The Use of Gene Expression Profiling and Biomarkers in Melanoma Diagnosis and Predicting Recurrence: Implications for Surveillance and Treatment
Abstract
:Simple Summary
Abstract
1. Introduction
2. Gene Expression Profiling
2.1. Gene Expression Profiling for Initial Cutaneous Melanoma Diagnosis
2.2. Pigmented Lesion Assay
2.3. MyPath Melanoma
2.4. Gene Expression Profiling for Melanoma Prognostication
2.4.1. The 31-GEP Test
2.4.2. The Clinicopathologic and Gene Expression Profile Model (CP-GEP, MerlinTM)
2.5. The 8-GEP Test (MelaGenix)
3. Biomarkers for Melanoma Prognostication
3.1. Lactose Dehydrogenase (LDH)
3.2. Circulating Tumor DNA (ct DNA)
SignateraTM
4. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- National Cancer Institute. Cancer Stat Facts: Melanoma of the Skin. Bethesda, MD, USA. Available online: https://seer.cancer.gov/statfacts/html/melan.html (accessed on 24 December 2023).
- National Comprehensive Cancer Network. Clinical Practice Guidelines in Oncology Melanoma: Cutaneous Version 2.2023. Available online: https://www.nccn.org/professionals/physician_gls/pdf/cutaneous_melanoma.pdf (accessed on 24 December 2023).
- Narrandes, S.; Xu, W. Gene expression detection assay for cancer clinical use. J. Cancer 2018, 9, 2249–2265. [Google Scholar] [CrossRef] [PubMed]
- Swetter, S.M.; Tsao, H.; Bichakjian, C.K.; Curiel-Lewandrowski, C.; Elder, D.E.; Gershenwald, J.E.; Guild, V.; Grant-Kels, J.M.; Halpern, A.C.; Johnson, T.M.; et al. Guidelines of care for the management of primary cutaneous melanoma. J. Am. Acad. Dermatol. 2019, 80, 208–250. [Google Scholar] [CrossRef] [PubMed]
- Kitrell, B.M.; Blue, E.D.; Siller, A.; Lobl, M.B.; Evans, T.D.; Whitley, M.J.; Wysong, A. Gene Expression Profiles in Cutaneous Oncology. Dermatol. Clin. 2023, 41, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Nachbar, F.; Stolz, W.; Merkle, T.; Cognetta, A.B.; Vogt, T.; Landthaler, M.; Bilek, P.; Braun-Falco, O.; Plewig, G. The ABCD rule of dermatoscopy: High prospective value in the diagnosis of doubtful melanocytic skin lesions. J. Am. Acad. Dermatol. 1994, 30, 551–559. [Google Scholar] [CrossRef]
- Brouha, B.; Ferris, L.; Skelsey, M.; Peck, G.; Rock, J.; Nguyen, A.; Yao, Z.; Howell, M.; Jansen, B.; Cockerell, C. Genomic Atypia to Enrich Melanoma Positivity in Biopsied Lesions: Gene Expression and Pathology Findings from a Large U.S. Registry Study. Ski. J. Cutan. Med. 2021, 5, 13–18. [Google Scholar] [CrossRef]
- Hawryluk, E.B.; Sober, A.J.; Piris, A.; Nazarian, R.M.; Hoang, M.P.; Tsao, H.; Mihm, M.C.; Duncan, L.M. Histologically challenging melanocytic tumors referred to a tertiary care pigmented lesion clinic. J. Am. Acad. Dermatol. 2012, 67, 727–735. [Google Scholar] [CrossRef]
- Shoo, B.A.; Sagebiel, R.W.; Kashani-Sabet, M. Discordance in the histopathologic diagnosis of melanoma at a melanoma referral center. J. Am. Acad. Dermatol. 2010, 62, 751–756. [Google Scholar] [CrossRef] [PubMed]
