Automatic 3D Augmented-Reality Robot-Assisted Partial Nephrectomy Using Machine Learning: Our Pioneer Experience
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Autorino, R.; Porpiglia, F.; Dasgupta, P.; Rassweiler, J.; Catto, J.W.; Hampton, L.J.; Lima, E.; Mirone, V.; Derweesh, I.H.; Debruyne, F.M.J. Precision Surgery and Genitourinary Cancers. Eur. J. Surg. Oncol. 2017, 43, 893–908. [Google Scholar] [CrossRef] [PubMed]
- Porpiglia, F.; Amparore, D.; Checcucci, E.; Autorino, R.; Manfredi, M.; Iannizzi, G.; Fiori, C.; ESUT Research Group. Current Use of Three-Dimensional Model Technology in Urology: A Road Map for Personalised Surgical Planning. Eur. Urol. Focus 2018, 4, 652–656. [Google Scholar] [CrossRef] [PubMed]
- Minervini, A.; Campi, R.; Lane, B.R.; De Cobelli, O.; Sanguedolce, F.; Hatzichristodoulou, G.; Antonelli, A.; Noyes, S.; Mari, A.; Rodriguez-Faba, O.; et al. Impact of Resection Technique on Perioperative Outcomes and Surgical Margins after Partial Nephrectomy for Localized Renal Masses: A Prospective Multicenter Study. J. Urol. 2020, 203, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Ghazi, A.; Melnyk, R.; Hung, A.J.; Collins, J.; Ertefaie, A.; Saba, P.; Gurung, P.; Frye, T.; Rashid, H.; Wu, G.; et al. Multi-Institutional Validation of a Perfused Robot-Assisted Partial Nephrectomy Procedural Simulation Platform Utilizing Clinically Relevant Objective Metrics of Simulators (CROMS). BJU Int. 2021, 127, 645–653. [Google Scholar] [CrossRef]
- Amparore, D.; Pecoraro, A.; Checcucci, E.; DE Cillis, S.; Piramide, F.; Volpi, G.; Piana, A.; Verri, P.; Granato, S.; Sica, M.; et al. 3D Imaging Technologies in Minimally Invasive Kidney and Prostate Cancer Surgery: Which Is the Urologists’ Perception? Minerva Urol. Nephrol. 2022, 74, 178–185. [Google Scholar] [CrossRef]
- Amparore, D.; Piramide, F.; De Cillis, S.; Verri, P.; Piana, A.; Pecoraro, A.; Burgio, M.; Manfredi, M.; Carbonara, U.; Marchioni, M.; et al. Robotic Partial Nephrectomy in 3D Virtual Reconstructions Era: Is the Paradigm Changed? World J. Urol. 2022, 40, 659–670. [Google Scholar] [CrossRef] [PubMed]
- Porpiglia, F.; Checcucci, E.; Amparore, D.; Piramide, F.; Volpi, G.; Granato, S.; Verri, P.; Manfredi, M.; Bellin, A.; Piazzolla, P.; et al. Three-Dimensional Augmented Reality Robot-Assisted Partial Nephrectomy in Case of Complex Tumours (PADUA ≥ 10): A New Intraoperative Tool Overcoming the Ultrasound Guidance. Eur. Urol. 2020, 78, 229–238. [Google Scholar] [CrossRef]
- Porpiglia, F.; Checcucci, E.; Amparore, D.; Manfredi, M.; Massa, F.; Piazzolla, P.; Manfrin, D.; Piana, A.; Tota, D.; Bollito, E.; et al. Three-Dimensional Elastic Augmented-Reality Robot-Assisted Radical Prostatectomy Using Hyperaccuracy Three-Dimensional Reconstruction Technology: A Step Further in the Identification of Capsular Involvement. Eur. Urol. 2019, 76, 505–514. [Google Scholar] [CrossRef]
- Sica, M.; Piazzolla, P.; Amparore, D.; Verri, P.; De Cillis, S.; Piramide, F.; Volpi, G.; Piana, A.; Di Dio, M.; Alba, S.; et al. 3D Model Artificial Intelligence-Guided Automatic Augmented Reality Images during Robotic Partial Nephrectomy. Diagnostics 2023, 13, 3454. [Google Scholar] [CrossRef]
- Porpiglia, F.; Checcucci, E.; Amparore, D.; Autorino, R.; Piana, A.; Bellin, A.; Piazzolla, P.; Massa, F.; Bollito, E.; Gned, D.; et al. Augmented-Reality Robot-Assisted Radical Prostatectomy Using Hyper-Accuracy Three-Dimensional Reconstruction (HA3DTM) Technology: A Radiological and Pathological Study. BJU Int. 2019, 123, 834–845. [Google Scholar] [CrossRef]
