||
No | 139 (85.8%) | 18 (64.3%) | 0.010 | 21 (75.0%) | 18 (64.3%) | 0.561 |
Yes | 23 (14.2%) | 10 (35.7%) | 7 (25.0%) | 10 (35.7%) | ||
30-day mortality | ||||||
No | 160 (98.8%) | 27 (96.4%) | 0.924 | 27 (96.4%) | 27 (96.4%) | 1 |
Yes | 2 (1.2%) | 1 (3.6%) | 1 (3.6%) | 1 (3.6%) | ||
90-day mortality | ||||||
No | 160 (98.8%) | 27 (96.4%) | 0.924 | 27 (96.4%) | 27 (96.4%) | 1 |
Yes | 2 (1.2%) | 1 (3.6%) | 1 (3.6%) | 1 (3.6%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acciuffi, S.; Hilal, M.A.; Ferrari, C.; Al-Madhi, S.; Chouillard, M.-A.; Messaoudi, N.; Croner, R.S.; Gumbs, A.A. Study International Multicentric Pancreatic Left Resections (SIMPLR): Does Surgical Approach Matter? Cancers 2024, 16, 1051. https://doi.org/10.3390/cancers16051051
Acciuffi S, Hilal MA, Ferrari C, Al-Madhi S, Chouillard M-A, Messaoudi N, Croner RS, Gumbs AA. Study International Multicentric Pancreatic Left Resections (SIMPLR): Does Surgical Approach Matter? Cancers. 2024; 16(5):1051. https://doi.org/10.3390/cancers16051051
Chicago/Turabian StyleAcciuffi, Sara, Mohammed Abu Hilal, Clarissa Ferrari, Sara Al-Madhi, Marc-Anthony Chouillard, Nouredin Messaoudi, Roland S. Croner, and Andrew A. Gumbs. 2024. "Study International Multicentric Pancreatic Left Resections (SIMPLR): Does Surgical Approach Matter?" Cancers 16, no. 5: 1051. https://doi.org/10.3390/cancers16051051
APA StyleAcciuffi, S., Hilal, M. A., Ferrari, C., Al-Madhi, S., Chouillard, M. -A., Messaoudi, N., Croner, R. S., & Gumbs, A. A. (2024). Study International Multicentric Pancreatic Left Resections (SIMPLR): Does Surgical Approach Matter? Cancers, 16(5), 1051. https://doi.org/10.3390/cancers16051051