- McGinnis, K.S.; Lessin, S.R.; Elder, D.E.; Guerry, D., IV; Schuchter, L.; Ming, M.; Elenitsas, R. Pathology review of cases presenting to a multidisciplinary pigmented lesion clinic. Arch. Dermatol. 2002, 138, 617–621. [Google Scholar] [CrossRef]
- Gerami, P.; Yao, Z.; Polsky, D.; Jansen, B.; Busam, K.; Ho, J.; Martini, M.; Ferris, L.K. Development and validation of a noninvasive 2-gene molecular assay for cutaneous melanoma. J. Am. Acad. Dermatol. 2017, 76, 114–120.e2. [Google Scholar] [CrossRef]
- Nault, A.; Zhang, C.; Kim, K.M.; Saha, S.; Bennett, D.D.; Xu, Y.G. Biopsy Use in Skin Cancer Diagnosis: Comparing Dermatology Physicians and Advanced Practice Professionals. JAMA Dermatol. 2015, 151, 899–902. [Google Scholar] [CrossRef]
- Anderson, A.M.; Matsumoto, M.; Saul, M.I.; Secrest, A.M.; Ferris, L.K. Accuracy of skin cancer diagnosis by physician assistants compared with dermatologists in a large health care system. JAMA Dermatol. 2018, 154, 569–573. [Google Scholar] [CrossRef]
- Skelsey, M.; Brouha, B.; Rock, J.; Howell, M.; Jansen, B.; Clarke, L.; Peck, G. Non-Invasive Detection of Genomic Atypia Increases Real-World NPV and PPV of the Melanoma Diagnostic Pathway and Reduces Biopsy Burden. Ski. J. Cutan. Med. 2021, 5, 512–523. [Google Scholar] [CrossRef]
- Ludzik, J.; Lee, C.; Witkowski, A. Potential Limitations in the Clinical Adoption of 3-GEP Pigmented Lesion Assay for Melanoma Triage by Dermatologists and Advanced Practice Practitioners. Cureus 2022, 14, e31914. [Google Scholar] [CrossRef]
- Jackson, S.R.; Jansen, B.; Yao, Z.; Ferris, L.K. Risk Stratification of Severely Dysplastic Nevi by Non-Invasively Obtained Gene Expression and Mutation Analyses. Ski. J. Cutan. Med. 2020, 4, 124–129. [Google Scholar] [CrossRef]
- Cullison, S.; Ferris, L.; Yao, Z.; Ibarra, C.; Howell, M.; Jansen, B. Combining DNA and RNA Analyses Enhances Non-Invasive Early Detection of Cutaneous Melanoma. Ski. J. Cutan. Med. 2020, 4, s126. [Google Scholar] [CrossRef]
- Clarke, L.E.; Warf, M.B.; Flake, D.D.; Hartman, A.; Tahan, S.; Shea, C.R.; Gerami, P.; Messina, J.; Florell, S.R.; Wenstrup, R.J.; et al. Clinical validation of a gene expression signature that differentiates benign nevi from malignant melanoma. J. Cutan. Pathol. 2015, 42, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Clarke, L.E.; Flake, D.D.; Busam, K.; Cockerell, C.; Helm, K.; McNiff, J.; Reed, J.; Tschen, J.; Kim, J.; Barnhill, R.; et al. An independent validation of a gene expression signature to differentiate malignant melanoma from benign melanocytic nevi. Cancer 2017, 123, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Gerami, P.; Cook, R.W.; Wilkinson, J.; Russell, M.C.; Dhillon, N.; Amaria, R.N.; Gonzalez, R.; Lyle, S.; Johnson, C.E.; Oelschlager, K.M.; et al. Development of a prognostic genetic signature to predict the metastatic risk associated with cutaneous melanoma. Clin. Cancer Res. 2015, 21, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Gerami, P.; Cook, R.W.; Russell, M.C.; Wilkinson, J.; Amaria, R.N.; Gonzalez, R.; Lyle, S.; Jackson, G.L.; Greisinger, A.J.; Johnson, C.E.; et al. Gene expression profiling for molecular staging of cutaneous melanoma in patients undergoing sentinel lymph node biopsy. J. Am. Acad. Dermatol. 2015, 72, 780–785.e3. [Google Scholar] [CrossRef] [PubMed]