- Piana, A.; Gallioli, A.; Amparore, D.; Diana, P.; Territo, A.; Campi, R.; Gaya, J.M.; Guirado, L.; Checcucci, E.; Bellin, A.; et al. Three-Dimensional Augmented Reality-Guided Robotic-Assisted Kidney Transplantation: Breaking the Limit of Atheromatic Plaques. Eur. Urol. 2022, 82, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Padovan, E.; Marullo, G.; Tanzi, L.; Piazzolla, P.; Moos, S.; Porpiglia, F.; Vezzetti, E. A Deep Learning Framework for Real-Time 3D Model Registration in Robot-Assisted Laparoscopic Surgery. Int. J. Med. Robot. Comput. Assist. Surg. 2022, 18, e2387. [Google Scholar] [CrossRef] [PubMed]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A New Method of Classifying Prognostic Comorbidity in Longitudinal Studies: Development and Validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Ficarra, V.; Novara, G.; Secco, S.; Macchi, V.; Porzionato, A.; De Caro, R.; Artibani, W. Preoperative Aspects and Dimensions Used for an Anatomical (PADUA) Classification of Renal Tumours in Patients Who Are Candidates for Nephron-Sparing Surgery. Eur. Urol. 2009, 56, 786–793. [Google Scholar] [CrossRef]
- Clavien, P.A.; Barkun, J.; de Oliveira, M.L.; Vauthey, J.N.; Dindo, D.; Schulick, R.D.; de Santibañes, E.; Pekolj, J.; Slankamenac, K.; Bassi, C.; et al. The Clavien-Dindo Classification of Surgical Complications: Five-Year Experience. Ann. Surg. 2009, 250, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Meyer-Szary, J.; Luis, M.S.; Mikulski, S.; Patel, A.; Schulz, F.; Tretiakow, D.; Fercho, J.; Jaguszewska, K.; Frankiewicz, M.; Pawłowska, E.; et al. The Role of 3D Printing in Planning Complex Medical Procedures and Training of Medical Professionals-Cross-Sectional Multispecialty Review. Int. J. Environ. Res. Public Health 2022, 19, 3331. [Google Scholar] [CrossRef] [PubMed]
- Ukimura, O.; Gill, I.S. Image-Fusion, Augmented Reality, and Predictive Surgical Navigation. Urol. Clin. 2009, 36, 115–123. [Google Scholar] [CrossRef]
- Checcucci, E.; Pecoraro, A.; Amparore, D.; De Cillis, S.; Granato, S.; Volpi, G.; Sica, M.; Verri, P.; Piana, A.; Piazzolla, P.; et al. The Impact of 3D Models on Positive Surgical Margins after Robot-Assisted Radical Prostatectomy. World J. Urol. 2022, 40, 2221–2229. [Google Scholar] [CrossRef]
- Cannon, P.; Setia, S.A.; Klein-Gardner, S.; Kavoussi, N.; Webster Iii, R.J.; Herrell, D. Are 3D Image Guidance Systems Ready for Use? A Comparative Analysis of 3D Image Guidance Implementations in Minimally Invasive Partial Nephrectomy. J. Endourol. 2024. [Google Scholar] [CrossRef]
- Bertolo, R.; Antonelli, A.; Minervini, A.; Campi, R. Off-Clamp Versus On-Clamp Partial Nephrectomy: Re-Envision of a Dilemma. Eur. Urol. Oncol. 2024, 2024, S2588-9311. [Google Scholar] [CrossRef]
- Amparore, D.; Pecoraro, A.; Piramide, F.; Verri, P.; Checcucci, E.; De Cillis, S.; Piana, A.; Burgio, M.; Di Dio, M.; Manfredi, M.; et al. Three-Dimensional Imaging Reconstruction of the Kidney’s Anatomy for a Tailored Minimally Invasive Partial Nephrectomy: A Pilot Study. Asian J. Urol. 2022, 9, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Amparore, D.; Piramide, F.; Checcucci, E.; Verri, P.; De Cillis, S.; Piana, A.; Volpi, G.; Busacca, G.; Colombo, M.; Fiori, C.; et al. Three-Dimensional Virtual Models of the Kidney with Colored Perfusion Regions: A New Algorithm-Based Tool for Optimizing the Clamping Strategy During Robot-Assisted Partial Nephrectomy. Eur. Urol. 2023, 84, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Amparore, D.; Piramide, F.; Verri, P.; Checcucci, E.; De Cillis, S.; Piana, A.; Volpi, G.; Burgio, M.; Busacca, G.; Colombo, M.; et al. New Generation of 3D Virtual Models with Perfusional Zones: Perioperative Assistance for the Best Pedicle Management during Robotic Partial Nephrectomy. Curr. Oncol. 