- Zager, J.S.; Gastman, B.R.; Leachman, S.; Gonzalez, R.C.; Fleming, M.D.; Ferris, L.K.; Ho, J.; Miller, A.R.; Cook, R.W.; Covington, K.R.; et al. Performance of a prognostic 31-gene expression profile in an independent cohort of 523 cutaneous melanoma patients. BMC Cancer 2018, 18, 130. [Google Scholar] [CrossRef]
- Ferris, L.K.; Farberg, A.S.; Middlebrook, B.; Johnson, C.E.; Lassen, N.; Oelschlager, K.M.; Maetzold, D.J.; Cook, R.W.; Rigel, D.S.; Gerami, P. Identification of high-risk cutaneous melanoma tumors is improved when combining the online American Joint Committee on Cancer Individualized Melanoma Patient Outcome Prediction Tool with a 31-gene expression profile–based classification. J. Am. Acad. Dermatol. 2017, 76, 818–825.e3. [Google Scholar] [CrossRef] [PubMed]
- Podlipnik, S.; Carrera, C.; Boada, A.; Richarz, N.; López-Estebaranz, J.; Pinedo-Moraleda, F.; Elosua-González, M.; Martín-González, M.; Carrillo-Gijón, R.; Redondo, P.; et al. Early outcome of a 31-gene expression profile test in 86 AJCC stage IB-II melanoma patients. A prospective multicentre cohort study. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 857–862. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, E.C.; DeBloom, J.R.; Lee, J.; Sussman, J.J.; Covington, K.R.; Middlebrook, B.; Johnson, C.; Cook, R.W.; Slingluff, C.L., Jr.; McMasters, K.M. Interim analysis of survival in a prospective, multi-center registry cohort of cutaneous melanoma tested with a prognostic 31-gene expression profile test. J. Hematol. Oncol. 2017, 10, 152. [Google Scholar] [CrossRef]
- Hsueh, E.C.; DeBloom, J.R.; Lee, J.H.; Sussman, J.J.; Covington, K.R.; Caruso, H.G.; Quick, A.P.; Cook, R.W.; Slingluff, C.L., Jr.; McMasters, K.M. Long-Term Outcomes in a Multicenter, Prospective Cohort Evaluating the Prognostic 31-Gene Expression Profile for Cutaneous Melanoma. JCO Precis. Med. 2021, 5, 589–601. [Google Scholar] [CrossRef]
- Greenhaw, B.N.; Zitelli, J.A.; Brodland, D.G. Estimation of prognosis in invasive cutaneous melanoma: An independent study of the accuracy of a gene expression profile test. Dermatol. Surg. 2018, 44, 1494–1500. [Google Scholar] [CrossRef]
- Keller, J.; Schwartz, T.L.; Lizalek, J.M.; Chang, E.; Patel, A.D.; Hurley, M.Y.; Hsueh, E.C. Prospective validation of the prognostic 31-gene expression profiling test in primary cutaneous melanoma. Cancer Med. 2019, 8, 2205–2212. [Google Scholar] [CrossRef]
- Greenhaw, B.N.; Covington, K.R.; Kurley, S.J.; Yeniay, Y.; Cao, N.A.; Plasseraud, K.M.; Cook, R.W.; Hsueh, E.C.; Gastman, B.R.; Wei, M.L. Molecular risk prediction in cutaneous melanoma: A meta-analysis of the 31-gene expression profile prognostic test in 1,479 patients. J. Am. Acad. Dermatol. 2020, 83, 745–753. [Google Scholar] [CrossRef] [PubMed]
- Sabel, M.S. Genomic Expression Profiling in Melanoma and the Road to Clinical Practice. Ann. Surg. Oncol. 2022, 29, 764–766. [Google Scholar] [CrossRef]
- Grossman, D.; Kim, C.C.; Hartman, R.I.; Berry, E.; Nelson, K.C.; Okwundu, N.; Curiel-Lewandrowski, C.; Leachman, S.A.; Swetter, S.M. Prognostic gene expression profiling in melanoma: Necessary steps to incorporate into clinical practice. Melanoma Manag. 2019, 6, MMT32. [Google Scholar] [CrossRef]
- Grossman, D.; Okwundu, N.; Bartlett, E.K.; Marchetti, M.A.; Othus, M.; Coit, D.G.; Hartman, R.I.; Leachman, S.A.; Berry, E.G.; Korde, L.; et al. Prognostic Gene Expression Profiling in Cutaneous Melanoma: Identifying the Knowledge Gaps and Assessing the Clinical Benefit. JAMA Dermatol. 2020, 156, 1004–1011. [Google Scholar] [CrossRef]
- Vetto, J.T.; Hsueh, E.C.; Gastman, B.R.; Dillon, L.D.; A Monzon, F.; Cook, R.W.; Keller, J.; Huang, X.; Fleming, A.; Hewgley, P.; et al. Guidance of sentinel lymph node biopsy decisions in patients with T1–T2 melanoma using gene expression profiling. Future Oncol. 2019, 15, 1207–1217. [Google Scholar] [CrossRef]
- Whitman, E.D.; Koshenkov, V.P.; Gastman, B.R.; Lewis, D.; Hsueh, E.C.; Pak, H.; Trezona, T.P.; Davidson, R.S.; McPhee, M.; Guenther, J.M.; et al. Integrating 31-Gene Expression Profiling with Clinicopathologic Features to Optimize Cutaneous Melanoma Sentinel Lymph Node Metastasis Prediction. JCO Precis. Oncol. 2021, 5, 1466–1479. [Google Scholar] [CrossRef]
- Marchetti, M.A.; Bartlett, E.K.; Dusza, S.W.; Bichakjian, C.K. Use of a prognostic gene expression profile test for T1 cutaneous melanoma: Will it help or harm patients? J. Am. Acad. Dermatol. 2019, 80, e161–e162. [Google Scholar] [CrossRef] [PubMed]
- Jarell, A.; Gastman, B.R.; Dillon, L.D.; Hsueh, E.C.; Podlipnik, S.; Covington, K.R.; Cook, R.W.; Bailey, C.N.; Quick, A.P.; Martin, B.J.; et al. Optimizing treatment approaches for patients with cutaneous melanoma by integrating clinical and pathologic features with the 31-gene expression profile test. J. Am. Acad. Dermatol. 2022, 87, 1312–1320. [Google Scholar] [CrossRef] [PubMed]
- Sparano, J.A.; Gray, R.J.; Makower, D.F.; Pritchard, K.I.; Albain, K.S.; Hayes, D.F.; Geyer, C.E., Jr.; Dees, E.C.; Goetz, M.P.; Olson, J.A.; et al. Adjuvant Chemotherapy Guided by a 21-Gene Expression Assay in Breast Cancer. N. Engl. J. Med. 2018, 379, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Bellomo, D.; Arias-Mejias, S.M.; Ramana, C.; Heim, J.B.; Quattrocchi, E.; Sominidi-Damodaran, S.; Bridges, A.G.; Lehman, J.S.; Hieken, T.J.; Jakub, J.W.; et al. Model Combining Tumor Molecular and Clinicopathologic Risk Factors Predicts Sentinel Lymph Node Metastasis in Primary Cutaneous Melanoma. JCO Precis. Oncol. 2020, 4, 319–334. [Google Scholar] [CrossRef] [PubMed]