2023, 30, 4021–4032. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez Peñaranda, N.; Eissa, A.; Ferretti, S.; Bianchi, G.; Di Bari, S.; Farinha, R.; Piazza, P.; Checcucci, E.; Belenchón, I.R.; Veccia, A.; et al. Artificial Intelligence in Surgical Training for Kidney Cancer: A Systematic Review of the Literature. Diagnostics 2023, 13, 3070. [Google Scholar] [CrossRef] [PubMed]
- Cacciamani, G.E.; Siemens, D.R.; Gill, I. Generative Artificial Intelligence in Health Care. J. Urol. 2023, 210, 723–725. [Google Scholar] [CrossRef] [PubMed]
- Rodler, S.; Kopliku, R.; Ulrich, D.; Kaltenhauser, A.; Casuscelli, J.; Eismann, L.; Waidelich, R.; Buchner, A.; Butz, A.; Cacciamani, G.E.; et al. Patients’ Trust in Artificial Intelligence-Based Decision-Making for Localized Prostate Cancer: Results from a Prospective Trial. Eur. Urol. Focus 2023, in press. [Google Scholar] [CrossRef] [PubMed]
- Checcucci, E.; Piana, A.; Volpi, G.; Piazzolla, P.; Amparore, D.; De Cillis, S.; Piramide, F.; Gatti, C.; Stura, I.; Bollito, E.; et al. Three-Dimensional Automatic Artificial Intelligence Driven Augmented-Reality Selective Biopsy during Nerve-Sparing Robot-Assisted Radical Prostatectomy: A Feasibility and Accuracy Study. Asian J. Urol. 2023, 10, 407–415. [Google Scholar] [CrossRef]
- Checcucci, E.; Autorino, R.; Cacciamani, G.E.; Amparore, D.; De Cillis, S.; Piana, A.; Piazzolla, P.; Vezzetti, E.; Fiori, C.; Veneziano, D.; et al. Artificial Intelligence and Neural Networks in Urology: Current Clinical Applications. Minerva Urol. Nefrol. 2020, 72, 49–57. [Google Scholar] [CrossRef]
- Tanzi, L.; Piazzolla, P.; Porpiglia, F.; Vezzetti, E. Real-Time Deep Learning Semantic Segmentation during Intra-Operative Surgery for 3D Augmented Reality Assistance. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 1435–1445. [Google Scholar] [CrossRef]
- Amparore, D.; Checcucci, E.; Piazzolla, P.; Piramide, F.; De Cillis, S.; Piana, A.; Verri, P.; Manfredi, M.; Fiori, C.; Vezzetti, E.; et al. Indocyanine Green Drives Computer Vision Based 3D Augmented Reality Robot Assisted Partial Nephrectomy: The Beginning of “Automatic” Overlapping Era. Urology 2022, 164, e312–e316. [Google Scholar] [CrossRef]
- De Backer, P.; Van Praet, C.; Simoens, J.; Peraire Lores, M.; Creemers, H.; Mestdagh, K.; Allaeys, C.; Vermijs, S.; Piazza, P.; Mottaran, A.; et al. Improving Augmented Reality through Deep Learning: Real-Time Instrument Delineation in Robotic Renal Surgery. Eur. Urol. 2023, 84, 86–91. [Google Scholar] [CrossRef] [PubMed]
Inclusion Criteria | Exclusion Criteria |
---|---|
Patients > 18 years | Anatomic abnormalities (e.g., transplanted kidney, horseshoe-shaped kidney, etc.) |
Single-organ-confined renal mass cT1a | Multiple renal neoplasms |
Low-quality preoperative imaging (e.g., CT images with a slice acquisition interval of >3 mm or suboptimal enhancement) | |
Imaging older than three months |
Variables | ||
---|---|---|
Number of patients | 13 | |
Age, yrs., mean (SD) | 65 (12) | |