- Meves, A.; Nikolova, E.; Heim, J.B.; Squirewell, E.J.; Cappel, M.A.; Pittelkow, M.R.; Otley, C.C.; Behrendt, N.; Saunte, D.M.; Lock-Andersen, J.; et al. Tumor Cell Adhesion as a Risk Factor for Sentinel Lymph Node Metastasis in Primary Cutaneous Melanoma. J. Clin. Oncol. 2015, 33, 2509–2515. [Google Scholar] [CrossRef]
- Alonso, S.R.; Tracey, L.; Ortiz, P.; Pérez-Gómez, B.; Palacios, J.; Pollán, M.; Linares, J.; Serrano, S.; Sáez-Castillo, A.I.; Sánchez, L.; et al. A high-throughput study in melanoma identifies epithelial-mesenchymal transition as a major determinant of metastasis. Cancer Res 2007, 67, 3450–3460. [Google Scholar] [CrossRef] [PubMed]
- Eggermont, A.M.M.; Bellomo, D.; Arias-Mejias, S.M.; Quattrocchi, E.; Sominidi-Damodaran, S.; Bridges, A.G.; Lehman, J.S.; Hieken, T.J.; Jakub, J.W.; Murphree, D.H.; et al. Identification of stage I/IIA melanoma patients at high risk for disease relapse using a clinicopathologic and gene expression model. Eur. J. Cancer 2020, 140, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Mulder, E.E.A.P.; Dwarkasing, J.T.; Tempel, D.; Spek, A.; Bosman, L.; Verver, D.; Mooyaart, A.; Veldt, A.; Verhoef, C.; Nijsten, T.; et al. Validation of a clinicopathological and gene expression profile model for sentinel lymph node metastasis in primary cutaneous melanoma. Br. J. Dermatol. 2021, 184, 944–951. [Google Scholar] [CrossRef]
- Yousaf, A.; Tjien-Fooh, F.J.; Rentroia-Pacheco, B.; Quattrocchi, E.; Kobic, A.; Tempel, D.; Kolodney, M.; Meves, A. Validation of CP-GEP (Merlin Assay) for predicting sentinel lymph node metastasis in primary cutaneous melanoma patients: A U.S. cohort study. Int. J. Dermatol. 2021, 60, 851–856. [Google Scholar] [CrossRef] [PubMed]
- Mulder, E.; Johansson, I.; Grünhagen, D.; Tempel, D.; Rentroia-Pacheco, B.; Dwarkasing, J.; Verver, D.; Mooyaart, A.; van der Veldt, A.; Nijsten, T.; et al. Using a clinicopathologic and gene expression (CP-GEP) model to identify stage I-II melanoma patients at risk for disease relapse. Eur. J. Surg. Oncol. 2023, 49, e33–e34. [Google Scholar] [CrossRef]
- Amaral, T.; Sinnberg, T.; Chatziioannou, E.; Niessner, H.; Leiter, U.; Keim, U.; Forschner, A.; Dwarkasing, J.; Tjien-Fooh, F.; Wever, R.; et al. Identification of stage I/II melanoma patients at high risk for recurrence using a model combining clinicopathologic factors with gene expression profiling (CP-GEP). Eur. J. Cancer 2023, 182, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Brunner, G.; Heinecke, A.; Falk, T.M.; Ertas, B.; Blödorn-Schlicht, N.; Schulze, H.-J.; Suter, L.; Atzpodien, J.; Berking, C. A Prognostic Gene Signature Expressed in Primary Cutaneous Melanoma: Synergism with Conventional Staging. JNCI Cancer Spectr. 2018, 2, pky032. [Google Scholar] [CrossRef]
- Amaral, T.M.S.; Hoffmann, M.-C.; Sinnberg, T.; Niessner, H.; Sülberg, H.; Eigentler, T.K.; Garbe, C. Clinical validation of a prognostic 11-gene expression profiling score in prospectively collected FFPE tissue of patients with AJCC v8 stage II cutaneous melanoma. Eur. J. Cancer 2020, 125, 38–45. [Google Scholar] [CrossRef]
- Brunner, G.; Reitz, M.; Heinecke, A.; Lippold, A.; Berking, C.; Suter, L.; Atzpodien, J. A nine-gene signature predicting clinical outcome in cutaneous melanoma. J. Cancer Res. Clin. Oncol. 2013, 139, 249–258. [Google Scholar] [CrossRef]
- Luke, J.J.; Rutkowski, P.; Queirolo, P.; Del Vecchio, M.; Mackiewicz, J.; Chiarion-Sileni, V.; Merino, L.d.l.C.; A Khattak, M.; Schadendorf, D.; Long, G.V.; et al. Pembrolizumab versus placebo as adjuvant therapy in completely resected stage IIB or IIC melanoma (KEYNOTE-716): A randomised, double-blind, phase 3 trial. Lancet 2022, 399, 1718–1729. [Google Scholar] [CrossRef]
- Deacon, D.C.; Smith, E.A.; Judson-Torres, R.L. Molecular Biomarkers for Melanoma Screening, Diagnosis and Prognosis: Current State and Future Prospects. Front. Med. 2021, 8, 642380. [Google Scholar] [CrossRef]
- Eroglu, Z.; Krinshpun, S.; Kalashnikova, E.; Sudhaman, S.; Topcu, T.O.; Nichols, M.; Martin, J.; Bui, K.M.; Palsuledesai, C.C.; Malhotra, M.; et al. Circulating tumor DNA-based molecular residual disease detection for treatment monitoring in advanced melanoma patients. Cancer 2023, 129, 1723–1734. [Google Scholar] [CrossRef]
- Van Wilpe, S.; Koornstra, R.; Den Brok, M.; De Groot, J.W.; Blank, C.; De Vries, J.; Gerritsen, W.; Mehra, N. Lactate dehydrogenase: A marker of diminished antitumor immunity. OncoImmunology 2020, 9, 1731942. [Google Scholar] [CrossRef]
- Fischer, G.M.; Carapeto, F.C.L.; Joon, A.Y.; Haydu, L.E.; Chen, H.; Wang, F.; Van Arnam, J.S.; McQuade, J.L.; Wani, K.; Kirkwood, J.M.; et al. Molecular and immunological associations of elevated serum lactate dehydrogenase in metastatic melanoma patients: A fresh look at an old biomarker. Cancer Med. 2020, 9, 8650–8661. [Google Scholar] [CrossRef]
- Gracie, L.; Pan, Y.; Atenafu, E.G.; Ward, D.G.; Teng, M.; Pallan, L.; Stevens, N.M.; Khoja, L. Circulating tumour DNA (ctDNA) in metastatic melanoma, a systematic review and meta-analysis. Eur. J. Cancer 2021, 158, 191–207. [Google Scholar] [CrossRef]
- Cescon, D.W.; Bratman, S.V.; Chan, S.M.; Siu, L.L. Circulating tumor DNA and liquid biopsy in oncology. Nat. Cancer 2020, 1, 276–290. [Google Scholar] [CrossRef]
- Syeda, M.M.; Wiggins, J.M.; Corless, B.C.; Long, G.V.; Flaherty, K.T.; Schadendorf, D.; Nathan, P.D.; Robert, C.; Ribas, A.; Davies, M.A.; et al. Circulating tumour DNA in patients with advanced melanoma treated with dabrafenib or dabrafenib plus trametinib: A clinical validation study. Lancet Oncol. 2021, 22, 370–380. [Google Scholar] [CrossRef]
- Gibbs, J.N.; Dale, P.S.; Weatherall, A.L. Utilization of Circulating Tumor DNA in the Surveillance Setting. Am. Surg. 2023, 89, 3799–3802. [Google Scholar] [CrossRef]