BMI (kg/m2), mean (SD) | 26.4 (4.4) | |
CCI, median (IQR) | 2 (2–3) | |
ASA score, median (IQR) | 2 (1–2) | |
CT lesion size, mm., mean (IQR) | 31 (22–41) | |
Clinical stage, no. (%) |
| 8 (61.5) |
| 3 (23.1) | |
| 2 (15.4) | |
Tumor location, no. (%) |
| 4 (30.8) |
| 6 (46.2) | |
| 3 (23.1) | |
Tumor growth pattern, no. (%) |
| 2 (15.4) |
| 6 (46.2) | |
| 5 (38.4) | |
Kidney face location, no. (%) |
| 8 (61.5) |
| 5 (38.4) | |
Kidney rim location, no. (%) |
| 9 (69.2) |
| 4 (30.8) | |
PADUA score, median (IQR) | 8 (7–10) | |
Preoperative score (mg/dL), mean SD | 0.87 (0.5) | |
Preoperative eGFR (ml/min), mean SD—MDRD formula | 90.0 (16.4) | |
Operative time (min), mean (SD) | 88.6 (15.0) | |
Hilar clamping, no. (%) |
| 4 (30.8) |
| 7 (53.8) | |
| 2 (15.4) | |
Ischemia time (min), mean (SD) |
| 19.0 (5.6) |
| 25.4 (10.3) | |
EBL (cc), mean (SD) | 193.4 (120.3) | |
Transfusion rate, no. (%) | 1 (7.7) | |
Extirpative technique, no. (%) |
| 4 (30.8) |
| 9 (69.2) | |
Opening collecting system, no. (%) |
| 4 (30.8) |
| 9 (69.2) | |
Intraoperative complications, no. (%) | 0 (0) | |
Postoperative complications, no. (%) | 2 (15.4) | |
Postoperative complications according to Clavien–Dindo, no. (%) |
| 0 (0) |
Variables | |
---|---|
Co-registration time (s), median (IQR) | 11 (6–13) |
Static co-registration temporary failure, no. of patients (%) | 1 (7.7) |
Dynamic co-registration temporary failure, no. of patients (%) | 2 (15.4) |
Co-registration complete failure, no. of patients (%) | 1 (7.7) |
Variables | ||
---|---|---|
Postoperative score (mg/dL), mean (SD) | 1.15 (0.71) | |
Postoperative eGFR (ml/min), mean (SD)—MDRD formula | 76.5 (20.1) | |
Pathological stage, no. (%) |
| 1 (7.7) |
| 9 (69.2) | |
| 2 (15.4) | |
| 1 (7.7) | |
Pathological size (mm), mean SD | 3.9 (21.6) | |
Positive surgical margin rate, no. (%) | 0 (0) | |
Histopathological findings, no. (%) |
| 9 (69.2) |
| 2 (15.4) | |
| 1 (7.7) | |
| 1 (7.7) | |
ISUP grade, no. (%) |
| 4 (30.8) |
| 7 (53.8) | |
| 1 (7.7) | |
| 1 (7.7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piana, A.; Amparore, D.; Sica, M.; Volpi, G.; Checcucci, E.; Piramide, F.; De Cillis, S.; Busacca, G.; Scarpelli, G.; Sidoti, F.; et al. Automatic 3D Augmented-Reality Robot-Assisted Partial Nephrectomy Using Machine Learning: Our Pioneer Experience. Cancers 2024, 16, 1047. https://doi.org/10.3390/cancers16051047
Piana A, Amparore D, Sica M, Volpi G, Checcucci E, Piramide F, De Cillis S, Busacca G, Scarpelli G, Sidoti F, et al. Automatic 3D Augmented-Reality Robot-Assisted Partial Nephrectomy Using Machine Learning: Our Pioneer Experience. Cancers. 2024; 16(5):1047. https://doi.org/10.3390/cancers16051047
Chicago/Turabian StylePiana, Alberto, Daniele Amparore, Michele Sica, Gabriele Volpi, Enrico Checcucci, Federico Piramide, Sabrina De Cillis, Giovanni Busacca, Gianluca Scarpelli, Flavio Sidoti, and et al. 2024. "Automatic 3D Augmented-Reality Robot-Assisted Partial Nephrectomy Using Machine Learning: Our Pioneer Experience" Cancers 16, no. 5: 1047. https://doi.org/10.3390/cancers16051047
APA StylePiana, A., Amparore, D., Sica, M., Volpi, G., Checcucci, E., Piramide, F., De Cillis, S., Busacca, G., Scarpelli, G., Sidoti, F., Alba, S., Piazzolla, P., Fiori, C., Porpiglia, F., & Di Dio, M. (2024). Automatic 3D Augmented-Reality Robot-Assisted Partial Nephrectomy Using Machine Learning: Our Pioneer Experience. Cancers, 16(5), 1047. https://doi.org/10.3390/cancers16051047