- Aoude, L.G.; Brosda, S.; Ng, J.; Lonie, J.M.; Belle, C.J.; Patel, K.; Koufariotis, L.T.; Wood, S.; Atkinson, V.; Smithers, B.M.; et al. Circulating Tumor DNA: A Promising Biomarker for Predicting Recurrence in Patients with BRAF-Negative Melanoma. J. Mol. Diagn. 2023, 25, 771–781. [Google Scholar] [CrossRef]
- Reinert, T.; Henriksen, T.V.; Christensen, E.; Sharma, S.; Salari, R.; Sethi, H.; Knudsen, M.; Nordentoft, I.K.; Wu, H.-T.; Tin, A.S.; et al. Analysis of Plasma Cell-Free DNA by Ultradeep Sequencing in Patients with Stages I to III Colorectal Cancer. JAMA Oncol. 2019, 5, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
- Brunsgaard, E.K.; Bowles, T.L.; Asare, E.A.; Grossmann, K.; Boucher, K.M.; Grossmann, A.; Jackson, J.A.; Wada, D.A.; Rathore, R.; Budde, G.; et al. Feasibility of personalized circulating tumor DNA detection in stage II and III melanoma. Melanoma Res. 2023, 33, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Kovarik, C.L.; Chu, E.Y.; Adamson, A.S. Gene Expression Profile Testing for Thin Melanoma: Evidence to Support Clinical Use Remains Thin. JAMA Dermatol. 2020, 156, 837–838. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.H.; Tsao, H. Consensus, Controversy, and Conversations about Gene Expression Profiling in Melanoma. JAMA Dermatol. 2020, 156, 949–951. [Google Scholar] [CrossRef] [PubMed]
- Farberg, A.S.; Marson, J.W.; Glazer, A.; Litchman, G.H.; Svoboda, R.; Winkelmann, R.R.; Brownstone, N.; Rigel, D.S.; The Skin Cancer Prevention Working Group. Expert Consensus on the Use of Prognostic Gene Expression Profiling Tests for the Management of Cutaneous Melanoma: Consensus from the Skin Cancer Prevention Working Group. Dermatol. Ther. 2022, 12, 807–823. [Google Scholar] [CrossRef] [PubMed]
- Geoffrois, L.; Harlé, A.; Sahki, N.; Sikanja, A.; Granel-Brocard, F.; Hervieu, A.; Mortier, L.; Jeudy, G.; Michel, C.; Nardin, C.; et al. Personalized follow-up of circulating DNA in resected stage III/IV melanoma: PERCIMEL multicentric prospective study protocol. BMC Cancer 2023, 23, 554. [Google Scholar] [CrossRef] [PubMed]
Test | Genes | Statistical Data | Test Modality |
---|---|---|---|
2-GEP pigmented lesion assay (PLA) | PRAME LINC00518 | Sensitivity: 91–95% Specificity: 69–91% | Non-invasive skin sample |
3-GEP pigmented lesion assay (PLAplus) | PRAME LINC00518 TERT promoter | Sensitivity: 97% NPV: 99.6% | Non-invasive skin sample |
23-GEP (MyPath) | Cell Signaling PRAME, S100A7, S100A8, S100A9, S100A12, PI3 Tumor Immune Response CCL5, CD38, CXCL10, CXCL9, IRF1, LCP2, PTPRC, SELL Housekeeping CLTC, MRFAPI, PPP2CA, PSMA1, RPL13A, RPL8, RPS29, SLC25A3, TXNLI | Sensitivity: 90–93.8% Specificity: 91–96.2% | qRT-PCR test of tissue |
Test | Studies | Cohort | Results | |
---|---|---|---|---|
31-GEP (Decision-Dx MelanomaTM) | Zager 2018 [22] | 523 patients Stage I: 50% Stage II: 18% Stage III: 32% | Class 1: 5-y RFS: 88% 5-y DMFS 93% | Class 2: 5-y RFS: 52% 5-y DMFS: 60% |
Greenhaw 2018 [27] | 256 patients Stage I: 86% Stage II: 14% | Class 1: 5-y MFS: 93% | Class 2: 5-y MFS: 69% | |
Podlipnik 2019 [24] | 86 patients Stage IB-IIA: 72% Stage IIB-C: 28% | Class 1: No recurrence: 100% | Class 2: No recurrence: 79% | |
Keller 2019 [28] | 159 patients Stage I: 60% Stage II: 25% Stage III: 14% | Class 1: 3-y RFS: 97% 3-y DMFS: 99% | Class 2: 3-y RFS: 47% 3-y DMFS: 80% | |
Vetto 2019 [33] | 838 patients Cohort 1: T1/T2 with SLNB: 326 patients Cohort 2: T1/T2 with SLNB: 512 patients | Cohort 1: Class 1A: 6.2% SLNB+ Cohort 2: Class 1A: 6.3% SLNB+ | Class 2B: 8.3% SLNB+ Class 2B: 24.5% SLNB+ | |
Greenhaw 2020 [29] | 1479 patients * Stage IA: 40.3% Stage IB: 17.3% Stage IIA: 10.6% Stage IIB: 7.6% Stage IIC: 2.9% Stage III: 21.1% Unknown: 0.14% | Stage I Class 1A 5-y RFS: 97.6% 5-y DMFS: 98.4% Class 1B 5-y RFS: 90.2% 5-y DMFS: 90.0% Stage II Class 1A 5-y RFS: 73.0% 5-y DMFS: 89.3% Class 1B 5-y RFS: 83.9% 5-y DMFS: 87.9% Stage III Class 1 5-y RFS: 62.9% 5-y DMFS: 72.7% | Class 2A 5-y RFS: 85.0% 5-y DMFS: 90.0% Class 2B 5-y RFS: 76.1% 5-y DMFS: 86.0% Class 2A 5-y RFS: 63.0% 5-y DMFS: 76.5% Class 2B 5-y RFS: 44.3% 5-y DMFS: 60.1% Class 2 5-y RFS: 34.2% 5-y DMFS: 46.1% | |
i31-GEP | Jarell 2022 [36] | 523 patients Validation Cohort Stage IA: 39% Stage IB: 21% Stage IIA: 11% Stage IIB: 8% Stage IIC: 3% Stage III: 18% | Low-risk ** 5-y RFS: 90.5% 5-y DMFS: 94.9% 5-y MSS: 98.0% | High-risk 5-y RFS: 44.7% 5-y DMFS: 52.9% 5-y MSS: 72.6% |
8-GEP (MelaGenix) | Brunner 2018 [46] | 211 patients Validation Cohort Stage IA: 6.6% Stage IB: 13.7% Stage IIA: 11.8% Stage IIB: 15.2% Stage IIC: 14.2% Stage IIIA: 11.4% Stage IIIB: 15.2% Stage IIIC: 11.8% | Low-risk MSS: 86–98% Intermediate-risk MSS: 40–89% High-risk MSS 47–67% | |
Amaral 2020 [47] | 245 patients Stage IIA: 48.2% Stage IIB: 31.8% Stage IIC: 20% | 5-y MSS Stage IIA: 94% Stage IIB: 87% Stage IIC: 82% Low score: 92% High score: 82% | 10-y MSS Stage IIA: 88% Stage IIB: 82% Stage IIC: 75% Low score: 92% High score: 67% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Karasaki, K.M.; Farma, J.M. The Use of Gene Expression Profiling and Biomarkers in Melanoma Diagnosis and Predicting Recurrence: Implications for Surveillance and Treatment. Cancers 2024, 16, 583. https://doi.org/10.3390/cancers16030583
Sun J, Karasaki KM, Farma JM. The Use of Gene Expression Profiling and Biomarkers in Melanoma Diagnosis and Predicting Recurrence: Implications for Surveillance and Treatment. Cancers. 2024; 16(3):583. https://doi.org/10.3390/cancers16030583
Chicago/Turabian StyleSun, James, Kameko M. Karasaki, and Jeffrey M. Farma. 2024. "The Use of Gene Expression Profiling and Biomarkers in Melanoma Diagnosis and Predicting Recurrence: Implications for Surveillance and Treatment" Cancers 16, no. 3: 583. https://doi.org/10.3390/cancers16030583
APA StyleSun, J., Karasaki, K. M., & Farma, J. M. (2024). The Use of Gene Expression Profiling and Biomarkers in Melanoma Diagnosis and Predicting Recurrence: Implications for Surveillance and Treatment. Cancers, 16(3), 583. https://doi.org/10.3390/cancers16030583